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Abstract—This paper introduces the systems of THUEE for
the IARPA Open Automatic Speech Recognition Challenge (Ope-
nASR20). We compete in the constrained training condition only.
We adopt the hybrid NN-HMM acoustic model and an N-gram
Language Model (LM) to construct our basic Automatic Speech
Recognition (ASR) systems. The acoustic model is proposed as
CNN-TDNN-F-A, which combines Convolution Neural Network
(CNN), Factored Time Delay Neural Network (TDNN-F) and self-
attention mechanism. As for low-resource condition, we apply
speed perturbation, SpecAugment, WavAugment as well as re-
verberation to the original speech data as data enhancement. We
also clean up the original data to filter interference information.
Besides, we train the LMs with some external text data from
train set of IARPA Babel program. System fusion is conducted
by ROVER.

Keywords— low-resource languages, data augmentation,
CNN-TDNN-F-A acoustic model, system fusion

I. INTRODUCTION

The goal of the OpenASR20 is to assess the state of the art
of Automatic Speech Recognition (ASR) technologies for low-
resource languages. For most of the languages in the world,
there are no applicable ASR systems because of the lack of
high-quality annotation speech data. It is challenging to built
an strong ASR system with limited speech data, script texts
as well as lexicons.

We describes our ASR systems in detail to show the whole
procedure that we deal with the challenges. For our hybrid
acoustic model, we propose the CNN-TDNN-F-A network as
the essential part, which is trained with lattice-free maximum
mutual information (LF-MMI) criterion [1]. The model intro-
duces self-attention mechanism [2] to the combination of CNN
and TDNN-F [3] in order to learn more positional information
from the input.

Since the major challenge is low-resource condition, we
combine some different kinds of data augmentation methods
to get additive improvement, such as speed perturbation [4],
volume perturbation, SpecAugment [5], WavAugment [6] as
well as reverberation. They are effective to the ASR perfor-
mance especially under low-resource condition.

Besides, systems’ diversity is important for the final fusion.
We have trained more than three systems of each language to
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make further use of the differences of the single systems by
system fusion.

II. WORKFLOW

We perform the experiments with Kaldi speech recognition
toolkit [7]. Since NN-HMM acoustic model has promising
performances for ASR, we develop our systems with the
hybrid structure. We display the main workflow in Fig. 1,
which consists of pre-processing, data augmentation, training,
decoding and system fusion roughly.

First a Gaussian Mixture Model (GMM) is trained by
several training and force-aligning iterations, which includes
Speaker Adaptation Trainings (SAT). Data cleanup can be
applied to the original speech and text data with the trained
GMMs. Then, some augmentation methods can directly pro-
cess the raw audio to add diversity and enlarge the quantity of
training data, such as speed perturbation [4] and reverberation.
We obtain three or six times of the original quantity of data
for the following training. High-resolution MFCC feature and
pitch feature are extracted from the augmented data.

Besides, SpecAugment [5] is applied to the combined acous-
tic features to augment data further. When training the CNN-
TDNN-F-A acoustic model, we also add i-vectors along with
the MFCC and pitch features to integrate speaker information
into the model. As for language model, we build a N-gram LM
by SRILM [8] with some extra text data from IARPA Babel
program [9]. In addition, a Recurrent Neural Network (RNN)
LM is also used to rescore lattices after decoding. Finally,
several different system outputs are fused by ROVER [10] to
obtain a better performance. The details are described in the
following sections.

III. ACOUSTIC MODEL

A. CNN-TDNN-F-A architecture

We propose the CNN-TDNN-F-A network as the neural
network acoustic model, which combines Convolution Neu-
ral Network (CNN), Factored Time Delay Neural Network
(TDNN-F) [3] and self-attention mechanism. The architecture
is displayed in Fig. 2. The popular TDNN-F networks are the
basic part of our acoustic model, which is structurally the same
as a TDNN whose layers have been compressed via SVD, but
is trained from a random start with one of the two factors
of each matrix constrained to be semi-orthogonal. A regular
TDNN-F block consists of a linear layer, an affine component,
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Fig. 1. Workflow of the ASR system.
The whole system process can be roughly divided into pre-processing, data augmentation, training, decoding and system fusion.

a ReLU nonlinearity component, and batch normalization
operation followed by dropout. The CNN-TDNN-F-A network
contains 11 TDNN-F blocks in total with the hidden dimension
of 768 for the first 9 blocks, 760 for the last two layers
to match the attention layer, and a bottleneck dimension of
160 same for all the layers. For different system settings,
the bottleneck dimension is also set to 120 or 256. All the
TDNN-F layers except for the first layer connected to the CNN
component have a time stride of 3.

