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Writing extraction

Image (part of a page)

Writing (extracted writing using the line polygon)
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Writing extraction

Difference between training and evaluation data
– The system processes entire lines of the images.
– The xml-files of the evaluation sets provide polygon around the lines.
– This polygon is not available for the other sets, so we had to construct it

from the word’s polygon.
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Writing extraction

Word polygons (shaded) and generated line polygon (colored line).

Extracted writing using the line polygon
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Preprocessing

Extracted writing using the line polygon

Preprocessed writing
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Preprocessing

Locally calculated main body of the writing

Shifted main body with shrinked ascenders and descenders

⇒ The neural network processes writing images of fixed height.
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Network

Preprocessed writing

Character (rows) probabilities per position (columns)
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Network - layout

Network layout
– The network is copied from [A. Graves and J. Schmidhuber, “Offline

handwriting recognition with multidimensional recurrent neural networks”].
– Each hidden layer has 50% more units.
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Network - cells

Block diagram of a 2D-LSTM cell
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Network - cells

Layout of a multidimensional Leaky cell
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Network - output

The Character set with 153 characters
– Arabic letters (46)

– Latin letters (53)

– Digits (10)

– Signs (43) including space character and extra characters for “..” and “...”

– the “blank” character
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Network - training

Training setup
– The network is trained with Backpropagation-Through-Time (BPTT) using

the Connectionist Temporal Classification (CTC) algorithm desribed in [A.
Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with
recurrent neural network”].
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Network - training

Training setup
– Let (x , y) ∈ S be an input-target pair of a training set S , where

x ∈ [0, 1]n×m is the network input and y ∈ Lk is a sequence of the
character set L of length k , which represent the text in x .

– For one input-target pair (x , y) we maximize the probability of the target
sequence y for a given input x , by reducing its logarithmic probability.

L(x , y) = − ln p(y |x)
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Network - training

Training setup
– One single line x of a page with the associated target sequence y is one

training item (x , y).
– One training epoch consists of one randomly chosen line from each of the

27,915 pictures of the MADCAT Phase 2 training set.
– One validation epoch consists of one randomly chosen line from each of the

4,540 pictures of the MADCAT Phase 3 training set.
– The learning rate is reduced from 1 · 10−3 to 5 · 10−5 over 283 epochs

with momentum 0.9.
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Network - training

Training of the primary system
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Decoder

Character (rows) probabilities per position (columns)

Most probable for a given network output matrix
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Decoder

Dictionary lookup
– For the hypothesis string we use the most probable sequence which arises

by the output of the network, using the CTC-algorithm.
– For improving the recognition rate by a dictionary lookup, we extract a

dictionary.
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Decoder

Dictionary extraction
– We take a specific set of MADCAT xml-files provided for OpenHaRT 2013.
– We count the occurrences of the <token>’s <source> content, which

contain only Arabic letters, including those of status “TYPO” or “MISSING”.
– If this is lower than a specific number, we assume it is a typo and we erase

the entry from dictionary.
– For the primary system, we took the xml-files of MADCAT Phase 1-3

Training Set and Phase 1 Evaluation Set.
– This dictionary contains 107, 059 entries.
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Decoder

Parsing the network output
– For a given network output, we calculate the most probable sequence of

entries of the dictionary, using CTC.
– If the average character probability over the best dictionary entry falls below

a constant threshold θ, we assume that the true word is not in dictionary.
– If so, we directly take the most probable output sequence of the network.
– As default, we use θ = 1

e , but also tried the larger value θ = 1√
e .
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Results

Main results
decoder difference to primary system WER ∆ WER
#5 26.27
#1 no dictionary 33.14 +6.87

#2
dictionary sources include
Dryrun Set

26.31 +0.04

#3 enlarged θ = 1√
e 24.60 -1.67

#6
dictionary’s words appear at
least 3 times

25.35 -0.92

#4
combining decoders #2 and
#6

25.18 -1.09
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Further experiments

Main results - primary network

WER on the evaluation set in %

dictionary’s words appear at least 3 times

no yes

θ

1
e 26.27 25.35

1√
e 24.60 23.32
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Further experiments

Unsupervised pretraining
– Unsupervised pretraining improves many deep networks or makes it even

possible to train deep architectures.

Neural network layout with pretrained features
– The lowest MD-layer is substituted by a deep believe net (DBN).
→ Neurons in the tanh-layer have 250 instead of 144 source connections.
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Further experiments

Training of the unsupervised neural network
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Further experiments

Main results - unsupervised pretrained neural network

WER on the evaluation set in %

dictionary’s words appear at least 3 times

no yes

θ

1
e 24.00 23.08

1√
e 22.42 21.75
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Conclusion

Conclusion
decoder difference to primary system WER ∆ WER
#5 26.27

#3 enlarged θ = 1√
e 24.60 -1.67

#6
dictionary’s words appear at
least 3 times

25.35 -0.92

combining #3, #6 23.32 -2.95
using classical LSTM cells 27.62 1.35
using unsupervised features 24.00 -2.27
combining #3, #6 and
unsupervised features

21.75 -4.52
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#5 26.27

#3 enlarged θ = 1√
e 24.60 -1.67

#6
dictionary’s words appear at
least 3 times

25.35 -0.92

combining #3, #6 23.32 -2.95
using classical LSTM cells 27.62 1.35
using unsupervised features 24.00 -2.27
combining #3, #6 and
unsupervised features

21.75 -4.52

Thanks for attention!
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