
DRAFTOngoing IREX
Ongoing IREX Evaluation

Concept, Evaluation Plan, and API Specifcation
Version 1.0

George W. Quinn
irex@nist.gov

Image Group
Information Access Division

Information Technology Laboratory

May 6, 2019

mailto:irex@nist.gov

DRAFT
Status of this Document

This is the frst public version of this document. Comments and questions should be submitted to
irex@nist.gov. This document can be downloaded from http://www.nist.gov/itl/iad/ig/ongoing-irex.cfm.

Release Notes

The submission procedure, API, and implementation requirements for Ongoing IREX are similar to
those of prior IREX evaluations.

i

mailto:irex@nist.gov
http://www.nist.gov/itl/iad/ig/ongoing-irex.cfm

DRAFT

CONTENTS

Contents

1 Overview 1
1.1 Introduction . 1
1.2 Performance Metrics . 1
1.3 Iris Datasets . 1
1.4 Test Environment . 2
1.5 Posting of Evaluation Results . 2

2 Participation Requirements 3
2.1 Participant Requirements . 3
2.2 Submission Procedure . 3
2.3 Software Validation . 3
2.4 Submission Requirements . 4

2.4.1 Linking Requirements . 4
2.4.2 Naming Convention . 4
2.4.3 Installation Requirements . 4
2.4.4 Runtime Requirements . 5

3 API Specifcation 6
3.1 Functions . 6

3.1.1 get max template sizes() . 7
3.1.2 convert multiiris to verifcation template() . 7
3.1.3 convert multiiris to enrollment template() . 8
3.1.4 match templates() . 8

3.2 Supporting Data Structures . 9

Participation Agreement 13

ii

DRAFT

1. OVERVIEW

1 Overview

1.1 Introduction

This document establishes a concept of operations (CONOPS) and application programming interface
(API) for the Ongoing Iris Exchange (IREX) Evaluation. Ongoing IREX succeeds previous IREX evalu-
ations.

IREX Program was initiated by NIST to support an expanded marketplace of iris-based applications.
IREX I through IX provided quantitative support for iris recognition standardization, development, and
deployment.

The latest information on IREX can be found on the IREX website (http://www.nist.gov/itl/iad/ig/irex.cfm).

1.2 Performance Metrics

Performance is assessed for one-to-one (a.k.a verifcation mode) matching. Below is a list of perfor-
mance factors that might be posted to the Ongoing IREX homepage.

• Matching Accuracy: One-to-one matching is a binary classifcation problem. As such, accuracy
is characterized by the trade-off between two types of classifcation error rates as a descrimination
threshold is adjusted. This relationship is characterized by a DET (Detection Error Trade-off)
curve [1]. DET curves have become a staple in biometric testing, superseding the analogous
ROC (Receiver Operating Characteristic) curve. Compared to ROC curves, the logarithmic axes
of DET curves provide a superior view of the differences between matchers in the critical high
performance region. A comprehensive introduction to the fundamentals of assessing the accuracy
of binary classifcation systems can be found in [2].

• Timing Statistics: Timing will be assessed as the elapsed real time (as opposed to CPU time)
for core biometric operations (e.g. feature extraction, comparisons). Timing estimates will be
computed on an unloaded machine running a single process. The machine’s specifcations are
described in Section 1.4.

• Accuracy-speed Trade-off: Ongoing IREX might investigate whether a collective accuracy-
speed trade-off exists for matchers submitted to Ongoing IREX. Accuracy-speed trade-off refers
to the circumstance whereby more accurate matchers take longer to complete their operations.

• Template Sizes: The size of the proprietary templates generated by the implementation.
• Runtime Memory Usage: Ongoing IREX might monitor runtime memory usage during matching

and/or feature extraction.

1.3 Iris Datasets

1.3.1 The OPS Dataset (TBD)

Ongoing IREX will begin by testing over a set of feld collected iris images. The samples will be pulled
from the same source as OPS II and III (used in IREX IV and IX respectively). The samples are collected
from various locations over a period of years. Field collected samples tend to suffer more from quality
related problems (e.g. motion and focus blur) than samples collected in more controlled laboratory
settings.

The dataset is sequestered (i.e. not publicly available). The participants are not allowed to view any of
the iris samples and will not be provided with a representative set of iris samples.

