
OPENHART 2013 EVALUATION: DESCRIPTION
OF THE LITIS HANDWRITING RECOGNITION

SYSTEM

Kamel Ait-Mohand and Thierry Paquet
Laboratory of computer science, information processing and systems (LITIS)

University of Rouen, France
{kamel.ait-mohand1,Thierry.Paquet}@univ-rouen.fr

Abstract—In this paper, we present the Arabic handwriting
recognition system that was submitted to the 2013 NIST Open
Handwriting Recognition and Translation Evaluation (Open-
HaRT 2013). Our baseline recognition system is based on Hidden
Markov Models and we also propose a lattice-based framework
to combine the outputs from several different recognition engines.

Keywords—Document recognition, Arabic handwriting, Open-
HaRT, Hidden Markov Models.

I. INTRODUCTION

In this paper, we present the Arabic handwriting recog-
nition system developed by LITIS laboratory (laboratory of
computer science, information processing and systems) to
participate in the DIR task (Document Image Recognition) of
the 2013 NIST Open Handwriting Recognition and Translation
Evaluation (OpenHaRT 2013 [1]).

We have submitted two DIR systems for the constrained
condition (the systems are developed using only the provided
data resources) for the OpenHaRT evaluation. The first one
is our baseline system which is based on Hidden Markov
Models (section II) and the second one uses a lattice-based
combination framework to combine the outputs from several
HMM-based recognition engines (see section III). We could
not participate in the DIR unconstrained condition due to lack
of time.

The rest of the paper is organized as follows. In section
II, we give details about our HMM-based baseline recognition
engine. Section III describes the combination framework that
is designed to combine the outputs of different recognition
systems. In section IV, we detail the different recognition
systems used for combination. Finally, we conclude about the
relevance of our system in the last section.

II. BASELINE SYSTEM

The LITIS Arabic handwriting recognition system uses
only the ressources given for the OpenHaRT competition. It
takes as input the text line images extracted from document
images (using the information collected in ground-truth MAD-
CAT files) and outputs the text contained in these lines. Several
steps are necessary to achieve this result:

Fig. 1. Line normalization example (original image / deskewed image /
deslanted image / normalized image).

A. PRE-PROCESSING

As a first step, we try to improve the image quality
by conducting image-based pre-processing operations. The
set of image processing operations used are: mathematical
morphology operations, Wiener and bilateral filtering, contrast
enhancement, adaptive binarization (Sauvola algorithm [2]).
Then, a series of processing steps intended to “normalize” the
style of writing are applied on each line image (see figure 1):

• Correction of the line slope or deskew: the slope of the
line is estimated by a regression line calculated using
the extrema of connected components. The skew is
then corrected by a rotation of the line in the opposite
direction.

• Correction of characters slope or deslant: the average
slope angle of the characters is estimated from the
Freeman writing contour direction histogram, then
correction is performed by applying a linear transfor-
mation that shifts each foreground pixel depending on
its position in the image.

• Normalization of the line height (corrected to a stan-
dard value of 48 pixels).

B. FEATURE EXTRACTION

We compare several descriptors on this character recogni-
tion task to be used by HMM-models. The results obtained
show the superiority of the histograms of oriented gradients
features described in [3]. The feature extraction module uses
a sliding window approach and extracts on each position a set
of 128 features based on the image gradient orientation with
a 4× 4 grid and 8 discrete values for the gradient orientation
(see figure 2). We add five more features that capture the
information about the position and the size of the connected
components. Thus, the dimensionality of the feature vectors
used in our experiments is 133.



Fig. 2. Illustration (on a whole character image) of the feature extraction
steps: (A) original image, (B) white spaces deletion above and below the
character shape, (C) application of a 5×5 regular grid, (D) feature extraction.

Feature vectors are fed to a HMM based character recognition
engine. For each text block, we use an approporiate set of
models (Arabic letters) together with an appropriate language
dictionary (60,000 words) and a language model. The textual
content is found by searching for the best path in the graph of
all possible hypotheses (Viterbi algorithm).

C. MODELING CHARACTERS WITH HMM MODELS

First, we process the OpenHaRT training dataset, which
contains about 150,000 line images along with their ground
truth files. Each line image is first processed by our pre-
processing module before it is converted to a set of feature
vectors that serves as input to the recognition engine.
This recognition engine consists of left-right continuous hidden
Markov models and it is applied directly to the sequence of
feature vectors extracted from an entire line image without pre-
segmentation into words. We create line models by concate-
nating word models separated by an interword space model,
making it possible to model all word sequences. Word models
are created by concatenating character models (contextual
Arabic letters, digits and punctuations, for a total of 144
models).

We use the HTK toolkit1 (Hidden markov models ToolKit
[4]) to create hidden Markov models used in our recognition
engine. In order to optimize the learning of the models, we
have to find the appropriate values for three hyper-parameters:

1) Number of states for each HMM.
2) Number of Gaussians per state.
3) Number of learning iterations.

