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Abstract—This paper represents our architecture and a series of 

experiments on ASR for OPENASR 20. We both describe the system 

wi/wo constrained conditions and our post evaluation analysis, 

whereas the main acoustic model is trained by various shape of 

models in combination with CNN-TDNN-F-A, which aggregates 

Convolution Neural Network (CNN), Factored Time Delay Neural 

Network (TDNN-F) and self-attention (SAN). Such techniques as 

data cleanup, language tailored features, multi-band training, data 

perturbation, speaker adaptation, language model adaptation & 

rescore, pre-training and system fusions are incorporated. For un-

constrained condition our end to end ASR systems with conformer 

in optimized loss and long sequence encoders are adopted. For 

Cantonese and Mongolian, we also adapt this challenging PSTN 

conditions using publicly available data in shape of wideband 

dictated speech with similar accent, respectively. Finally, series of 

system are submitted for this challenge. The results of our submitted 

system for constrained condition is between 0.4-0.6 and for 

unconstrained condition, most of the languages could be below 0.4, 

in terms of WER. We did NOT manage to submit all the systems so 

left results are summarized in this report. 

Keywords—automatic speech recognition, low resource languages, 

OPENASR, speech pretraining 

I. INTRODUCTION  

Due to the lack of speech data, language script, lexicons, 
building an applicable ASR system for low resourced language 
is very challenging. The goal of the OpenASR20 Challenge is to 
assess the state-of-the-art ASR technologies under low-resource 
language constraints. It consists of performing ASR on audio 
datasets in up to ten different low resource languages, producing 
the recognized written text. For constrained condition, 
participants are only given 10 hours  subset of labelled acoustic 
data but extra text data is unlimited. For unconstrained condition, 
teams may use speech data outside of the 10-hour subset marked 
for the Constrained condition for the language being processed, 
as well as additional publicly available speech and text training 
data from any languages. The evaluation dataset is provided a 
week before the system submission deadline.  

The collaborated team consists of THU and MMT, hence its 
name TNT. The two teams work closely in model building and 

system fusion. We participate in all the 10 languages in 
Constrained condition and only two languages in 
Unconstrained condition, i.e. Cantonese and Mongolian. 
Unfortunately, due to the time limits, we didn’t manage to 
submit all the systems before the deadline, so analysis of system 
fusion will only be illustrated based on scoring server reopened 
later while. 

II. CONSTRAINED SYSTEM 

For our hybrid acoustic model, we propose the CNN- TDNN-F-
A network as the main structure, which is trained with lattice-
free maximum mutual information (LF-MMI) criterion [1]. The 
model introduces self-attention mechanism [2] to the 
combination of CNN and TDNN-F [3] in order to learn more 
positional information from the input. 

Since the major challenge is low-resource condition, various 
kinds of data augmentations are combined to get additive 
improvement, such as speed perturbation [4], volume 
perturbation [4], Spec-Augment [5], Wav-Augment [6] as well 
as reverberation and noise [7]. These are proved to be effective 
to ASR performance especially under low-resource conditions. 

Besides, systems’ diversity is important for the final fusion. We 
have trained more than four systems for each language to make 
further use of the differences of single system by system fusion. 

A. WORKFLOW 

Due to the lack of resources (only 10 hours). NN-HMM hybrid 

acoustic model proves to be more promising in terms of 

performances for ASR than end-to-end structures in this 

particular under resourced condition [17], this hybrid structure 

is adopted throughout the Constrained condition. The main 

workflow is illustrated in Fig. 1, which consists of feature 

extraction, pre-processing, data augmentation, training, 

decoding and system fusion roughly. 

mailto:springhuang@tencent.com
mailto:springhuang@tencent.com
mailto:wqzhang@tsinghua.edu.cn
mailto:wqzhang@tsinghua.edu.cn
mailto:wqzhang@tsinghua.edu.cn
mailto:wqzhang@tsinghua.edu.cn


First a Gaussian Mixture Model (GMM) is trained by several 
training and force-aligning iterations, which includes Speaker 
Adaptation Trainings (SAT) GMM. Two-stage data clean-ups 
by both GMM-HMM and NN-HMM are applied to the original 
speech and text data. Then, various types of augmentation 
method can process the raw audio with additional diversity and 
enrich the quantity of training data, such as speed perturbation 
[4] and reverberation [7]. 20 times of the original quantity of 
data are obtained for the following training, where high-
resolution MFCC, pitch and lower rate i-vectors speaker features 
are extracted with shared phoneme boundary produced by the 
aforementioned clean-up results on original data. Finally, 
system fusion operates more on acoustic model level, i.e. 
acoustic models are trained with various types of neural 
networks, which are then composed to build separate ASR 
systems that output multiple hypotheses in form of lattices, 
which are then fused in the final stage. 