1

http://www.nist.gov/itl/iad/ig/irexix.cfm

DRAFT

1. OVERVIEW

1.3.2 Ground Truth Integrity

A hazard with collecting operational data is that ground truth identity labels can be incorrectly assigned
due to clerical error. NIST will attempt to correct ground truth errors in its test datasets whenever
possible, and only when doing so will not unfairly bias results in favor of certain submissions over
others.

1.4 Test Environment

Hardware specifcations for some of NIST’s test machines are:

• Dell M610 - Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each).
• Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each).
• Dual Intel Xeon E5-2695 3.3 GHz CPUs (14 cores each; 56 logical CPUs total).

The test machines will have CentOS 7.2 installed, which runs Linux kernel 3.10.0 (http://www.centos.org/).
An ISO image of the distribution can be downloaded from NIGOS (http://nigos.nist.gov:8080/evaluati
ons/CentOS-7-x86 64-Everything-1511.iso).

1.5 Posting of Evaluation Results

NIST will post performance results for each successfully validated implementation to the Ongoing IREX
homepage (http://www.nist.gov/itl/iad/ig/ongoing-irex.cfm) as soon as they become available. The par-
ticipant will be notifed once posted.

2

http://w ww.centos.org/
 http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso
 http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso
http://www.nist.gov/itl/iad/ig/ongoing-irex.cfm

DRAFT

2. PARTICIPATION REQUIREMENTS

2 Participation Requirements

2.1 Participant Requirements

Participation is open to any commercial organization or academic institution that has the ability to im-
plement an iris matching algorithm. There is no charge and participation is open worldwide.

A high-level description of the process is as follows:

1. Mail the completed Participation Agreement to NIST.

2. Format your matching software to adhere to the API specifcations and runtime requirements
described in the CONOPS document.

3. Submit your implementation to NIST, following the cryptographic protection procedures described
in Section 2.2.

4. NIST will validate your submission to ensure its correct operation (Section 2.3).

5. NIST will assess the performance of your implementation and post the results to the Ongoing
IREX Homepage.

Participants only need to complete the Participation Agreement the frst time they submit an implemen-
tation to Ongoing IREX.

Participants are permitted to submit no more than two implementations over a 6 month period.

2.2 Submission Procedure

All software, data, and confguration fles submitted to NIST must be signed and encrypted.
Signing is performed to ensure authenticity of the submission (i.e. that it actually belongs to
the participant). Encryption is performed to ensure privacy. The full process is described at
http://biometrics.nist.gov/cs links/iris/irex/NIST biometrics crypto2.pdf.

Implementations shall be submitted to NIST as encrypted gpg fles. If the encrypted implementation
is below 20MB, it can be emailed directly to NIST at irex@nist.gov. If the encrypted implementation
is above 20MB, it can either be provided to NIST as a download from a webserver. NIST shall not be
required to register or enroll in any kind of membership before downloading the implementation.

Note: NIST will not accept any implementations that are not signed and encrypted. NIST accepts no
responsibility for anything that occurs as a result of receiving fles that are not encrypted with the NIST
public key.

2.3 Software Validation

Upon receipt, NIST will validate the implementation to ensure its correct operation. The validation
process involves running the implementation over a small sample of test data. This test data will be
provided to the participant, who must run the implementation in-house and provide NIST with the com-
parison results. NIST will then verify that the participant’s in-house results are consistent with the output
produced on the NIST blades. The validation data along with full instructions are posted on the Ongoing
IREX homepage (http://www.nist.gov/itl/iad/ig/ongoing-irex.cfm).

3

http://www.nist.gov/itl/iad/ig/irexix.cfm
http://www.nist.gov/itl/iad/ig/irexix.cfm
http://biometrics.nist.gov/cs_links/iris/irex/NIST_biometrics_crypto.pdf
mailto:irex@nist.gov
http://www.nist.gov/itl/iad/ig/irexix.cfm

DRAFT

Form: libIREX provider sequence.suffx
Part: libIREX provider sequence suffx
Description: First part of

the name,
fxed for all
submissions

a single word
name of the main
provider.
EXAMPLE: thebes

A two-digit decimal identifer
starting at 00 and incrementing
any time a new submission is
sent to NIST

Either
.so or .a

Example: libIREX thebes 01.a

2. PARTICIPATION REQUIREMENTS

2.4 Submission Requirements

2.4.1 Linking Requirements

Participants shall submit their implementations as pre-compiled and linkable libraries. Dynamic libraries
are permitted, but static ones are preferred. Participants shall not provide any source code. Header
fles should not be necessary, but if provided, should not contain intellectual property of the company
nor any material that is otherwise proprietary.