For this purpose, we use the heuristic method of Zimmermann
and Bunke procedure [5] in which the number of states of each
left/right HMM character model is variable and proportional to
the average duration of each character in the learning dataset.
The optimal value of the number of states of each model, along
with the number of Gaussians mixtures elements and learning
iterations, are jointly optimized to maximize the recognition
rate on a validation dataset.

Once the hyper-parameters are fixed, we apply the Baum-
Welch algorithm to perform HMMs parameters estimation on
the OpenHaRT training dataset. The values of the parameters
that yields the best results are:

• Number of states per HMM ranging from 8 to 24
depending on the model

• Gaussian mixtures containing 20 components

• 20 iterations of the Baum-Welch algorithm

1http://htk.eng.cam.ac.uk/

Fig. 3. Schematic representation of a word lattice (top) and a word confusion
network (bottom).

Once the character models are learned, they can be used
to find the text content of a line image. During the recognition
phase, the line images to be recognized are inputted to the
feature extractor. The obtained sequences of feature vectors
are decoded using a two-pass forward-backward search [6].
The first forward pass uses a frame-synchronous beam search
algorithm, with lexical constraints imposed by a bigram lan-
guage model. While the backward pass is based on a stack
decoding search and a trigram language model. To implement
this decoder, we use the API (Application programming in-
terface) of the Julius [7] software for its speed (the overall
processing chain takes less than 2 minutes on an average for
one document).

The accuracy of the HMM-based baseline system on the
OpenHaRT evaluation dataset is quite low (23.33% word
recognition rate). This can be explained primarily by the
insufficient discriminating capabilities of our classifier. HMMs
are not enough powerful to recognize with sufficient precision
handwritten Arabic words such as those of the OpenHaRT
database. Secondly, we lack some pre-processing operations
like line-removal : our feature extractor is very sensitive to the
presence of lines in the image and we noticed a much higher
error rate on documents with lines in the background.

III. RECOGNITION SYSTEMS COMBINATION FRAMEWORK

We design a recognition framework to combine the outputs
of several recognition engines in order to achieve improved
recognition results. This combination method is the only
novelty of this work but is still under development. When
processing a line image, each recognition engine outputs a
word lattice. This word lattice is a structured representation
of the N-best recognition hypotheses along with the words
confidence scores and time boundaries (see figure 3).

The first step of the combination consists of vertically
concatenating lattices from all systems by merging their start
and end nodes. This larger word lattice is further converted
into a Confusion-Network (CN).

A confusion network (CN) is a weighted directed graph
that forms a compact representation of word lattices in which
competing word hypotheses, along with their posterior prob-
abilities, are organized in time-ordered sets [8]. Each set (or



class, or node) contains one or more competing word hypoth-
esis (figure 3). The probability of all the words contained in
one set sum up to 1. Each set can also contain at most one
empty word (ε). Due to the use of these empty words, a CN
contains more paths than the lattice from which it is derived.
These empty words also allow paths through the CN to have
different lengths.

The advantage of this conversion of lattices to CNs is
that we create new paths that combine words coming from
the outputs of different engines. It also permits to sum the
confidence scores of a word hypothesis if it is recognized
by two or more systems, thus reinforcing the score of (a
supposedly) good hypothesis. The use of CN representation,
instead of word lattices or 1-best recognition, is also shown to
reduce word error rate in automatic speech recognition [9].

To build these CNs from lattices, we use the SRILM
toolkit [10] which implements an algorithm that is inspired
by the original work in [8] but has lower complexity. In
this algorithm, the word mesh is initialized with the highest-
probability path through the lattice (this path is divided in
distinct adjacent classes, so that each word forms a new class),
and then successively aligns remaining partial lattice paths to
the CN until all word hypotheses are processed (empty words
are inserted where necessary to make these alignments one-to-
one).

Once the CN is built, we rescore the word hypothesis using
a 4-gram language model. Then the best path through the word
CN is found by extracting, in each set of the CN, the best
hypothesis (the highest probability word) which is also called
consensus hypothesis.

IV. DESIGNING SEVERAL DIFFERENT RECOGNITION
SYSTEMS

In order that the combination of the outputs of different
systems can improve their initial performance, it is important
that the combined systems are significantly different, in terms
of technology (type of classifier) or representation of the data
(type of feature extraction).

Our combination framework is still under development at
the beginning of the OpenHaRT evaluation campaign and re-
quires significant improvements to be fully functional. Initially,
we intended to use several HMM-based recognizers using
different feature extractors. However, because of the lack of
time, we are not able to develop several sufficiently powerful
features extractors (we only have the histogram of oriented
gradient features extractor detailed above). Therefore, we have
decided to combine the outputs coming from the same system
but applied several different image resolution levels (we used
3 different image resolution values, each resolution level is
obtained by applying a Lanczos interpolation [11] on the initial
image). The aim is that to get different HMM alignments on
these feature frames and, therefore, different outputs depending
on the used resolution.