 

Fig. 1 Workflow of the ASR systems: The whole system process can be roughly 
divided into data feature extraction, cleanup, pre-processing, data augmentation, 
training, decoding and system fusion. 

Besides, Spec-Augment [5] is applied to the combined acoustic 
features to augment data in feature level. As for language model, 
we build a N-gram LM by SRILM [8] with some extra text data 
from IARPA Babel program [9], and a Recurrent Neural 
Network (RNN) LM is also used to rescore lattices after 
decoding. Finally, several different system outputs are fused in 
lattice and 1-best levels, respectively. The details are described 
in the following sections. 

B. SPEECH PRETRAINING 

 

It is a common way to utilize bottle neck layer (BN) or posterior 

features (PF) for multi-lingual acoustic model training from a 

pre-trained phoneme classification task. Unfortunately, in this 

level of low resource data (10*10=100hours), it is observed that 

the contributions of multi-lingual BN or PF features are subtle, 

even inferior to model trained by 10 hours mono-lingual data. 

 

Speech pretraining using Transformer Encoder Representation 

for Speech (Tera) [20] is explored both on constrained and 

unconstrained conditions. As far as we know this may be the 

first system in ASR competition that adopts pre-training. We 

trained a Tera transformer using constrained speech, with Tera 

feature extractor, we could get a new 768-dimension feature 

representation. CNN-TDNN-F-A systems trained using Tera 

features have shown much faster convergence than traditional 

features. However, as in Tab. 1 for Cantonese DEV set. Tera 

features extracted CNN-TDNN-F-A system don’t outperform 

significantly than those trained on traditional features due to a 

lack of speech data (only 10 hours) in Constrained condition. 

However, it is still fortunate to discover that Tera-based 

systems provided quite good compensation for traditional 

features at system fusion phase. 
TABLE 1 

Results for hires-mfcc and pre-trained features for Cantonese 
(DEV set, our computation) 

Features WER CER 

Hires-MFCC 0.487 0.456 

Hires-MFCC+Pitch 0.485 0.444 

Tera 0.510 0.476 

1+2+3 fusion 0.468 0.424 

 
Fig. 2 Pre-training using Transformer Encoder Representation for Speech 

C. ACOUSTIC MODEL 

1） CNN-TDNN-F-A architecture： 

We propose CNN-TDNN-F-A network as the main neural 

network acoustic model, which combines Convolution Neural 

Network (CNN), Factored Time Delay Neural Network 

(TDNN-F) [3] and Self-Attention Network (SAN) [2]. The 

architecture is displayed in Fig. 3. The popular TDNN-F 

networks are the basic part of our acoustic model, which is 

structurally the same as TDNN whose layers have been 

compressed via SVD, but are trained from a random start with 

one of the two factors of each matrix constrained to be semi-



orthogonal in order to prevent instability in back propagation. 

A regular TDNN-F block consists of a linear layer, an affine 

component, an ReLU nonlinearity component, and batch 

normalization operation followed by dropout. The CNN-

TDNN-F-A network contains 11 TDNN-F blocks (9 before 

SAN and 2 after) in total with hidden dimension of 768 and a 

bottleneck dimension of 160. For different system settings, the 

bottleneck dimension is also set to be 120 or 256. 

CNN has been applied to the ASR task successfully by 

introducing three extra concepts over the simple fully 

connected NN: local filters, max-pooling, and weight sharing 

[11]. Previous experiments have showed the efficiency of 

CNN-TDNN [12], whereas TDNN is replaced with TDNN-F 

which proves to be better in low resource scenario. In our model, 

the convolutional block is composed of a convolutional layer 

and an ReLU component followed by batch normalization. We 

adopt 6 convolution blocks at the beginning with concatenation 

of i-vectors and hires-MFCCs (with pitch) as input. 