NIST will link the submitted library fle(s) to our ISO 2011 C++ language test drivers. Participants are
required to provide their libraries in a format that is linkable using g++ version 4.8.5. Thus, libraries must
export their functions according to the C++11 naming convention. The functions that must be exported
are defned in ”irex.h” and described in Section 3. The software libraries must be 64-bit.

Participants may provide customized command-line linking parameters. A typical link line might be:
g++ -I. -Wall -m64 -o irex main irex main.c -L. -lirex thebes A 01 -lpthread

NIST will ignore requests to alter parameters by hand (e.g. modify specifc lines in an XML confguration
fle). Any such adjustments must be submitted as new implementations.

Participants are strongly advised to verify library-level compatibility with g++ (on an equivalent platform)
prior to submitting their software to NIST to avoid linkage problems (e.g. symbol name and calling
convention mismatches, incorrect binary fle formats, etc.). Intel ICC is not available. Access to GPUs is
not permitted. Intel Integrated Performance Primitives (IPP) libraries are permitted if they are delivered
as part of the developer-supplied library package. It is the provider’s responsibility to establish proper
licensing of all libraries.

Dependencies on external dynamic/shared libraries such as compiler-specifc development environment
libraries are discouraged. If absolutely necessary, external libraries must be provided to NIST after
receiving prior approval from the test liaison. Image processing libraries such as libpng and NetPbm
should not be required since NIST will handle image reading and decompression.

2.4.2 Naming Convention

All submitted libraries shall adhere to the naming convention described in Table 1. Additional dynamic
or shared library fles may be submitted that support this core library.

Table 1: Naming convention for an implementation library.

2.4.3 Installation Requirements

Installation Must be Simple Installation shall require the simple copying and/or decompression of
fles followed by a linking operation. There shall be no need for interaction with the participant provided
everything goes smoothly. It shall not require an installation program.

No License Requirements or Usage Restrictions The implementation shall allow itself to be exe-
cuted on any number of machines without the need for machine-specifc license control procedures or
activation. The implementation shall neither implement nor enforce any usage controls or restrictions

4

DRAFT

2. PARTICIPATION REQUIREMENTS

based on licenses, number of executions, presence of temporary fles, etc. No activation dongles or
other hardware shall be required.

Suffcient Documentation Must be Provided Documentation should be provided for all (non-zero)
participant-defned error or warning return codes.

Disk-Space Limitations The implementation may use confguration fles and supporting data fles.
The total size of all libraries and confguration and data fles for any given submission shall not be more
than a gigabyte.

2.4.4 Runtime Requirements

Single-threaded Requirement Implementations must run in single-threaded mode.

No writing to Standard Error or Standard Output The implementation will be tested in a non-
interactive ”batch” mode without terminal support. Thus, the submitted library shall run quietly (i.e.
it should not write messages to ”standard error” or ”standard output”. An implementation may write
debugging messages to a log fle. This log fle must be declared in the documentation.

Exception Handling Should be Supported The implementation should support error/exception han-
dling so that, in the case of an unexpected error, a return code is still provided to the calling application.
The NIST test harness will gracefully terminate itself if it receives an unexpected return code, as it
usually indicates improper operation of the implementation.

No External Communication Implementations running on NIST hosts shall not side-effect the runtime
environment in any manner except through the allocation and release of memory. Implementations shall
not write any data to an external resource (e.g. a server, connection, or other process). Implementations
shall not attempt to read any resource other than those explicitely allowed in this document. If detected,
NIST reserves the right to cease evaluation of the software, notify the participant, and document the
activity in published reports.

Components Must be Stateless All implementation components shall be ”stateless” except as noted
elsewhere in this document. This applies to iris detection, feature extraction and matching. Thus, all
functions should give identical output, for a given input, independent of the runtime history. NIST will
institute appropriate tests to detect stateful behavior. If detected, NIST reserves the right to cease
evaluation of the software, notify the participant, and document the activity in published reports.

