
NSYSU-MITLab System for Open Automatic
Speech Recognition 2020 Challenge

Hung-Pang Lin
Department of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan

m083040013@g-mail.nsysu.edu.tw

Chia-Ping Chen
Department of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan

cpchen@mail.cse.nsysu.edu.tw

Abstract—In this report, we describe the system Team NSYSU-
MITLab has implemented for the Open Automatic Speech Recog-
nition 2020 Challenge (OpenASR20). We proposed an end-to-end
automatic speech recognition (ASR) system consists of Conformer
architecture as an encoder and Transformer as a decoder. The
feature encoded by Conformer also be used by connectionist
temporal classification (CTC) for joint training and decoding. We
also employ a speaker classifier for domain adversarial training,
which can improve the robustness of the encoder. We participate
in Cantonese and Vietnamese of OpenASR20 in Constrained
training condition. The best performance we have achieved with
the proposed methods is the word error rate of 61.4526% for
Cantonese and 74.9092% for Vietnamese.

Index Terms—speech recognition, Transformer, Conformer,
connectionist temporal classification, domain adversarial training

I. INTRODUCTION

Transformer [1] is a sequence-to-sequence architecture that
can replace the recurrent neural networks (RNN) in previous
automatic speech recognition (ASR) work [2]. [3] shows
that RNN-based ASR architecture joint training and decoding
with connectionist temporal classification (CTC) can improve
robustness and achieve fast convergence. CTC can be used in
Transformer-based ASR architecture as well [4]. Convolutions
have also been successful for ASR to capture local information
of input acoustic features. The encoder architecture named
Conformer [5] combines convolution neural networks and
Transformer to obtain both local and global context. Domain
adversarial training [6] can reduce the mismatch between
training data and testing data. [7] shows that adversarial
training is also helpful in the ASR task. In this report, we
used the Conformer encoder and Transformer decoder to
build an end-to-end ASR architecture with CTC joint training
and decoding. Furthermore, we applied adversarial training
with speaker classifier to improve the robustness of encoder
for speakers’ variety. The model architecture is illustrated in
Fig. 1.

Fig. 1. Model architecture

II. NETWORK ARCHITECTURE

A. Multi-head Attention

Transformer [1] applies multi-head attention mechanism as
follow:

att(Q,K, V) = softmax(
QK>√
att

)V (1)

Hh = att(QW q
h ,KW

k
h , V W

v
h) (2)

MHA(Q,K, V) = [H1, H2, ...,Hhead]W
head (3)

where K,V ∈ Rk×att and Q ∈ Rq×att are input sequences
for this attention layer, q is the length of Q and k is the
length of K and V , att is the number of feature dimensions.
W q
h ,W

k
h ,W

v
h ∈ Ratt×(att/head) are learnable weight matrices

and Hh ∈ Rq×(att/head) is h-th head output (h = 1, ..., head),

where head is the number of heads. All heads are concatenated
and then multiplied by a learnable weight matrix Whead ∈
Ratt×att to get the multi-head attention output.

B. Subsample

The acoustic feature is a sequence of 80-dim FBank with
3-dim pitch Xfbank ∈ RT×83, where T is the length of the
feature. We subsample Xfbank to Xsub ∈ Rseq×att by two-
layer CNN with ReLU activation, att channels, stride size
2 and kernel size 3, where seq is the length of the output
sequence.

C. Encoder Architecture

Conformer [5] is a state-of-the-art encoder architecture
for speech recognition, which combines convolution neural
networks and Transformer modules [1] to capture both global
and local information of input sequence. The architecture of
the Conformer encoder is shown in the left half of Fig. 2. Xsub

will go through several Conformer encoder layers and obtain
encoded features Xe ∈ Rseq×att. Suppose that the input of
i-th encoder block is Xi, the i-th block output is calculated
as:

X
′

i = Xi +
1

2
FF(Xi) (4)

X
′′

i = X
′

i + MHA-RPE(X
′

i , X
′

i , X
′

i) (5)

