TalTech Systems for the OpenASR20 Challenge

Tanel Alumie
Laboratory of Language Technology
Tallinn University of Technology
Tallinn, Estonia
tanel.alumae @taltech.ee

Abstract—This paper describes the Tallinn University of Tech-
nology systems built for the OpenASR20 challenge. We partici-
pated in the constrained data track for all ten languages of the
challenge. Our models use the hybrid DNN-HMM architecture.
For all languages, the final systems rely of two acoustic models
that use the Kaldi “chain” architecture, trained using LF-MMI.
We also use adapted maximm entropy language models and
recurrent neural network language models for rescoring the
results from the first pass. For most languages, we use IARPA
BABEL data for language modeling.

Index Terms—OpenASR20, speech recognition

I. INTRODUCTION

Th OpenASR (Open Automatic Speech Recognition) Chal-
lenge [1] is organized by NIST. The goal of the challenge is to
evaluate speech recognition technologies under low resource
constraints.

The 2020 edition of the challenge (OpenASR20) consists
of speech recognition tasks for 10 languages. There are two
training conditions for all languages: Constrained and Un-
constrained. The Constrained condition restricts the acoustic
training data only to the provided 10 hour subset of the Build
dataset. Additional text data from any public sources may be
used for training. The Unconstrained training condition allows
using additional publicly available speech and text training
data from any language for training the models.

The Tallinn University of Technology (TalTech) team par-
ticipated in the Constrained training condition of all 10 lan-
guages. Our systems for different languages are very similar.
Our models are based on the hybrid DNN-HMM approach.
We use Kaldi [2] for training acoustic models. For each
language, we use two acoustic models, each using the CNN-
TDNNF architecture. One acoustic model is trained using
multi-condition training and the other using SpecAugment
[3]. The lattices generated using the two acoustic models are
rescored using adapted maximum entropy language models
and two recurrent neural network models, one running in
forward direction and the other running in backward direction.
The rescored lattices originating from the two acoustic models
are finally combined and decoded to one-best hypotheses.
We use IARPA BABEL data for additional language model
training data for most languages, with the exception of Somali.

II. DETAILED DESCRIPTION
A. Training data

Since we participated in the Constrained training condition,
the only acoustic data that we used was the 10-hour subset of

TABLE I
IARPA BABEL LANGUAGE PACKS USED FOR ADDITIONAL TEXTUAL
TRAINING DATA.

Language Language pack LDC ID

Ambharic IARPA-babel307b-v1.0b LDC2019S22
Cantonese IARPA-babel101b-v0.4c LDC2016S02
Guarani IARPA-babel305b-v1.0c LDC2019S08
Javanese TARPA-babel402b-v1.0b LDC2020S07
Kurmanji-Kurdish ~ IARPA-babel205b-v1.0a LDC2017S22
Mongolian TARPA-babel401b-v2.0b LDC2020S10
Pashto IARPA-babel104b-v0.4bY LDC2016S09
Tamil IARPA-babel204b-v1.1b LDC2017S13
Vietnamese TARPA-babel107b-v0.7 LDC2017S01

the Build dataset provided for the language being processed.

For language modeling, we used additional training data
for all languages. For all languages except Somali, we use
the speech transcripts from IARPA BABEL language packs
as additional textual training data (see Table I), together with
the pronunciation lexicon in the language packs.

Since there is no BABEL language pack for Somali, we
used the Somali Web Corpus [4] as additional textual training
data for this language. We used the corpus only to extend the
language model vocabulary by 500000 most frequent words.
Using the corpus for training the actual language models did
not improve language model performance.

B. Decoding pipeline

Figure 1 gives a visual representation of the decoding
pipeline. Some certain rescoring steps are omitted for some
of the languages (see below).

C. Acoustic Modelling

We uses the hybrid DNN-HMM approach using Kaldi as
the main software tool.We trained two acoustic models with
identical architecture for each language. The models use the
TDNN-F topolology [5] and are trained according to the
Kaldi “chain” model training approach [6]. There are three
input feature streams: 40-dimensional filterbank features, 100-
dimensional i-vectors (updated every 10 milliseconds) and 3-
dimensional pitch features. The i-vector and pitch features
are transformed into spatial 40-dimensional planes (five for
i-vector features, one for pitch features) using learned linear
layers and combined with the filterbank features. The resulting
seven 40 x T planes (where T corresponds to the time
dimension) are first processed using six 3 x 3 convolutional
layers, each using the ReLU activation function. The output

Speech activity
detection

Decoding with| . S| RNNLM S| RNNLM
AM1 LM adaptation (forward) (backward)
Y
Lattice
combination,
MBR
decoding
A
Decoding with| A S| RNNLM S| RNNLM
AM2 LM adaptation (forward) (backward)

Fig. 1.

from the convolutional block is processed by nine TDNN-F
layers. We used i-vectors extracted in online mode for training
and decoding.

