11/12/2020

catskills_openasr_system_description - Jupyter Notebook

Catskills Research Company application of
NVidia NeMo Quarts 15x5 model trained from
scratch for 16000 Hz sample rate for Somali

Lars Ericson

Quantitative Analytics Specialist

Catskills Research Company

1334 Hudson Place Davidson, NC 28036

lars.ericson@wellsfargo.com (mailto:lars.ericson@wellsfargo.com)

12 November 2020

Abstract

We describe the Catskills Research Company system for NIST OpenASR20. In EVAL
Constrained condition, this system scored a WER of 1.13849 and 4th place out of 5 on the
Leaderboard.

Core algorithmic approach

We used the NVidia NeMo ASR package [1] and followed their instructions [2] for training a new
language from scratch (Constrained condition) using the QuartzNet 15x5 model [3]. This
involved creating a YAML file for Somali by modifying the example YAML file [4].

The main modifications were to

So,

Input the grapheme set for Somali

Decide on maximum duration in seconds of input sample. We chose 10 seconds and
limited our training samples to transcriptions that were 10 seconds or less in the BUILD set.
Decide on the sample rate. Because we initially worked with the pretrained model
(Unconstrained condition), which uses 16000Hz sample rate, we stayed with 16000Hz rate
for the Constrained condition (probably a mistake, as it increases parameter size for no
added value).

Decide on the initial learning rate. We chose a relatively high rate of 0.02 which is double
the normal Novograd recommended starting rate of 0.01, because of use of highly
augmented samples for training.

Decide on the batch size. We chose a batch size of 180 to fit our GPU, because we felt
that larger batch size would minimize overfitting.

the following entries were changed in the base YAML file to make the Somali YAML file:

1 sample rate: &sample rate 16000

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 1/10

mailto:lars.ericson@wellsfargo.com

11/12/2020 catskills_openasr_system_description - Jupyter Notebook

2 labels: &labels [' ', "'", 'a', 'b', 'c', 'd', 'e',
3 'f', 'g', 'h', i, '3,

4 ‘'k', 't', 'm', '‘n', 'o', 'p', 'q', 'r‘,
5 ‘'s', 'ttt 'u', v, o 'wh, 'xt, 'y, fzt]
6

7 model:

8 train ds:

9 sample rate: 16000

10 batch size: 180

11 max_duration: 10.0

12

13 optim:

14 lr: .002

A new model from scratch is created by instantiating the
nemo _asr.models.EncDecCTCModel class in NeMo.

Additional features and tools used, including software
packages and publicly available external resources

We used:

e Python 3.7.9

o sph2pip v2.5 for SPH to WAV conversion [5]

o Python modules IPython, Levenshtein,
OpenASR convert reference transcript, argparse, audioread, csv,
datetime, glob, itertools, json, json, librosa, logging,
matplotlib, multiprocessing, nemo, numpy, omegaconf, operator, os,
pandas, pathlib, pickle, pprint, pytorch lightning, random, re,
ruamel, scipy, shutil, soundfile, sys, tarfile, torch, torchtext,
tgdm, unidecode, warnings

Other data used (outside provided data)

Only NIST BABEL Somali BUILD samples were used for training.

Significant data pre-/post-processing

Data augmentation

Training audio was split according to the transcript into smaller samples per the timecodes on
the scripts.

Each sample was then augmented with random variations using NeMo provided perturbations

[6][7].

In particular we applied the following 3 perturbations in sequence 10 times to get 10 new
samples:

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 2/10

11/12/2020

catskills_openasr_system_description - Jupyter Notebook

» Time stretch from 0.8 to 1.2. (Not pitch preserving.)
« Speed change from 0.8 to 1.2. (Pitch preserving.)
» White noise from -70db to -35 db.

This is implemented in the following class:

coNNOUT R WN =

11
12
13
14
15
16
17
18
19
20
21

from nemo.collections.asr.parts import perturb

class Disturb:

max_

def init (self, sample rate):
self.sample rate = sample rate
self.white noise = \
perturb.WhiteNoisePerturbation(min level=-70,
level=-35)
self.speed = perturb.SpeedPerturbation(self.sample rate,
'kaiser best', min speed rate=0.8,
max_speed rate=1.2, num rates=-1)
self.time stretch =\
perturb.TimeStretchPerturbation(min speed rate=0.8,
max speed rate=1.2, num rates=3)

def call (self, sample):
sample=deepcopy(sample)
self.time stretch.perturb(sample)
self.speed.perturb(sample)
self.white noise.perturb(sample)
return sample

Speaker activity detection and translation

To reduce the unlabelled DEV and EVAL data to clips of at most 10 seconds in length, it is
necessary to implement a Speaker Activity Detection function. We explored NeMo templates for
training a neural network for this purpose. This approach resulted in a very slow function. We
chose instead to implement an ad hoc manually tuned method which relies on the absolute
value of the dB level of the mel spectogram to find suitably long periods of silence to cut the
clips at. The method is implemented as follows:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

def

def

def

smooth(y, w):

box = np.ones(w)/w

y smooth = np.convolve(y, box, mode='same')
return y smooth

smoothhtooms (A,w) :
Al=smooth(A,w)
A2=smooth(Al[::-1],w)
return A2[::-1]

listen and transcribe(C, model, max duration, gold, audio):
audio /= max(abs(audio.min()), abs(audio.max()))
size=audio.shape[0]