Another problem due to the lack of time is the number N
of sequences provided as output by each system, which we
were forced to fix to a very small value (because obtaining
the N-best sequences is quite time-consuming). We limit this
value to only the 3 best sequences for each recognition engine.

This partly explains the low accuracy of the results that was
submitted at the end of the OpenHaRT evaluation campaign
(21,60% of recognition rate). In addition, our system lacks
a precise modeling of the language, in order to be more
appropriate to the type of documents used in this evaluation
campaign. We created a 60,000 words language model, esti-
mated on a large text corpus of about 10,000,000 words, which
is a mix of press articles (corpora extracted from Al Khaleej
and Al Watan newspapers2) and some Arabic literature texts
(retrieved from the Internet). We believe that this language
model is too large to have good recognition accuracy on a
handwritten recognition task and is also responsible of the
high running time of the combination system (several hours
for each document).

V. CONCLUSION

We designed a handwriting recognition engine based on
Hidden Markov Models. To achieve a result improvement, we
added a combination framework that uses the word lattices
(that contain the N-best word sequences) outputted by several
HMM-based recognition engines to build a large lattice con-
taining all their word hypothesis. This large lattice is further
converted into a confusion network which is decoded in order
to get, as a final output, its highest-probability path.

Due to the lack of time, we have not been able to implement
several feature extractors that are necessary for the combina-
tion framework to give significant improvement of accuracy.
To overcome this deficiency, we obtain different outputs from
the same HMM-based recognition engine by putting as input
the line image at different resolution levels. Also because of
the lack of time, we limited to 3 the number of N-best word
sequences outputted by each recognition engine. All these
shortcomings explain the poor accuracy of our final system.
Another shortcoming of this recognition engine is the inappro-
priate language model used during the decoding process. We
believe that this language model is too large (60,000 words) to
have good recognition accuracy on a handwritten recognition
task. In order to get better results, we plan to use smaller and
topic-specialized language models. We also plan to modify the
recognition engine by replacing the HMM models with more
efficient classifiers. We believe that the use of discriminative
classifiers such as neural networks can significantly improve
the accuracy of our baseline system.

REFERENCES

[1] A. Tong, M. Przybocki, V. Maergner, and H. El Abed, “Nist 2013
open handwriting recognition and translation (openhart’13) evaluation,”
in Proceedings of the NIST 2013 Open Handwriting and Recognition
Workshop, 2013, in press.

[2] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,”
Pattern Recognition, vol. 33, no. 2, pp. 225–236, 2000.

[3] J. Rodriguez and F. Perronnin, “Local gradient histogram features for
word spotting in unconstrained handwritten documents,” in Proceedings
of the International Conference on Frontiers in Handwriting Recogni-
tion, ser. ICFHR’08, Montreal, Canada, 2008, pp. 7–12.

[4] S. J. Young, G. Evermann, M. Gales, D. Kershaw, G. Moore, J. Odell,
D. Ollason, D. Povey, V. Valtchev, and P. Woodland, “The htk book
version 3.4,” 2006.

2https://sites.google.com/site/mouradabbas9/corpora



[5] M. Zimmermann and H. Bunke, “Hidden markov model length opti-
mization for handwriting recognition systems,” in Proceedings of the
Eighth International Workshop on Frontiers in Handwriting Recogni-
tion, ser. IWFHR’02, 2002, pp. 369–.

[6] A. Lee, T. Kawahara, and S. Doshita, “An efficient two-pass search
algorithm using word trellis index,” in Proc. iCSLP, vol. 98, 1998, pp.
1831–1834.

[7] A. Lee and T. Kawahara, “Recent development of open-source speech
recognition engine julius,” in Proceedings: APSIPA ASC 2009: Asia-
Pacific Signal and Information Processing Association, 2009 Annual
Summit and Conference. Asia-Pacific Signal and Information Process-
ing Association, 2009 Annual Summit and Conference, International
Organizing Committee, 2009, pp. 131–137.

[8] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in speech recog-
nition: word error minimization and other applications of confusion
networks,” eprint arXiv:cs/0010012, Oct. 2000.

[9] G. Tur, D. Hakkani-Tur, and G. Riccardi, “Extending boosting for call
classification using word confusion networks,” in Acoustics, Speech, and
Signal Processing, 2004. Proceedings.(ICASSP’04). IEEE International
Conference on, vol. 1. IEEE, 2004, pp. I–437.

[10] A. Stolcke, J. Zheng, W. Wang, and V. Abrash, “Srilm at sixteen: Update
and outlook,” in Proceedings of IEEE Automatic Speech Recognition
and Understanding Workshop, 2011.

[11] K. Turkowski, “Filters for common resampling tasks,” in Graphics
gems. Academic Press Professional, Inc., 1990, pp. 147–165.