SAN layer has been successful with multi-head attention which 

allows the networks to jointly attend to information from 

different subspaces at different positions [13]. Besides, In [2] 

the self-attention layer was adopted in a time-restricted fashion, 

which is more suitable for ASR. We combine SAN with CNN-

TDNN-F, and thus obtain final CNN-TDNN-F-A architecture. 

The SAN is composed of an affine component, an attention 

nonlinearity component, and an ReLU non-linearity component 

followed by batch normalization. The location of the layer 

should be close to the end of the network. SAN block the third 

layer from the bottom. In detail, the multi-head attention 

component has 20 attention heads along with a key-dimension 

of 8 and a value-dimension of 16. 

The CNN-TDNN-F-A structures are used prevalently in all of 

the systems. Besides, other neural network acoustic models 

such as TDNN-F, TDNN-F-BLSTM(p), DFSMN [18], are also 

explored as additional fused system. From final results, 

although combined system strikes the best performance with 

additional 0.02-0.03 gains in terms of WER, the most 

complementary and critical part is still CNN-TDNN-F-A. 

2） Features and Speaker adaptation： 

Apart from hires MFCC, for tonal languages such as Cantonese 

and Vietnamese, 3 pitch features, i.e. POV, mean subtracted log 

pitch and delta of raw pitch are added additionally, which 

proves to be more compatible with tonal languages. 

 

i-vectors are fixed-length vectors containing speaker 

information and have become a common technique for speaker-

id related speech recognition in fused with non i-vector system 

[17] in that only one pass decoding is needed. In our speaker 

aware training, i-vectors are trained based on a diagonal UBM 

derived extractor [14]. In order to better adapt to CNN structure, 

the extracted 100-dim i-vectors are mapped to 200-dim by 

linear transformation before concatenating with MFCC features. 

Preliminary results show that 0.01-0.03 absolute gains are 

observed by using speaker aware training. 

 

Fig. 3   CNN-TDNN-F-A architecture 

3） Training pipeline： 

Following the hybrid system training pipeline, we first train 

GMM-HMM models. To produce high-quality alignments to 

force-align the training dataset for the NN-based acoustic 

model. We use Perceptual Linear Prediction (PLP) feature with 

pitch features. The routine iterative training process is applied, 

including mono-phone, and triphone model training, Linear 

Discriminant Analysis (LDA) and Maximum Likelihood 

Linear Transform (MLLT) based model training and speaker 

adaptive training (SAT). Alignments and numerator lattices 

generated from the HMM-GMM model are used for NN 

acoustic model, which generate second-pass refined alignments. 

For training procedure, the CNN-TDNN-F-A acoustic model is 

trained with chain model using LF-MMI criterion with cross-

entropy (CE) regularization [1]. The batch size is set to 128 or 

64 with 6 epochs training in total. The initial learning rate is 

0.0005 and the final learning rate is 0.00005. 

D. LANGUAGE MODEL 

N-gram language models are trained by SRILM [8], with some 

extra text data from IARPA Babel program [9] in addition to 

transcripts of the provided training data. Language scripts in 

“training”part related to IARPA Babel program is adopted. 

e.g. Cantonese refer to the package “IARPA-babel101b-v0.4c-

build”. Among the 10 test languages, we realized only 9 

languages are available in IARPA babel except for Somali, for 

which LDC2018T11 is chosen as extra text data. 

Besides, we also employ lattice rescoring with NN-based LMs, 

which are composed by several TDNN-LSTM networks [15]. 

The RNN language model is trained using a linear 

approximation of the standard cross-entropy objective as 

denoted in Equation (1): 

𝑂𝐿𝑀 = 𝑧𝑗 + 1 − ∑ exp 𝑧𝑖𝑖     (1) 



Where z denotes the neural-network output before soft-max 

layer, and j is the index of the correct word. Actually this 

objective is a lower bound on the standard CE, which allows 

model to self-normalize during inference and thus saves 

computational time. For word feature representation, besides a 

one-hot representation for the most frequent words, letter n-

grams feature is also used in generating word-embeddings. This 

allows us to utilize the sub-word information of word and 

shapes better embedding to words that appear relatively rare in 

the corpus.  At last, pruned lattice-rescoring is implemented to 

combine the weights with the original n-gram weights. 