CNN has been applied to the speech recognition task suc-
cessfully by introducing three extra concepts over the simple
fully connected feed-forward NN: local filters, max-pooling,
and weight sharing [11]. Previous experiments have showed
the efficiency of CNN-TDNN [12], and we replace the TDNN
with TDNN-F which performs better especially with small
amount of data. In our architecture, the convolution block is
obtained by a convolutional layer and a ReLU nonlinearity
component followed by batch normalization. We adopt 6
convolution blocks at the beginning of the acoustic model with
concatenation of i-vectors and MFCCs as input. The number
of filters is 48, 48, 64, 64, 64, 128 successively.

Recently the self-attention layer has been successful with
multi-head attention which allows the networks to jointly
attend to information from different representation subspaces
at different positions [13]. Besides, In [2] the self-attention
layer was adopted in a time-restricted fashion, which is more
suitable for speech recognition. We combine the self-attention
mechanism with the CNN-TDNN-F, and thus obtain our final
CNN-TDNN-F-A architecture. The self-attention model is
composed of an affine component, an attention nonlinearity
component, and a ReLU nonlinearity component followed
by batch normalization. The location of the layer should be
close to the end of the network to obtain better performance.
And we set the self-attention block the third layer from the
bottom. In detail, the multi-head attention component has 20
attention heads along with a key-dimension of 8 and a value-

dimension of 16. The context is set to [15; 6]. The settings
are adjusted to fit for the network dimension 768 according to
some conclusions in [2]. For example, a key to value ratio of
0.5 about is slightly better than other ratios.

B. Training Settings

Following the hybrid system training pipeline, we first
train some GMM-HMM models, which use GMM to model
the HMM output probability density, to produce high-quality
alignments to force-align the training dataset for the NN-based
acoustic model. We use Perceptual Linear Prediction (PLP)
feature with pitch feature to train the GMM-HMM model. The
iterative training process including modeling monophone, cre-
ating triphone model, applying Linear Discriminant Analysis
(LDA) and Maximum Likelihood Linear Transform (MLLT),
performing speaker adaptive training.

The NN acoustic models of our systems are based on high-
resolution MFCC feature with pitch feature for some of the ten
languages,such as Cantonese, Kurmanji-Kurdish and Somali.
For the rest languages, only MFCC features are used. We
also use i-vector features for speaker adaptation. I-vectors are
fixed-length vectors containing speakers information, and have
become a common technique for speaker recognition. In our
systems, we train the i-vectors based on a diagonal UBM for
speaker adaptation [14]. In order to adapt to the CNN structure,
the extracted 100-dim i-vectors are mapped to 200-dim by
linear transformation before concatenating with MFCCs.

For training procedure, the CNN-TDNN-F-A acoustic
model is trained with chain/chain2 component of Kaldi toolkit
which adopts LF-MMI criterion [1]. The batch size is set to
128 or 64 with 6 epochs training in total. The initial learning
rate is 0.0005 and the final learning rate is 0.00005.

IV. LANGUAGE MODEL

We train the 3-gram language models by SRILM [8], with
some extra text data from IARPA Babel program [9] in
addition to transcripts of the provided training data. Below
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Fig. 2. CNN-TDNN-F-A architecture

is the related dataset list in IARPA Babel program, and only
transcripts of the training part are used.

• IARPA-babel101b-v0.4c-build
• IARPA-babel104b-v0.bY-build
• IARPA-babel107b-v0.7-build
• IARPA-babel204b-v1.1b-build
• IARPA-babel205b-v1.0a-build
• IARPA-babel305b-v1.0c-build
• IARPA-babel307b-v1.0b-build
• IARPA-babel401b-v2.0b-build
• IARPA-babel402b-v1.0b-build
Besides, we also employ lattice rescoring with NN-based

LMs, which are composed by several TDNN-LSTM networks
[15]. The training data for the NN-based LMs are the same as
above.

V. DATA PROCESSING

A. Cleanup

We perform data cleanup to remove bad portions of the
training transcripts and do other minor modifications of tran-
scripts such as allowing repetitions for disfluencies, and adding

or removing non-scored words. The cleanup relies on the
GMM-based models we have trained. Specifically, the SAT
model is employed here.

The operation is more effective to the unclean speech
data. Most languages’ performance are improved by cleanup,
except for Mongolian, Tamil and Vietnamese, according to the
decoding results of the 10-hour development set. Furthermore,
a more strongly biased LM usually brings better performance.

B. Augmentation

Since the major challenge is to deal with low-resource
condition, it’s essential to adopt appropriate methods of data
augmentation. In order to make full use of the limited training
data, we adopt several popular techniques at the same time
to enhance the robustness of our ASR systems and make our
system more invariant to properties of the evaluation data.