X
′′′

i = X
′′

i + Conv(X
′′

i) (6)

Xi+1 = Layernorm(X
′′′

i +
1

2
FF(X

′′′

i)) (7)

where FF(), MHA-RPE(), Conv(), Layernorm() denote the
feed-forward network, multi-head attention with relative sinu-
soidal positional encoding scheme from Transformer-XL [8],
convolution module, and layer normalization [9], respectively.
The output of feed-forward network is calculated as:

FF (X) = Swish(Layernorm(Xi)W
ff
1 +bff1)W ff

2 +bff2 (8)

where Swish() denotes the Swish activation [10], W ff
1 ∈

Ratt×ff , W ff
2 ∈ Rff×att are learnable weight matrices,

bff1 ∈ Ratt, bff2 ∈ Rff are learnable bias vectors.
The convolution module starts with a pointwise convolution

and a gated linear unit (GLU) [11], followed by a 1-D depth-
wise convolution layer. Batchnorm [12] and Swish activation
are deployed after the depthwise convolution. The architecture
of the convolution module is shown in the right half of Fig. 2.

D. Decoder Architecture

Transformer’s decoder receives the output of Conformer
encoder Xe and prefix sequence of token IDs Y [1 : u] =
Y [1], ..., Y [u]. The architecture of the decoder is shown in

Fig. 2. Conformer encoder model architecture and convolution module

the right part of Fig. 1. The output of j-th decoder block is
calculated as:

E = Embed(Y [1 : u]) (9)
Z0 = E + PE (10)

Z
′

j = Layernorm(Zj + MHA(Zj , Zj , Zj)) (11)

Z
′′

j = Layernorm(Z
′

j + MHA(Z
′

j , Xe, Xe)) (12)

Zj+1 = Layernorm(Z
′′

j + FF(Z
′′

j)) (13)

where Embed() will transforms the sequence of the token IDs
Y into a sequence of learnable embedding E ∈ Ru×att. PE
is sinusoidal positional encoding [1], Zj is the input of j-th
decoder block. Given the token IDs Y [1 : u] and the output
of encoder Xe, posterior probabilities of the next token ID is
calculated as:

[ps2s(Y [2]|Y [1], Xe), ..., ps2s(Y [u+ 1]|Y [1 : u], Xe)]

= softmax(ZdW att + batt) (14)

ps2s(Y |Xe) =
∏
u

ps2s(Y [u+ 1]|Y [1 : u], Xe) (15)

where Zd is the output of the decoder, W att ∈
Ratt×token, batt ∈ Rtoken are learnable parameters and token
is the number of token IDs.

E. Joint Training and Decoding

Joint training with CTC (connectionist temporal classifi-
cation) [13] can result in faster convergence [4]. CTC layer

receives the output of the encoder Xe and then computes the
probability pctc(Y |Xe) as:

C = softmax(XeW
ctc + bctc) (16)

p(π|Xe) =

seq∏
t=1

C[t, π[t]] (17)

pctc(Y |Xe) =
∑

π∈β−1(Y)

p(π|Xe) (18)

where W ctc ∈ Ratt×token, bctc ∈ Rtoken are learnable param-
eters. π is an alignment between Xe and Y . C[t, π[t]] is the
probability of the alignment between the output token π[t] and
the t-th frame in Xe. The many-to-one mapping β(π) removes
all blank symbols ∅ and repeated labels from π, for example,
β(a∅aabb) = aab. β−1(Y) = {π|Y = β(π)} is a set of any
possible π that can form Y after removing redundant symbols.

The joint multi-task loss function is calculated as:

Lmtl = −α log ps2s(Y |Xe)− (1− α) log pctc(Y |Xe) (19)

where α is a hyperparameter. During decoding, we compute
the sum of log probabilities from the Transformer decoder,
CTC, and language model:

Ŷ = argmax
Y ∈y∗

{λ log ps2s(Y |Xe) + (1− λ) log pctc(Y |Xe)

+γ log plm(Y)} (20)

where plm(Y) denotes the language model probability of Y ,
λ and γ are hyperparameters, y∗ is a set of output hypotheses.