Two stages of LM rescoring using original and reversed text are 

adopted. In each stage a heuristic score for each arc to be 

expanded in the output lattice is computed by which arc keep 

or deletion decided considering both historic and future 

information in the lattice [21]. The training data for the NN-

based LMs are the same as above.  

The final weights of RNNLM is chosen to be 0.5, unlike other 

reported systems, it is found that the factor of weight is trivial 

unless it is not set to be too biased. 

E. DATA PROCESSING 

Data quality is critical for removing noises while data 

robustness is also critical for adding diversities in the trained 

models. In our work both strategies are considered in the system. 

1) Clean-up： 

Data clean-up is performed to remove the bad portions of the 

training transcripts by using a biased ASR which is built by N-

gram biased language model with garbage state projecting the 

nuisance part of the speech. Other minor modifications of 

transcripts, such as allowing repetitions for disfluencies, and 

adding or removing non-scored words are also incorporated in 

this stage. The clean-up relying on SAT-GMM against NN 

based models proves to be similar in terms of WER in DEV sets 

for most languages. However, NN based model is believed to 

be a better choice for the system. 

The operation seems to be effective for some languages such as 

Cantonese than other languages such as Mongolian. It is 

plausible that Sino-Tibetan language is much vulnerable to 

label noise whereas label mistake is not completely fatal in 

spelling languages such as Pashto or Mongolian. Furthermore, 

a more biased LM for building biased ASR is preferred in our 

evaluation set in order not to excessively delete correct labels. 

2) Augmentation： 

Since the major challenge is to deal with low-resource 

condition, it’s essential to adopt appropriate methods of data 

augmentation. In order to make full use of the limited training 

data, we adopt several popular techniques at the same time to 

enhance the data robustness and make our system more 

invariant to properties of the evaluation data. 

◼ Speed and Volume Perturbation: In [4], speed and volume 

perturbation are proposed as effective data augmentation 

methods by processing the raw signal with 3 versions of 

volumes and speed; 

◼ Reverb and Noise Perturbation: Given that the DEV set 

doesn’t contain much music, it is appropriate to enrich the 

data with reverberation and noise [7], noise from MUSAN 

database is chosen as stationary noise and noise from other 

speakers of the training corpus is chosen as babble noise. 

Random high SNR (>10dB) and noise types are added in 

each sample. Then reverberation is applied on top of them 

using the simulated RIRs with room sizes uniformly 

sampled from 1 to 30 meters. Since that this is a close mic 

scenario, the reverberation ratio should be trivial; 

◼ Wav-Aug: The recent Wav-Aug is a time domain data 

augmentation library, which integrates 5 augmentations 

[5]. Since most of the augmentations have already been 

implemented by the methods mentioned above, we only 

adopt pitch modification to deal with pitch changes, band 

rejective filtering and time masking to enhance the 

robustness of frequency and time domains, respectively;  

◼ Spec-Augment: Different from the aforementioned 

methods, Spec-Augment [4] is applied directly to the 

feature level before input to the acoustic model. The 

policy consists of warping the features, masking blocks of 

frequency channels, and masking blocks of time steps; 

 

The alignments for these augmented data are obtained from 

their clean counterparts. We don’t have time to get an apple-to-

apple comparisons among the four methods. However, we 

empirically discovered three rules: 1) Don’t apply multiple 

augmentations for a single utterance; 2) Don’t overuse data 

simulation as convergence of results will be observed at some 

point; 3) Speed augmentation is the most complementary 

approach that can be safely utilized. 

 

All the approaches are randomly chosen to enrich speech data 

in 20x. 

F. PRE-AND-POST PROCESSING 

Unlike DEV set, in EVAL set there is NO “segments” file 

provided, which means VAD is a necessary part of the system 

and it is also essential to fuse an enhanced result from various 

types of system. 