Minimum Speed Requirements The implementations shall perform operations within the time con-
straints specifed by Table 2. These time limits apply to the function call invocations defned in Section
2 on a Dell M910 system described in Section 1.4. Since NIST cannot regulate the maximum runtime
per operation, limitations are specifed as 90th percentiles (i.e. 90% of all calls to the function shall
complete in less time than the specifed duration). The limitations assume each template is generated
from a single iris image.

Table 2: Time limitations for specifc operations.

Operation Timing Restriction

Creation of a verifcation template from a single 640x480 pixel image 1,000 ms

Creation of an enrollment template from a single 640x480 pixel image 1,000 ms

Comparison between two templates generated from a single image each. 50 ms

5

DRAFT Stage Function Metrics

Feature Extraction convert multiiris to enrollment template()
Generates an enrollment template from one or more
iris images from an individual. The implementation
must be able to handle multiple calls to this function
from multiple instances of the calling application.

Template size and
generation time.

convert multiiris to verifcation template() Gen-
erates a verifcation template from one or more iris
images from an individual.

Template size and
generation time.

Comparison match templates()
Compares a verifcation template to an enrollment
template.

Accuracy and com-
parison time.

3. API SPECIFICATION

3 API Specifcation

The design of this API refects the following testing objectives:

• Support black-box testing.

• Support distributed processing.

• Support graceful and informative failure recovery.

• Support the ability to collect performance statistics (e.g. timing, template size).

Submitted library fles must export and properly implement the functions defned in this section. Test-
ing will proceed in two phases: (1) feature extraction / template generation followed by (2) template
comparison. This basic program fow is detailed in Table 3.

Table 3: Program Flow

3.1 Functions

Functions

• int32 t get max template sizes (uint32 t &max enrollment template size, uint32 t &max ←-

verifcation template size)
Retrieves the maximum (per image) verifcation and enrollment template sizes.

• int32 t convert multiiris to verifcation template (const std::vector< iris sample > &input irides,
uint32 t &template size, uint8 t ∗verifcation template)

Generates a verifcation template from a vector of iris samples.

• int32 t convert multiiris to enrollment template (const std::vector< iris sample > &input irides,
uint32 t &template size, uint8 t ∗enrollment template)

Generates an enrollment template from a vector of iris samples.

• int32 t match templates (const uint8 t ∗verifcation template, const uint32 t verifcation template←-

size, const uint8 t ∗enrollment template, const uint32 t enrollment template size, double &dissim-
ilarity)

Searches a verifcation template against an enrollment template and produces a dissimilarity score.

6

DRAFT out max enrollment template size The maximum (per image) size of an enrollment template
in bytes.

out max verifcation template size The maximum (per image) size of a search template in
bytes.

in input irides The iris samples from which to generate the template.

out template size The size, in bytes, of the output template

out verifcation template Template generated from the iris samples. The template's format is
proprietary and NIST will not access any part of it. The memory for
the template willbe pre-allocated by the NIST test harness. The
implementation shall not allocate this memory.

3. API SPECIFICATION

3.1.1 get max template sizes()

int32 t IREX::get max template sizes (

uint32 t & max enrollment template size,

uint32 t & max verification template size)

Retrieves the maximum (per image) verifcation and enrollment template sizes.

These values will be used by the test harness to pre-allocate space for template data. For a vec-
tor of K iris samples, the test-harness will pre-allocate K times the provided value before calling
convert multiiris to verifcation template() or convert multiiris to enrollment template().

Parameters

Returns

Zero indicates success. Other values indicate a vendor-defned failure.

3.1.2 convert multiiris to verifcation template()

int32 t IREX::convert multiiris to verification template (

const std::vector< iris sample > & input irides,

uint32 t & template size,

uint8 t ∗ verification template)

Generates a verifcation template from a vector of iris samples.

The function must be able to handle multiple iris samples when provided (e.g. both left and right eyes
from the same person). If the function returns a zero exit status, the template will be used for matching.If
the function returns a value of 8, NIST will debug. Otherwise, a non-zero return value will indicate a
failure to acquire and the template will not be used in subsequent search operations.

Parameters

7

https://matching.If

DRAFT
in input irides The iris samples from which to generate the template.

out template size The size, in bytes, of the output template.

out enrollment template Template generated from the iris samples. The template's format is
proprietary and NIST will not access any part of it. The memory for
the template will be pre-allocated by the NIST test harness. The
implementation shall not allocate this memory.