For each language, we trained two acoustic models: one on
clean speed-perturbed data and the other on noise-augmented
data. SpecAugment was used during the training of the first
model, and the model was trained for 20 epochs. For noise
augmentation, we used the standard multi-condition training
approach implemented in Kaldi [7]: four copies were made
from the clean speed-perturbed data, and the copies were
reverberated, mixed with background noise, music, or babble
noise, respectively. Noises from the MUSAN corpus [8] were
used for augmentation. Since there was now four times more
training data, the second model was trained for only five
epochs.

For the nine languages that had IARPA BABEL language
packs, the pronunciation lexicons are produced from the
corresponding language pack lexicons. We used the provided
lexicons with the following minor changes:

o Ambharic: all the labialized consonants were split into two:
the main phoneme and a labial pseudo-phoneme (e.g.,
pY — pw);

o Kurmanji-Kurdish: we removed the distiction between
phonemes in stressed and unstressed syllables.

For Somali, we used the provided pronunciation lexicon in
the Build dataset for training a grapheme-to-phoneme model
using Phonetisaurus [9] which was then used for generating
pronunciations for words from the external text corpus.

D. Language Modelling

Language model used for decoding is a maximum entropy
4-gram model trained using SRILM [10], [11].

The lattices from the first decoding pass are rescored using
language models adapted to the given conversation side. This
is done similarly to the method described in [12]. The language
model training data is divided into “documents”, representing
one conversation side. Then, the hypotheses from the first
decoding pass are used to find conversations in the training
data that are most useful for increasing the unigram perplexity
of the first pass hypotheses of the individual conversations.
In other words, we look for such documents in the training
corpus that produce a language model that improve perplexity
of the conversation transcripts, when applied in interpolation
with the background model. For each conversation side being

Workflow of the decoding pipeline.

processed, we select all such documents from the training
corpus that increase the perplexity of the first pass transcripts.
The set of selected documents is then used for adapting the
“background” unadapted maximum entropy 4-gram language
model for each conversation side. The adaptation is performed
as described in [13]: during optimization of the parameters for
a certain conversation, the parent model was taken as a prior.
This method encourages the domain-specific models to have
feature weights close to the prior model using regularization,
if there is little evidence to change them. This was done using
the SRILM extension for maximum entropy language models
[11].

The lattices that rescored using adapted language models are
further rescored using two recurrent neural network language
models (RNNLM:s), one running in forward direction and the
other running in backward direction. The RNNLMs are trained
using Kaldi [14] and consist of two LSTM layers with the
cell dimensionality of 200. Word embedding dimensionality is
also 200. The so-called Backstitch optimization method [15]
was used for training RNNLMs, with the exception of some
languages (Mongolian and Vietnamese) for which Backstitch
caused the RNNLMs not to converge. For those languages,
RNNLMs were trained without Backstitch. For Ambharic,
the RNNLMs did not improve the recognition results at all
on development data and we didn’t use them for rescoring
evaluation data.

E. Speech Activity Detection

Since the evaluation data is not segmented into utterances,
we trained a speech activity detection model to detect regions
of speech in the test data, using the implementation in Kaldi.
This approach first trains a GMM speech recognition model on
the provided clean training data, and then combines the labels
from the alignment with the GMM model with default non-
speech labels for unlabeled regions of the training data. The
resulting training data is augmented with reverberation and
noise perturbation, and the final TDNN-based speech activity
detection model is trained. The model uses statistics pooling
for incorporating long-range information.

F. Runtime Performance

We performed all the training on a single server with 44
CPUs, 384 GB of RAM and seven NVidia P100 GPUs.
Training all the models for a single language is done in around
10 hours, and we never use more than 3 GPUs in parallel.

TABLE II
WORD ERROR RATES (%) FOR ON GUARANI AND JAVANESE DEVELOPMENT SETS AFTER INDIVIDUAL DECODING PHASES.

Guarani Javanese

Acoustic model SpecAugment ~ Multi-condition | SpecAugment Multi-condition

Ist pass 44.0 44.1 56.2 56.1

+ Language model adaptation 43.6 439 55.7 55.7

+ RNNLM (forward) 42.1 423 54.9 54.9

+ RNNLM (backward) 41.8 419 55.2 55.2

Combination 40.3 53.7
It should be possible to complete the training in only a few TABLE III

hours after modifying the training pipeline to train all models
in parallel.

Running the decoding pipeline on the 10-hour evaluation
sets of different languages took from 32 minutes (Guarani) to
one hour and 35 minutes (Vietnamese), measured in wall clock
time. The total CPU time per decoding run ranged from 8 to
40 hours. Those numbers however are not exactly comparable
since there were other processes running on the same server.
Nevertheless, the large differences turn out to be mostly caused
by the different densities of the first pass decoding lattices:
the lattices of the Guarani evaluation data are more than two
times smaller than the Vietnamese lattices. The differences
in lattice densities have a large effect on the complexities of
the rescoring steps, resulting different execution speeds. The
large differences in lattice densities are probably caused by
multiple factors, such as the choice of language modeling
units (e.g., Vietnamese transcripts in the BABEL data use
a tokenization scheme with short morpheme-like units) and
acoustic conditions of the test data. The maximum memory
consumption per process during decoding run was around 4.6
GB. GPUs were not used during decoding.