1) Speech Activity Detection： 

For the evaluation period, Speech Activity Detection (SAD) is 

a necessary operation to segment the audio appropriately so that 

we can decrease the loss of useful speech clips and improve the 

decoding efficiency and accuracy. In our SAD algorithm [16], 

we combine a convolutional recurrent neural network (CRNN) 

and a recurrent neural network (RNN) to make the system more 

robust. In addition, we add a speech-enhancement module and 

a one-dimensional dilation-erosion module. For each audio 

input, “fbank” features are extracted and speech existence is 

explored in every frame. Finally, the output is processed by post 

smoothing and hold on&off module to form a final SAD 

boundary. In DEV set we found that SAD is critical in that using 

a machine learning based SAD degrades WER performance in 



Cantonese from 0.456 to 0.483 in CNN-TDNN-F-A single 

system, against labeled segments. 

2) Decoding 

In our systems, we use a WFST-based method for decoding in 

KALDI. For the first pass, we simply use N-gram as the 

decoding language model. The decoding beam is set to 15.0. 

while the beam used in lattice generation is 8.0. The LM weight 

is chosen from 8 to 12. Besides, a two-layer TDNN-LSTM 

language model is trained for lattice rescoring as illustrated in 

section D [15]. 

3) System Fusion 

Setups with different features, augmentations, acoustic network 

architectures are chosen for knowledge sources to be fused. 

After lattices are obtained, lattice fusion [30] is chosen rather 

than ROVER [9], which fuses hypothesis in more paths from 

resulting graph that yields better results than 1-best. 

4) Results Filtering 

Final ASR results are obtained from lattice, we filter the word 

lists by their corresponding degree of confidence. The threshold 

is set to 0.3, which means the recognition results with 

confidence value below 0.3 would be abandoned. The operation 

is effective to reduce the insertion error of WER, especially 

miscues and verbal pauses. 

G. RESULTS 

Our systems’ performance of the constrained condition on the 

evaluation set is shown in Tab.2, which are released by NIST 

OpenASR scoring server. 

The results on the left-hand side of the arrow are the results by 

team TNT. Note that the WER on DEV set is a first pass main 

system with TDNN-F-A acoustic model without any other pre-

post processing, pretraining, fusion, etc. However, in EVAL set 

the final results are generated from fused systems, that’s no 

wonder why the results on EVAL are much better than DEV. 

TABLE 2 

WER OF ASR SYSTEMS ON DEV AND EVAL SET (CONSTRAINED) 

(For Mongolian, the results are submitted after close time) 
 WER on 

DEV 

WER on 

EVAL 

Amharic 0.487->N/A 0.458->N/A 

Cantonese 0.483->0.412 0.436->0.402 

Guarani 0.499->N/A 0.461->N/A 

Javanese 0.571->N/A 0.521->N/A 

Kurmanji-Kurdish 0.671->N/A 0.669->N/A 

Mongolian  0.524->0.461 0.454->0.449* 

Pashto 0.496->N/A 0.486->N/A 

Somali 0.592->N/A 0.591->N/A 

Tamil 0.691->N/A 0.661->N/A 

Vietnamese 0.488->N/A 0.460->N/A 

The results on the right-hand side of the arrow are the results 

fused by TNT (mainly CNN-TDNN-F-A) and MMT 

(pretraining and other architectures). Note that the WER 

reduction ranges from 0.03-0.07 in terms of absolute WER. 

However, we didn’t manage to submit Mongolian EVAL on 

time due to the time limits. A post submission shows that the 

result WER is 0.449. 

III. UNCONSTRAINED SYSTEM 

For unconstrained condition, due to the time limit, we only 

participate in Cantonese and Mongolian. The main fused 

system is roughly the same with constrained system, except that 

end to end (e2e) ASR training, hybrid bandwidth acoustic 

modeling, language optimization and hybrid-e2e fusions are 

explored additionally. 

A. SPEECH PRETRAIN 

In unconstrained condition, it is allowed to use extra data for 

pretraining acoustic model using publicly available data. Since 

that speech pretraining is language universal, in our experiment, 

unlike constrained condition, all the available 25 IARPA babel 

training data provided are used to train a 768 dim feature 

extractor for the downstream task. From preliminary results, the 

gain of speech pretrain in unconstrained condition is much 

larger than constrained condition, which is 0.04-0.05 in terms 

of WER. 

B. END TO END SYSTEM 

It is shown that end to end ASR strikes better performance than 

hybrid system in rich resourced condition. Also, end to end 

ASR has a good compatibility to legacy system [31]. In our 

system different fusion strategies are tailored for each system. 