Return Value Meaning
0 Success.
2 Elective refusal to process the MULTIIRIS.
4 Involuntary failure to extract features.
6 Elective refusal to produce a (non-blank) template.
8 Cannot parse the input data.
Other Vendor-defned failure.

3. API SPECIFICATION

Returns

Return Value Meaning
0 Success.
2 Elective refusal to process the MULTIIRIS.
4 Involuntary failure to extract features.
6 Elective refusal to produce a (non-blank) template.
8 Cannot parse the input data.
Other Vendor-defned failure.

If there are multiple iris samples, then a zero status should be returned as long as feature information
could be extracted from at least one of the images.

3.1.3 convert multiiris to enrollment template()

int32 t IREX::convert multiiris to enrollment template (

const std::vector< iris sample > & input irides,

uint32 t & template size,

uint8 t ∗ enrollment template)

Generates an enrollment template from a vector of iris samples.

The function must be able to handle multiple iris samples when provided (e.g. both left and right eyes
from the same person). If the function returns a zero exit status, the template will be used for matching.If
the function returns a value of 8, NIST will debug. Otherwise, a non-zero return value will indicate a
failure to acquire and the template will not be used in subsequent search operations.

Parameters

Returns

3.1.4 match templates()

int32 t IREX::match templates (

const uint8 t ∗ verification template,

const uint32 t verification template size,

8

https://matching.If

DRAFT
Return Value Meaning
0 Success.
2 One or more of the input templates were the result of a failed feature extraction.
Other Vendor-defned failure.

3. API SPECIFICATION

const uint8 t ∗ enrollment template,

const uint32 t enrollment template size,

double & dissimilarity)

Searches a verifcation template against an enrollment template and produces a dissimilarity score.

Parameters

in verifcation template A template generated by a call to
convert multiiris to verifcation template().

in verifcation template size The size, in bytes, of the verifcation template.
in enrollment template A template generated by a call to

convert multiiris to enrollment template().

in enrollment template size The size, in bytes, of the enrollment template.

out dissimilarity A non-negative measure of the amount of dissimilarity between
the templates.

Returns

3.2 Supporting Data Structures

This section describes the data structures used by the API.

3.2.1 point Struct Reference

A structure that specifes a coordinate in an image.

Public Attributes

• uint16 t x
X-coordinate (0 == leftmost)

• uint16 t y
Y-coordinate (0 == topmost)

Detailed Description A structure that specifes a coordinate in an image.

3.2.2 iris sample Struct Reference

Defnes a structure that holds a single iris with corresponding attributes.

Public Attributes

• eye label eye
The eye label for this iris sample (0 == undefned, 1 == right eye, 2 == left eye).

• uint16 t image width
Image width in pixels.

9

DRAFT

3. API SPECIFICATION

• uint16 t image height
Image height in pixels.

• uint16 t wavelength
The wavelength with which the iris sample was acquired.

• uint8 t bit depth
Bit depth, 8 or 24 for RGB visible spectrum images.

• uint8 t ∗ data
Pointer to image raster data (RGBRGBRGB... for 24-bit images).

• iris boundary ∗ boundary
Always set to NULL for now.

Detailed Description Defnes a structure that holds a single iris with corresponding attributes.

Member Data Documentation

image width uint16 t image width

Image width in pixels.

image height uint16 t image height

Image height in pixels.

wavelength uint16 t wavelength

The wavelength with which the iris sample was acquired.

bit depth uint8 t bit depth

Bit depth, 8 or 24 for RGB visible spectrum images.

data uint8 t∗ data

Pointer to image raster data (RGBRGBRGB... for 24-bit images).

boundary iris boundary∗ boundary

Always set to NULL for now.

3.2.3 iris boundary Struct Reference

A structure that holds manual segmentation information for an iris sample.

Public Attributes

• point center
Coordinate representing manual estimate of iris center.

• std::vector< point > pupil boundary
Vector of points outlining pupil boundary.

• std::vector< point > limbic boundary
Vector of points outlining limbic (iris-sclera) boundary.

• std::vector< point > upper eyelid boundary
Vector of points outlining upper eyelid boundary.

• std::vector< point > lower eyelid boundary
Vector of points outlining lower eyelid boundary.