F. Adversarial Training

Speakers’ variety between the training set and the testing set
may lead to poor recognition results. To address this problem,
we employ adversarial training [6] to encourage the encoder
to learn speaker-invariant representation. The output of the
encoder Xe ∈ Rseq×att is reshaped to X

′

e ∈ Ratt by global
average pooling and then received by the speaker classifier,
which consists of two linear layers. A gradient reversal layer
[6] is inserted before this speaker classifier. The architecture
of the speaker classifier is shown in the left part of Fig. 1. The
model parameters are updated as:

θdec ← θdec − ε
∂Lmtl
∂θdec

(21)

θspk ← θspk − εβ
∂Lspk
∂θspk

(22)

θenc ← θenc − ε(
∂Lmtl
∂θenc

− β ∂Lspk
∂θenc

) (23)

where θenc, θdec, θspk refer to the parameters of encoder,
decoder, and speaker classifier, respectively. Lspk is a cross-
entropy loss function for the speaker classifier, and β is
a hyperparameter. Fig. 3 illustrates how adversarial training
works during backpropagation.

Fig. 3. Parameters updating with adversarial training

TABLE I
DETAILS OF TRAINING SET

Dataset Language utterances hours

Build Cantonese 120 20
Build-ref Cantonese 10,229 17.89

Build-align Cantonese 10,229 14.64
Build Vietnamese 126 20.14

Build-ref Vietnamese 10,176 10.98
Build-align Vietnamese 10,176 8.82

III. EXPERIMENT

A. Dataset

The languages we participate in are Cantonese and Viet-
namese. We tokenize the Cantonese dataset with character
and tokenize the Vietnamese dataset with byte-pair-encoding
(BPE) [14] using SentencePiece [15]. For the Build dataset in
both languages, we cut the original audio file based on the
time information given by the reference file. We refer to the
Build dataset cut by reference file as ”Build-ref”. However, we
noticed there are some non-speech segments at the beginning
or end of the Build-ref audio files. To address this problem,
we use the model trained on Build-ref to decode Build-ref and
utilize the CTC blank symbol generated during decoding to
estimate the time information of the non-speech segment in the
audio file. We refer to the Build dataset cut by CTC alignment
as ”Build-align”. Table. I shows the information of Build-ref
and Build-align. For the Dev dataset, we cut the original audio
file based on the time information given by the reference file.
For the Eval dataset, we segment the original audio file every 7
seconds with 1 second overlap. We applied speed perturbation
[16] and SpecAugment [17] for data augmentation.

TABLE II
MODEL HYPERPARAMETERS FOR DIFFERENT MODEL SIZES

Model Small Medium Large
Num Params (M) 6.5 20.5 44.7
Encoder Layers 6 8 12
Decoder Layers 3 4 6

Attention Dimension 128 256 256
Feed-Forward Dimension 1024 1024 2048

TABLE III
THE PERFORMANCE COMPARISONS OF DIFFERENT MODEL SIZES ON THE

DEV DATASET

Model Language hours WER(%)

Large Cantonese 8.47 61.0
Medium Cantonese 5.73 63.6

Small Cantonese 3.64 63.0
Large Vietnamese 6.06 70.6

Medium Vietnamese 4.14 71.5
Small Vietnamese 4.21 68.9

B. Experimental Setups

The kernel size in the depthwise convolution is 32. The inner
dimension of the speaker classifier is 256. The multi-task loss
weight was α = 0.3 for the CTC joint training. We use the
Adam optimizer [18] with square root learning rate scheduling
[1] (25000 warmup steps, 32 minibatch size and 50 epochs).
The decoding hyperparameters λ and γ are 0.5 and 0.7. We
applied 10% dropout [19] on the output of each module in
Conformer encoder before it was added to the module input.
We also applied label smoothing [20] with a penalty of 0.1. We
use a 2-layer LSTM language model with width 1024 trained
on the Build dataset transcripts without any external dataset.
We implement our system on the open ASR toolkit ESPnet
[21]. All models are trained on 1 Nvidia GeForece GTX 1080
Ti GPU.