The end to end ASR in our system is based on recent conformer 

[28] structure. As transformer, Conformer model is composed 

of two parts: encoder and decoder. The encoder part is 

composed of a convolution subsampling layer and several 

conformer blocks. The role of conformer blocks is similar as 

that of transformer, which is composed of four modules: a feed-

forward module, a self-attention module, a convolution module, 

and a second feed-forward module in the end.  The decoder part 

in conformer is also the same as in transformer. 

A simplified version of conformer block consisting of Rpe+XL 

positional encoding, CNN and FNN are proposed without WER 

degradation, which is implemented in ESPNET. In order to deal 

with long utterance and data sparsity in low resource telephony 

condition, such techniques are proposed in the system as is 

shown in Fig 4: 

⚫ Rpe+XL transformer: Relative positional encoding to deal 

with repetition and instability brought by transformer in 

long utterances; 

⚫ FL: Using focal loss to deal with unbalanced distribution 

of tokens; 

⚫ Ss: Using scheduled sampling to deal with inconsistency 

during training and inference; 

In our preliminary experiments, conformer achieve 3 to 10% 

relative improvements over traditional transformer (0.45->0.43) 

in Cantonese. The number of conformer blocks in encoder and 

decoder of our system is 12 and 6, respectively. The encoder 

and decoder dimension are both 2048. The attention layer 

contains 4 heads and 256 units per head. 

 



 

Fig. 4 end to end structure of conformer model 

C. ACOUSTIC MODEL FOR HYBRID SYSTEM 

For acoustic model, we have accumulated additional training 

data for some languages, such as Cantonese and Mongolian. 

Unfortunately, most of the OPENASR DEV data is recorded in 

telephony channel with a sampling rate of 8khz and we don’t 

have any data that either matched for the target PSTN telephony 

condition or with the accent. Most of the extra data at our hands 

are wideband 16khz speeches, in order to utilize these data, we 

first train a mixed bandwidth acoustic model [22] with non-

overlapping set of band-wise filters in 0-4khz and 4-8khz as 

illustrated in Fig.5. For 8khz data, Spectral Band Replication 

(SBR) is involved both in training and testing to fill out high 

frequencies, resulting in a feature extractor for 16khz.  

 

Fig. 5   Multi-band speech models for 8-16khz hybrid recognition 

For Cantonese, 2000h wideband dictated speeches from Speech 

Ocean Inc. and Huiting Tech Inc. [23][24] and 140h narrow 

band (8khz) speeches from IARPA Babel are applied [9]. For 

Cyrillic Mongolian, only 10h wide band speeches from Mozilla 

[25] and 50h narrow band speech from IARPA Babel are 

available. However, we believe that rich resources of Inner 

Mongolian speech in China is also beneficial for Cyrillic 

Mongolian speech recognition, as a result, an extra 500h 

wideband dictated speech from Speech Ocean [26] and 100h 

dictated speech from M2ASR project [27] are incorporated. 

The goal is to utilize automatic Traditional to Cyrillic 

Mongolian conversion to make them compatible with each 

other. Details are illustrated in Tab 3. 

 

TABLE 3 
Extra datasets for Cantonese and Mongolian 

 Narrowband(8khz) Wideband(16khz) 

Language Data source Duration Data source Duration 

Cantonese IARPA Babel ~140h Speech Ocean ~1000h 

 ~1000h Huiting Tech ~1000h 

Mongolian IARPA Babel ~50h Mozilla  10h 

Inner 
Mongolian 

  M2ASR ~100h 

  Speech Ocean ~500h 

All the acoustic model is trained with lexicon from IARPA 

Babel program. Three-stream system is proposed:1) The first 

way system is trained by original 8kh Babel data using hybrid 

model; 2) For the second way system all the 8khz and 16khz 

speeches are trained using the above mixed bandwidth training, 

followed by weight transfer fine-tuned on SBR 16khz 

OPENASR training data for the target language; 3) For the third 

way system, the above mixed wideband e2e model is trained 

and tuned towards same SBR 16khz OPENASR data;  

Notice that for each steam of the above two hybrid system the 

result is also a combined version of various acoustic models. 