Detailed Description A structure that holds manual segmentation information for an iris sample.

10

DRAFT

3. API SPECIFICATION

Member Data Documentation

center point center

Coordinate representing manual estimate of iris center.

pupil boundary std::vector<point> pupil boundary

Vector of points outlining pupil boundary.

limbic boundary std::vector<point> limbic boundary

Vector of points outlining limbic (iris-sclera) boundary.

upper eyelid boundary std::vector<point> upper eyelid boundary

Vector of points outlining upper eyelid boundary.

lower eyelid boundary std::vector<point> lower eyelid boundary

Vector of points outlining lower eyelid boundary.

11

DRAFT

REFERENCES

References

[1] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki. The DET curve in assessment
of detection task performance. In Proc. Eurospeech, pages 1895–1898, 1997. 1

[2] Charles E. Metz. Basic principles of ROC analysis. In Seminars in Nuclear Medicine, pages 8–283,
1978. 1

12

DRAFT

Application and Agreement to Participate in Ongoing IREX

Application to Participate in Ongoing IREX

DRAFT
Application and Agreement to Participate in Ongoing IREX

1. Who Should participate

1.1. Organizations (”Organizations”) that develop iris matching software are eligible to participate.

1.2. Anonymous participation will not be permitted. This means that signatories to this document,
Application and Agreement to Participate in Ongoing IREX, acknowledge that they under-
stand that the results of the test will be published with attribution to their Organization.

2. How to Participate

2.1. In order to participate, an Organization must complete this form and mail it to the location
designated in Section 7.

2.1.1. The Responsible Party is an individual with the authority to commit the Organization to
the terms in this Agreement.

2.1.2. The Point of Contact is an individual within the Organization with detailed knowledge of
the submitted software implementation.

2.1.3. The Responsible Party and Point of Contact may be the same person.

2.2. Upon receipt of the signed agreement, NIST will classify the Organization as a “Participant” in
Ongoing IREX. Applicants need only send a completed application for their frst submission.
Participants need not send a new participation form for subsequent submissions.

2.3. Participant shall provide submissions (”Submissions”) as specifed in Section 2 of the Ongo-
ing IREX Concept, Evaluation Plan, and API Specifcation. A Submission shall include all
library fles, confguration fles, documentation, and all other fles required by NIST and the
Participant to validate and execute the tests specifed in the Test Plan.

2.4. The Submission need not be used in a production system or be commercially available. How-
ever, the Submission must, at a minimum, be a stable implementation capable of conforming
to the Test Plan that NIST has published for Ongoing IREX.

2.5. The Submission must be encrypted before transmission to NIST. Instructions for submit-
ting can be found at http://biometrics.nist.gov/cs links/iris/irex/NIST biometrics crypto2.pdf.
Generic encryption instructions can be found in the Image Group’s Encrypting Software for
Transmission to NIST document available at http://www.nist.gov/itl/iad/ig/encrypt.cfm. A box
for the Participant’s public key fngerprint is included on the Agreement. Submissions that
are not signed with the public key fngerprint listed on the Agreement will not be accepted.

2.6. Submissions must be compliant with the Test Plan, NIST test hardware, and NIST test soft-
ware.

3. Points of Contact

3.1. The Ongoing IREX Liaison is the U.S. Government point of contact for Ongoing IREX.

3.2. All questions should be directed to the irex@nist.gov, which will be received by the Ongoing
IREX Liaison and other IREX personnel.

4. Release of Results

4.1. After successful completion of testing, NIST will publish the results along with the Organiza-
tion’s name on the Ongoing IREX website.

4.2. Participant will be notifed of the results via the Responsible Party and the Point of Contact
provided on the Agreement.

4.3. After the release of the results, Participant may use the results for their own purposes. Such
results shall be accompanied by the following phtase: ”Results shown from NIST do not
constitute an endorsement of any particular system, product, service, or company by the
U.S. Government.” Such results shall also be accompanied by the Internet address (URL) of
the Ongoing IREX website (http://www.nist.gov/itl/iad/ig/ongoing-irex.cfm).