III. RESULTS

A. Impact of Individual Decoding Steps

Table II shows the word error rate (WER) after each
decoding step for two languages, Gurarani and Javanese. For
most languages, the trend was similar to those two languages:
first pass decoding using either of the two acoustic models
resulted in similar WERs, although the absolute WERSs across
languages were very different. Lattice rescoring and combina-
tion resulted in 5-10% relative improvement, with regard to
the first pass results.

B. Final results

Table III lists WERs for development and evaluation sets
across all languages. Development set results are taken from
our internal decoding and scoring runs, while the results on
the evaluation data originate from the official leaderboards.

It can be seen that the absolute differences between the
WERSs of the individual languages are big, with Amharic and
Vietnamese giving the best results and Tamil and Kurmanji-
Kurdish giving worst results.

FINAL WORD ERROR RATES (%) FOR DEVELOPMENT AND EVALUATION
DATA OF DIFFERENT LANGUAGES.

Language Dev Eval
Amharic 37.0 45.1
Cantonese 472 454
Guarani 40.3 46.6
Javanese 537 538
Kurmanji-Kurdish ~ 63.5 65.3
Mongolian 48.0 473
Pashto 436 457
Somali 57.1 59.1
Tamil 62.5 65.1
Vietnamese 452 451

IV. CONCLUSION

This paper described the TalTech systems developed for
the OpenASR20 challenge. We participated only in the Con-
strained training conditions of all challenge languages. For
most languages, we used the JARPA BABEL language packs
as additional sources of language modeling data. For de-
coding, two CNN-TDNNF based Kaldi “chain” models are
used, trained with different data augmentation strategies. Lan-
guage model adaptation, rescoring with forward and backward
RNNLMs and combining the lattices from two decoding runs
is found to improve the first pass results of a single acositic
model by 5 to 10% relative.

REFERENCES
[1] “OpenASR20 challenge evaluation plan,” https://www.nist.gov/system/
files/documents/2020/10/21/0OpenASR20_EvalPlan_v1_5.pdf, accessed:
2020-11-23.
D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The Kaldi speech recognition toolkit,” in ASRU,
2011.
D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “SpecAugment: A simple data augmentation method for
automatic speech recognition,” Interspeech, pp. 2613-2617, 2019.
V. Suchomel and P. Rychly, “Somali web corpus,” 2016,
LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Ap-
plied Linguistics (UFAL), Faculty of Mathematics and Physics, Charles
University. [Online]. Available: http://hdl.handle.net/11234/1-2591
D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi, and
S. Khudanpur, “Semi-orthogonal low-rank matrix factorization for deep
neural networks,” Interspeech, 2018.
H. Hadian, D. Povey, H. Sameti, J. Trmal, and S. Khudanpur, “Improving
LF-MMI using unconstrained supervisions for ASR,” in SLT, 2018.
T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A
study on data augmentation of reverberant speech for robust speech
recognition,” in ICASSP, 2017, pp. 5220-5224.
D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and noise
corpus,” arXiv e-prints, 2015.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

J. R. Novak, N. Minematsu, and K. Hirose, ‘“Phonetisaurus: Exploring
grapheme-to-phoneme conversion with joint n-gram models in the
WEST framework,” Natural Language Engineering, vol. 22, no. 6, pp.
907-938, 2016.

A. Stolcke, J. Zheng, W. Wang, and V. Abrash, “SRILM at sixteen:
Update and outlook,” in ASRU, vol. 5, 2011.

T. Alumée and M. Kurimo, “Efficient estimation of maximum entropy
language models with n-gram features: An SRILM extension,” in
Interspeech, 2010.

T. Alumde and K. Kaljurand, “Maximum entropy language model
adaptation for mobile speech input,” in Interspeech, 2012.

C. Chelba and A. Acero, “Adaptation of maximum entropy capitalizer:
Little data can help a lot,” Computer Speech & Language, vol. 20, no. 4,
pp. 382-399, 2006.

H. Xu, K. Li, Y. Wang, J. Wang, S. Kang, X. Chen, D. Povey, and
S. Khudanpur, “Neural network language modeling with letter-based
features and importance sampling,” in /CASSP, 2018, pp. 6109-6113.
Y. Wang, V. Peddinti, H. Xu, X. Zhang, D. Povey, and S. Khudanpur,
“Backstitch: Counteracting finite-sample bias via negative steps,” in
Interspeech, 2017.