The whole procedures for the main streams of system are 

illustrated in Fig. 6. The first two-stream hybrid system output 

lattice that can be rescored and fused using lattice combine [30], 

the final lattice is timed aligned to form a CTM result, which is 

fused with e2e CTM via ROVER on 1-best sequence level; 

  

Fig. 6   3-way multi bandwidth hybrid & 16khz end to end system fusions 

D. LANGUAGE MODEL 

It is easy to acquire large amount of text data using crawled 

engine from publicly available news. However, we realize that 

the domain mismatch is severe for extra language model and 

performance on DEV is deteriorated considerably with extra 

crawled text. Therefore, only the crawled text for Cantonese 

(about 2GB) is used for word segmentation result correction in 

order to have a better WER. (not CER) 

The main setup is the same with constrained condition, except 

that speech transcripts in the above extra acoustic data are 

incorporated in the training resources for the two participated 

languages.  

E. LANGUAGE OPTIMIZATION 

Cantonese is a language within the Chinese language family. 

Since the Cantonese vernacular text data is irregular, we obtain 

certain additional text data through web crawling, and use 

regular methods to correct common errors in the text data, such 

as abbreviations and typos. 



Text segmentation is needed to word sequence to calculate the 

word error rate in the evaluation. For e2e system, characters are 

used as the modeling unit rather than word. In order to solve 

this, we use all the crawled and Babel text data to train a text 

segmentation model through Cantonese BERT pre-training, as 

is shown in Fig. 7. Our UER tool for multi-lingual Bert model 

(https://github.com/dbiir/UER-py) is applied to train a multi-

lingual encoder from mono-lingual data of Mandarin and 

Cantonese; Then a word-segmentation model is trained using 

Mandarin segmented data from the above pre-trained Bert 

model; Finally, low resource Cantonese word segmentation 

model is fine-tuned by Babel Cantonese dataset; 

 

Fig. 7 Process for training Cantonese word segmentation model 

Mongolian is a typical agglutinative language that relies on 

suffix chains in the verbal and nominal domains. To begin with, 

we check the words out of vocabulary in the Mongolian speech 

transcription and find some prefix word. For example, in the 

case of "Алтайг- Алтайгаас", "Алтайг" is the prefix of the 

word "Алтайгаас" and not found in the dictionary. 

Pronunciations are expanded into training dictionary for about 

30 common OOV words by looking up to the original linguistic 

dictionary in Mongolian. 

In the set of original speech files, more than 10 files (almost 

1/10) are formed as ".wav" (44.1khz) while most of files are 

formed as ".sph" (8khz) in some languages such as Mongolian. 

In our experiments 44.1khz speech is treated as 16khz for 

mixed bandwidth recognition while 8khz speech is up-sampled. 

As known, there are several Mongolic languages or dialects 

which are roughly intelligible with each other. The speech data 

in OPENASR Mongolian is Halh Mongolian collected in 

Mongolia.  Here we apply 500hrs dictated Chakhar Mongolian 

speech data is provided by Speech Ocean, which is spoken in 

the Inner Mongolia region of China and sampled at 

16khz.  While Halh Mongolian in Mongolia is texted as Cyrillic 

character, the traditional Mongolian character is used in the 

Inner Mongolia region as is shown in Fig. 8.  Besides the text, 

there are also differences in phoneme types, pronunciations 

even for the same word in dictionary.  For acoustic model, we 

train the base model using Inner Mongolian speech and do 

transfer learning using the perturbed IARPA Babel Halh 

Mongolian speech data. During the transfer stage, the soft-max 

layer is substituted, and the intermediate layers are updated and 

tuned. The initial experiments show that transfer learning is 

very helpful for acoustic modeling and reduce the WER by 

15% relatively. 

 
Fig 8. Left figure: the Mongolian Cyrillic text used in Mongolia; Right figure: 

Traditional Mongolian text used in the Inner Mongolia region of China. 