5. Additional Information

5.1. Any data obtained during Ongoing IREX, as well as any documentation required by the U.S.
Government from the Participant (except the Submission), becomes the property of the U.S.
Government. Participant will not acquire a proprietary interest in the data and/or submitted
documentation. The data and documentation will be treated as sensitive information and only
be used for the purposes of NIST tests.

http://www.nist.gov/itl/iad/ig/ongoing-irex.cfm
http://www.nist.gov/itl/iad/ig/ongoing-irex.cfm
http://biometrics.nist.gov/cs_links/iris/irex/NIST_biometrics_crypto2.pdf
http://www.nist.gov/itl/iad/ig/encrypt.cfm
mailto:irex@nist.gov
http://www.nist.gov/itl/iad/ig/irexix.cfm

DRAFT
Application and Agreement to Participate in Ongoing IREX

5.2. Participant agrees that they will not fle any Ongoing IREX related claim against IREX spon-
sors, supporters, staff, contractors, or agency of the U.S. Government, or otherwise seek
compensation for any equipment, materials, supplies, information, travel, labor and/or other
Participant-provided services.

5.3. The U.S. Government is not bound or obligated to follow any recommendations that may
be submitted by the Participant. The U.S. Government, or any individual agency, is not
bound, nor is it obligated, in any way to give any special consideration to Participant on future
contracts.

5.4. By signing this Agreement, Participant acknowledges that they understand any test details
and/or modifcations that are provided in the Ongoing IREX website supersede the informa-
tion on this Agreement.

5.5. Participant may withdraw from Ongoing IREX at any time before their Submission is received
by NIST, without their participation and withdrawal being documented on the Ongoing IREX
website.

5.6. NIST will use the Participant’s Submission only for NIST tests, and in the event errors are
subsequently found, to re-run prior tests and resolve those errors.

5.7. NIST agrees not to use the Participant’s Submission for the purposes other than indicated
above, without the express permission by the Participant.

6. Reminders

6.1. NIST requests that applicants send an email to irex@nist.gov after they have sent their ap-
plications. NIST will respond with a confrmation message upon receipt of the application.

6.2. See http://www.nist.gov/itl/iad/ig/irexix.cfm for the latest updates and information on Ongoing
IREX.

7. Application Submission

7.1. Please mail the completed and signed Agreement to:

Ongoing IREX Test Liason (A214)
100 Bureau Drive
A214/Tech225/Stop 8940
NIST
Gaithersburg, MD 20899-8940
USA

mailto:irex@nist.gov
http://www.nist.gov/itl/iad/ig/irexix.cfm

DRAFT
Full Name

Address (Line 1)

Address (Line 2)

Address (Line 3)

Phone Number Fax Number E-mail Address

Full Name

Address (Line 1)

Address (Line 2)

Address (Line 3)

Phone Number Fax Number E-mail Address

Participant

NIST

A75C EECD EF65 3197 7E66 A960 67D0 4015 407A D929

Application and Agreement to Participate in Ongoing IREX

Organization Name

Responsible Party

Point of Contact Check if same as Responsible Party above: �

Participant must complete the box below per the instructions for transmission of encrypted content to
NIST, as defned at http://biometrics.nist.gov/cs links/iris/irex/NIST biometrics crypto2.pdf. If preferred,
Participant may fax their public key fngerprint to the Ongoing IREX Liaison at (301) 975-5287.

Public Key Fingerprint

With my signature, I hereby request consideration as a Participant in the Ongoing IREX Evaluation,
and I am authorizing my Organization to participate in Ongoing IREX according to the rules and limita-
tions listed in this document.

With my signature, I also state that I have the authority to accept the terms stated in this Agreement.

Signature of Responsible Party Date

http://biometrics.nist.gov/cs_links/iris/irex/NIST_biometrics_crypto2.pdf

	Overview
	Introduction
	Performance Metrics
	Iris Datasets
	The OPS Dataset (TBD)
	Ground Truth Integrity

	Test Environment
	Posting of Evaluation Results

	Participation Requirements
	Participant Requirements
	Submission Procedure
	Software Validation
	Submission Requirements
	Linking Requirements
	Naming Convention
	Installation Requirements
	Runtime Requirements

	API Specification
	Functions
	get_max_template_sizes()
	convert_multiiris_to_verification_template()
	convert_multiiris_to_enrollment_template()
	match_templates()

	Supporting Data Structures
	point Struct Reference
	iris_sample Struct Reference
	iris_boundary Struct Reference

	Participation Agreement