1) Speed Perturbation: In [4], speed perturbation is pro-
posed as an effective data augmentation method by processing
the raw signal. We adopt the method to change the speed
of the training audio signal, producing 3 versions of the
original signal with speed factors of 0.9, 1.0 and 1.1, which is
beneficial to avoid overfitting and improve robustness of the
models. By speed perturbation, we increase the data quantity
by three times.

2) Volume Perturbation: Volume perturbation is adopted
after speed perturbation, which is also conducted on the raw
speech audio. It improves the volume robustness of the model.

3) SepcAugment: We apply SpecAugment [5] to the MFCC
features, along with pitch feature for some languages, before
input to the acoustic neural networks. The policy consists of
warping the features, masking blocks of frequency channels,
and masking blocks of time steps.

4) WavAug: The recently proposed Wavaug is a time-
domain data augmentation library, which integrates 5 aug-
mentations: pitch modification, additive noise, reverberation,
band reject filtering, and time masking [6]. Since most of the
augmentations have already been implemented by the methods
mentioned above, we only adopt reverberation as a supplemen-
tary method. We add small-room, medium-room and large-
room effect reverberation with same weight to generate a
reverberated copy of the original speech data. We can obtain 6
times quantity of original data based on the speed perturbation
augmented results.

VI. PRE-AND-POST PROCESSING

A. Speech Activity Detection

For the evaluation period, Speech Activity Detection (SAD)
is a necessary operation to segment the audio appropriately so
that we can decrease loss of useful speech clips and improve
the decoding efficiency and accuracy. In our SAD compo-
nent, we combine a convolutional recurrent neural network
(CRNN) and a recurrent neural network (RNN) to make the
system more robust. In addition, we add a speech-enhancement
module and a one-dimensional dilation-erosion module to our
SAD system. The SAD system follows work in [16]. For each
audio input, firstly, we preprocess it and extract the fbank



features. The system will output speech existence in every
frame separately. Finally, the output passes the post-processing
module and becomes the final output.

B. Decoding

In our systems, we use a WFST-based method for decoding
based on Kaldi Toolkit. For the firstpass decoding, we simply
use the N-gram model as the decoding language model. The
decoding beam is set to 15.0 while the beam used in lattice
generation is 8.0. The LM weight is chosen in integers from 8
to 12. Besides, a two-layer LSTM language model is trained
for lattice rescoring [15].

C. System Fusion

In order to enhance the diversity of our systems, we use
some setups with different data augmentations or different
network dimensions. After we obtain the recognition results
of each system, we adopt ROVER method [10], which is a
post-recognition process which models the output generated
by multiple ASR systems as independent knowledge sources
that can be combined and used to generate an output with
reduced error rate.

D. Results Filtering

Finally we obtain the ASR results from lattice, we filter
the words lists by the corresponding degree of confidence.
The threshold is set to 0.3, which means the decoding results
with confidence value below 0.3 would be abandoned. The
operation is effective to reduce the insertion error.

VII. RESULTS

A. Development Set
Our systems’ performance of the ten languages under

constrained condition on the development set is shown in
Tab. I. The WERs are obtained by sclite [17] with Reference
File Format (STM) generated by ourselves, which has minor
differences from the NIST OpenASR scoring server. Besides,
the results are directly obtained by firstpass decoding, without
RNNLM rescoring, system fusion or post-filtering, which we
have all applied to the evaluation set. It is not surprising that
the results we show in Tab. I on the development set is worse
than the final results on the evaluation set in Tab. II.

The results in Tab. I are obtained by the same acous-
tic model, CNN-TDNN-F-A architecture, except for minor
differences in the bottleneck dimension of TDNN-F layers.
The three different bottleneck dimensions have little effect on
the results directly but can make contribution to the fusion
systems. Besides, we also have some ablation experiments
to determine the specific acoustic model architecture, for
example, the number of TDNN-F layers, the dimension of
networks, the location and other detailed settings of the self-
attention layer. According to the results of some languages,
the final setting introduced in Sec. III-A is a better choice.
We don’t present these raw results since they are too detailed
and redundant. As for the self-attention layer, it doesn’t bring
as obvious improvement as we hope actually. We think the
limited data can be a main reason.