For language model, besides Mongolian Cyrillic text in Babel 

transcription, a seq2seq transformer model is trained to transfer 

traditional Mongolian text to Mongolian Cyrillic text to enrich 

the corpus for Cyrillic language model. The performance for 

language text transfer in terms of CER and WER are 0.0750 

and 0.196, respectively. However, because that functional 

characters in traditional Mongolian text are still an unsolved 

problem, there are considerable errors in the transformed 

Cyrillic text. In final ASR results, small gains can still be 

observed in DEV set for about 0.02-0.05 in in terms of absolute 

WER; 

F. SYSTEM FUSION 

For better performance, we build several different systems for 

system fusion as in Tab 4. The Cantonese results of all the fused 

systems in DEV set are as below, system 1 and 2 are results by 

hybrid model, whereas 1 is trained by 8kh Babel data, 2 is 

trained by extra 16kh data with mixed bandwidth training, it can 

be observed that extra data and high frequency bring WER from 

0.431 to 0.410. Meanwhile, e2e ASR system outperforms 

hybrid Model in single system with WER of 0.386. 

 

Using lattice combine, fused system 1 and 2 strikes WER of 

0.404 against single system, meaning that unconstrained 16khz 

data has a good compensation with Babel 8kh data. The final 

results fused by 1-2 and 3 with ROVER achieve best 

performance from 0.386 to 0.370. With extra post confidence 

filter in Section 2F, WER can be further dropped to 0.361. 

TABLE 4 
Unconstrained System Fusion Results for Cantonese 

(DEV set, our computation) 

System  Data&Model Bandwidth WER CER 

1 8k Babel chain 8k 0.431 0.398 

2 8+16kall chain Mixed band 0.410 0.370 

3 8+16kall e2e Mixed band  0.386 0.347 

1+2 Fusion  0.404 0.370 

1+2+3 Fusion  0.370 0.343 

1+2+3 filter Fusion  0.361 0.332 

G. RESULTS ON EVAL SET 

Our systems’ performance of unconstrained condition on the 

evaluation set is shown in Tab.5, which are released by NIST 

OpenASR scoring server, notice that the results computed by 

dashboard in NIST OpenASR scoring server is much better 

than our scoring results in Tab. 4 (WER from 0.361->0.335), 

we realize that it is because we count language miscues, pauses, 

and other non-verbal speech as errors.  

https://github.com/dbiir/UER-py
https://github.com/dbiir/UER-py


TABLE 5 
WER OF ASR SYSTEMS ON DEV AND EVAL 

 WER on DEV WER on EVAL 

 Constrain Unconstrain Constrain Unconstrain 

Cantonese 0.412 0.335 0.402 0.320 

Mongolian 0.461 0.381 0.449* 0.406* 

It can be observed that by using extra data, an absolute 7-8% 

WER reduction can be achieved such as Cantonese and the 

CER is even much lower than 0.300 (0.264). In practice, Speech 

recognition accuracy for Sino-Tibetan languages relies much 

on CER rather than WER, WER for these types of languages is 

largely dominated by word segmentation error, which may 

incur a biased result. 

Notice that for EVAL of Mongolian unconstrained condition, 

we didn’t manage to submit our fused system, so 0.406 in the 

dashboard is actually a single HMM-NN hybrid system 

performance using CNN-TDNN-F-A and other data pre-post 

processing techniques above (the fused system results maybe 

below 0.4). As for intelligibility, for these types of Arabic & 

Altai languages such as Mongolian, same word may has many 

suffix and majorities are correct, we also believe that WER will 

also under estimate the actual performance. 

IV. HARDWARE AND TIME DESCRIPTION 

The hardware of our proposed system is shown in Tab.6. As for 

the required time for Constrained condition, the elapsed wall 

clock time for training is approximately 3 hours for one system 

of each language, whereas corresponding total CPU time is 

about 2.5 hours, and the total GPU time is 3 hours; For 

unconstrained condition the elapsed wall clock time for training 

is about 170 hours (7 days), where most of the consuming time 

is spent on conformer e2e model training, the GPU time is about 

150 hours and CPU time is about 10 hours; 

 
TABLE 6 

HARDWARE DESCRIPTION 

OS  
CPU num 
CPU description 
 
GPU num  
GPU description 
RAM  
RAM per CPU  
Disk storage 

CentOS 7.4 64-bit 
40 
112, Intel(R) Xeon(R) CPU E5-4650 
v4 @ 2.20GHz 
16 
Tesla V100 SMX2 16GB  
256GB 
128GB 
About 3TB 
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