C. Results

First, we explore three different model sizes, small, medium,
and large, by using different combinations of encoder layers,
decoder block layers, attention feature dimension att, and
feed-forward inner dimension ff . Table. II describes their ar-
chitecture hyperparameters. The result of different model sizes
tested on the Dev dataset is shown in Table. III, while other
hyperparameters are kept unchanged during the comparison.
We can see that the large model has the best performance
in Cantonese and the small model has the best performance
in Vietnamese. Table. III also shows the hours required for
training.

In Table. IV, we compare the result of different hyperpa-
rameter β on the Dev dataset for Cantonese, where β controls
the proportion of adversarial learning in the loss function.
Adversarial training is not used when β is 0. We can see that
adversarial training can improve system performance when β
is not 0. The best result is obtained when β is 0.7.

TABLE IV
THE PERFORMANCE COMPARISONS OF DIFFERENT HYPERPARAMETER β

ON THE DEV DATASET FOR CANTONESE

Model Language β WER(%)

Large Cantonese 0 62.9
Large Cantonese 0.3 62.1
Large Cantonese 0.5 61.0
Large Cantonese 0.7 60.7
Large Cantonese 1 61.8

TABLE V
RESULTS OF EVAL DATASET IN CANTONESE AND VIETNAMESE

Model Language Training Set WER(%)

Large Cantonese Build-ref 61.45
Large Cantonese Build-align 65.15
Small Vietnamese Build-ref 74.61
Small Vietnamese Build-align 74.61

Table. V shows the result of our system on the Eval
dataset for Cantonese and Vietnamese. β is 0.7 in all of
our submission. We only participate in Constrained training
conditions. The best result in our submission is the word error
rate (WER) of 61.4526% for Cantonese and 74.9092% for
Vietnamese.

IV. CONCLUSION

We proposed an end-to-end ASR system consists of the
Conformer encoder and Transformer decoder with CTC joint
training and decoding. In addition, we employed a speaker
classifier for adversarial training. We have achieved 61.4526%
WER for Cantonese and 74.9092% WER for Vietnamese in
the Constrained training condition with the proposed methods.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, pp. 5998–6008, 2017.

[2] L. Dong, S. Xu, and B. Xu, “Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5884–5888, IEEE, 2018.

[3] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hy-
brid ctc/attention architecture for end-to-end speech recognition,” IEEE
Journal of Selected Topics in Signal Processing, vol. 11, no. 8, pp. 1240–
1253, 2017.

[4] T. Nakatani, “Improving transformer-based end-to-end speech recog-
nition with connectionist temporal classification and language model
integration,” 2019.

[5] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, et al., “Conformer: Convolution-augmented
transformer for speech recognition,” arXiv preprint arXiv:2005.08100,
2020.

[6] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[7] Y. Shinohara, “Adversarial multi-task learning of deep neural networks
for robust speech recognition.,” in Interspeech, pp. 2369–2372, San
Francisco, CA, USA, 2016.

[8] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdi-
nov, “Transformer-xl: Attentive language models beyond a fixed-length
context,” arXiv preprint arXiv:1901.02860, 2019.

[9] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[10] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[11] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” in International conference on
machine learning, pp. 933–941, 2017.

[12] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[13] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning, pp. 369–376, 2006.

[14] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[15] T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
arXiv preprint arXiv:1808.06226, 2018.

[16] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation
for speech recognition,” in Sixteenth Annual Conference of the Interna-
tional Speech Communication Association, 2015.

[17] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method for
automatic speech recognition,” arXiv preprint arXiv:1904.08779, 2019.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2818–
2826, 2016.

[21] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. Enrique Yalta Soplin, J. Heymann, M. Wiesner, N. Chen, A. Renduch-
intala, and T. Ochiai, “ESPnet: End-to-end speech processing toolkit,”
in Proceedings of Interspeech, pp. 2207–2211, 2018.