TABLE I
WER OF ASR SYSTEMS ON DEV SET

Language System WER

Amharic

cnn tdnnfa chain2 sp 0.490
cnn tdnnfa cleanup chain2 sp 0.487
cnn tdnnfa bn256 chain2 sp 0.493

cnn tdnnfa cleanup bn120 chain2 sp 0.490

Cantonese

cnn tdnnfa pitch chain2 sp 0.492
cnn tdnnfa pitch cleanup chain2 sp 0.483
cnn tdnnfa cleaup bn256 chain2 sp 0.488

cnn tdnnfa bn120 chain2 sp 0.484

Guarani

cnn tdnnfa chain2 sp 0.502
cnn tdnnfa cleanup chain2 sp 0.500

cnn tdnnfa rvb chain sp 0.499
cnn tdnnfa cleanup bn120 chain2 sp 0.503

Javanese

cnn tdnnfa chain2 sp 0.578
cnn tdnnfa cleanup chain2 sp 0.575

cnn tdnnfa rvb chain sp 0.571
cnn tdnnfa cleanup bn120 chain2 sp 0.577

Kurmanji-Kurdish
cnn tdnnfa chain2 sp 0.673

cnn tdnnfa cleanup chain2 sp 0.671
cnn tdnnfa cleanup bn120 chain2 sp 0.673

Mongolian

cnn tdnnfa chain2 sp 0.524
cnn tdnnfa bn256 chain2 sp 0.525

cnn tdnnfa rvb chain sp 0.524
cnn tdnnfa bn120 chain2 sp 0.524

Pashto
cnn tdnnfa chain2 sp 0.498

cnn tdnnfa cleanup chain2 sp 0.496
cnn tdnnfa cleanup bn120 chain2 sp 0.496

Somali
cnn tdnnfa chain2 sp 0.596

cnn tdnnfa cleanup chain2 sp 0.592
cnn tdnnfa cleanup bn120 chain2 sp 0.594

Tamil

cnn tdnnfa chain2 sp 0.691
cnn tdnnfa cleanup chain2 sp 0.695

cnn tdnnfa cleanup bn256 chain2 sp 0.694
cnn tdnnfa bn120 chain2 sp 0.692

Vietnamese
cnn tdnnfa chain2 sp 0.488

cnn tdnnfa cleanup chain2 sp 0.490
cnn tdnnfa cleanup bn120 chain2 sp 0.493

B. Evaluation Set

Our systems’ performance of the ten languages under con-
strained condition on the evaluation set is shown in Tab.II,
which are released by NIST OpenASR scoring server. For
each language, the submissions are composed by 2 or 3 single
systems and fusion systems which shows better performance.

VIII. HARDWARE AND TIME DESCRIPTION

The hardware of our proposed system is shown in Tab.III.
As for the required time, for each language, the elapsed wall
clock time is approximately 3 hours for a single whole system,
which can be divided into 3 main stages, 40 minutes for GMM
training, 2 hours for acoustic model training and 20 minutes
for decoding approximately. GPU resources are only used for
NN acoustic model training. The corresponding total CPU time
is about 20 hours since the number of threads is usually set
to 16, and the total GPU time is 2 hours or so.



TABLE II
WER OF ASR SYSTEMS ON EVAL SET

The submission names omits the same prefix
”OpenSAT-2020 OPENASR20 evaluation SYS-00166 THUEE”

Language submission WER

Amharic

20201109-022700-2243 0.462
20201109-023132-6706 0.464
20201109-083551-2967 0.581
20201109-083655-5658 0.458

Cantonese

20201109-083842-7233 0.453
20201109-083946-5041 0.449
20201109-222733-6488 0.437
20201109-222814-0301 0.436

Guarani

20201109-084205-2582 0.490
20201109-084304-0489 0.485
20201109-084408-3474 0.480
20201109-222854-4599 0.465
20201109-222927-2020 0.461

Javanese

20201109-084519-8636 0.556
20201109-084658-9709 0.545
20201109-090736-7503 0.545
20201109-223103-6921 0.522
20201109-223139-8894 0.521

Kurmanji-Kurdish

20201109-090842-2972 0.697
20201109-091002-1182 0.686
20201109-091125-6511 0.686
20201109-223238-8497 0.670
20201109-223316-8019 0.669

Mongolian

20201109-091253-0860 0.491
20201109-091413-8127 0.481
20201109-223440-4435 0.463
20201109-223514-4223 0.454
20201109-091528-6459 0.505

Pashto

20201109-091528-6459 0.505
20201109-091607-2789 0.503
20201109-091646-8853 0.513
20201109-223549-6312 0.490
20201109-223614-6704 0.486

Somali

20201109-091749-7946 0.613
20201109-091829-1026 0.609
20201109-091910-4433 0.600
20201109-223652-7598 0.606
20201109-223736-2987 0.596

Tamil

20201109-092003-2999 0.679
20201109-092034-0677 0.707
20201109-092105-4573 0.675
20201109-223758-5768 0.660
20201109-223829-3558 0.681

Vietnamese

20201109-092210-2051 0.482
20201109-092319-0150 0.478
20201109-092408-0119 0.488
20201109-224120-1204 0.464
20201109-224158-8184 0.460
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