T=size/C.sample rate

X=np.aranae(size)/C.sample rate

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 3/10

11/12/2020 catskills_openasr_system_description - Jupyter Notebook

16 Z=np.zeros(size)

17 S = librosa.feature.melspectrogram(y=audio,

18 sr=C.sample rate, n mels=64, fmax=8000)

19 dt S=T/S.shape[1]

20 samples per spect=int(dt S*C.sample rate)

21 S dB = librosa.power to db(S, ref=np.max)

22 s _dB _mean=np.mean(S_dB,axis=0)

23 max_samples=int(max duration/dt S)

24 min samples=1

25 pred=[]

26 cutoffs = np.linspace(-80,-18,200)

27 max_read head=s dB mean.shape[0]

28 max_read head, max samples, min samples

29 read head=0

30 transcriptions=[]

31 read heads=[]

32 read heads=[read head]

33 while read head < max read head:

34 finished = False

35 while not finished and read head < max read head:
36 for cutoff in cutoffs:

37 speech g=(s dB mean[read head:]>cutoff)
38 silences=collect false(speech q)

39 silences=[(x,y) for x,y in silences

40 if x !'=y and y-x > min_samples]
41 n _silences = len(silences)

42 if n_silences==0:

43 continue

44 elif silences[0][0] == 0 and silences[0][1] != 0O:
45 read head +=silences[0][1]

46 break

47 elif silences[0][0] > max samples:

48 continue

49 else:

50 silences=[(x,y) for x,y in silences
51 if x <= max_samples]

52 if not len(silences):

53 continue

54 start at = read head

55 stop at= read head + silences[0][0]
56 read head = stop at

57 finished = True

58 break

59 if not finished:

60 display start=read head*samples per spect
61 display end=display start+max samples
62 start at = read head

63 stop at = min(max read head,

64 read head + max_samples)
65 read head = stop at

66 finished = True

67 read heads.append(read head)

68 start=start at*samples per spect

69 end=start at+stop at*samples per spect

70 display start=max(0, start-5*C.sample rate)

71 display end=end+5*C.sample rate

72 smooth abs=smoothhtooms(np.abs(audio[start:end]), 100)

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 4/10

11/12/2020

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

catskills_openasr_system_description - Jupyter Notebook

smooth abs max=smooth abs.max()
if smooth abs max >= 0.05:
try:
segment transcript, timeline, \
normalized power, speech mask, clip audio=\
predicted segment transcript(C, \
model, audio, \
start, end, s dB mean, \
samples per spect, dt S)
transcriptions.extend(segment transcript)
except:
print("empty translation")
transcriptions = [(time, time+duration, pred)
for time, duration, pred in transcriptions]
return transcriptions

The translation of a clip of 10 seconds or less in duration is performed by function

predicted segment transcript . This relies on similar thinking to break the transcribed
clip into silent and speech components, and then allocate the words of the result proportionally
in word size to speech component size:

OooO~NOOUTE, WN -

19
20
21

22
23
24
25
26
27
28

def

def

normalize(
A=np.copy (
A=A-A.min(
A=A/A.max(
return A

A):
A)
)

)

predicted segment transcript(C, model, audio,

start, end, s dB mean, samples per spect, dt S):
clip audio=audio[start:end]
prediction=transcribe(C, model, clip audio)
print(f"PRED {start/C.sample rate:2f} {prediction}")
spec start=int(start/samples per spect)
spec_end=int(end/samples per spect)
clip power=s dB mean[spec start:spec end]
normalized power=normalize(np.copy(clip power))
timeline=np.arange(spec start,spec _end)*dt S
w=min (30, normalized power.shape[0])

smoothed normalized power=normalize(smooth(normalized power,w))

speech mask=extremize(smoothed normalized power, 0.2)
speech segments=mask boundaries(speech mask)+spec start
spec_to words=allocate pred to speech segments(prediction,

speech segments)

if len(spec to words)==0:
return None
segment transcript = \
[(specl*dt S, (spec2-specl)*dt S, word)
for specl, spec2, word in spec to words]
return segment transcript, timeline, \
normalized power, speech mask, clip audio

This in turn relies on a function to call the model to transcribe the audio into graphemes:

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 5/10

11/12/2020

A~ WN -

~N o Ot

catskills_openasr_system_description - Jupyter Notebook

def transcribe(C, model, audio):

fn="tmp.wav'

sf.write(fn, audio, C.sample rate)

translations=model.transcribe(paths2audio files=[fn],
batch size=1)

translation=translations[0]

translation=translation.split(' ')

translation=' '.join([x.strip() for x in translation if
len(x)])

return translation.replace("\u200c",'') # Just Pashto but
required

and a function to do the allocation of predicted text to speech segments:

coNOUTEA WN -

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36

def align seg words(seg words):
([seg start, seg end], seg wrds) = seg words
seg duration=seg end-seg start
n_seg wrds=len(seg wrds)
word duration=seg duration//n seg wrds
seg duration, word duration
seg word boundaries=np.hstack([np.linspace(seg start, \
seg end-word duration, n_seg wrds).astype(int),
[seg end]])
seg aligned wrds=[(seg word boundaries[i],
seg word boundaries[i+1], seg wrds[i])
for i in range(n seg wrds)]
return seg aligned wrds

def align segment words(segment words):
return [z for y in [align seg words(x) for x in segment words]
for z in y]

def allocate pred to speech segments(prediction, speech segments):
pred words=prediction.split(' ')
n_words=len(pred words)
if n_words==0:
return []
segment durations=np.diff(speech segments)
speech duration=segment durations.sum()
segment allocation=n words*segment durations/speech duration
words per segment=np.round(segment allocation).T.astype(int)
(0]
If count is under then add missing word to longest segment
words per segment[np.where(words per segment==\
words per segment.max())[0][O]] \
+= n_words-words per_ segment.sum()
word segment boundaries=np.cumsum(np.hstack([[0O],\
words per segment]))

segment words=list(zip(speech segments.tolist(),

[pred words[word segment boundaries[i]:\

word segment boundaries[i+1]]

for i in range(len(words per segment))]))

return align_segment words(segment words)

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 6/10

11/12/2020 catskills_openasr_system_description - Jupyter Notebook

Features that were the most novel or unusual and/or led
to the biggest improvements in system
performance

The open source NVidia NeMo project claims that the Quartz 15x5 model is novel in the sense
of using 10X fewer parameters than other models in the Encoder/Decoder class [8].

It did not train well in the time we had available and performed poorly. This may be the fault of
over-extreme or poorly thought out augmentation choices that we made. We did not understand
the model well enough to attempt any configuration changes to increase the learning capacity.

System configuration

Our system configuration was

« Intel core i9 processor

» 3TB SSD

* 64GB RAM

» NVidia RTX 2080TI GPU with 11GB of VRAM
» Ubuntu 20.04LTS operating system

e Python 3.7.9

Minimal required hardware specs to run your
system

Evaluation required less than 1GB of GPU VRAM and less than 5GB of CPU RAM. Evaluation
was fast, less than 5 minutes for a DEV or EVAL run.

Minimal required time and amount of data to train/tune
your system

In training we were able to keep the GPU about 88% loaded and using 11.2 out of 11.6GB of
available RAM. With the augmented data we were not converging to a training error loss of less
than 50 with over 48 hours of training. This may be due to bad choice of augmentations, and
also to upsampling to 16KHz when 8KHz was the source level, which may result in unnecessary
artifacts. About 24GB of RAM was used during training. We allocated 8 cores for data loading.
The 8 cores were periodically busy to 100% but in general stayed in a lower range.

Diagram giving a visual representation of our system’s
workflow

Training

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 7/10

11/12/2020 catskills_openasr_system_description - Jupyter Notebook

BUILD audio BUILD transcription

N

Clip to <10s

l

(audio,gold) pairj

l

augmentation

l

pair + 10 augmentationsj

l

trainer

Eﬂined mod@

Evaluation

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 8/10

11/12/2020 catskills_openasr_system_description - Jupyter Notebook

EVAL audio

:

SAD to <10s

Eained modﬂ

translate

'

predicted textbl

N\

allocate words to detected speech regions

'

(prediction, start, duration)j

References

[1] https://github.com/NVIDIA/NeMo (https://github.com/NVIDIA/NeMo),

[2] https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/01_ASR_with_NeMo.ipynb
(https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/01_ASR_with_NeMo.ipynb)

[3] https://arxiv.org/abs/1910.10261 (https://arxiv.org/abs/1910.10261),

[4] https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/config
(https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/config)

[5] https://www.openslr.org/3/ (https://www.openslr.org/3/)

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 9/10

https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/01_ASR_with_NeMo.ipynb
https://arxiv.org/abs/1910.10261
https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/config
https://www.openslr.org/3/

11/12/2020 catskills_openasr_system_description - Jupyter Notebook
[6]
https://docs.nvidia.com/deeplearning/nemo/neural_mod_bp_guide/index.html#data_augmentatior
(https://docs.nvidia.com/deeplearning/nemo/neural_mod_bp_guide/index.html#data_augmentatio

[7]
https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/05_Online_Noise_Augmentation.ipynb
(https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/05_Online_Noise_Augmentation.ipynb)

[8] https://arxiv.org/pdf/1910.10261.pdf (https://arxiv.org/pdf/1910.10261.pdf)

< »

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 10/10

https://docs.nvidia.com/deeplearning/nemo/neural_mod_bp_guide/index.html#data_augmentation
https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/05_Online_Noise_Augmentation.ipynb
https://arxiv.org/pdf/1910.10261.pdf

