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MOTIVATION

= Modern large-scale cyber-physical systems (CPSs) involve a large
number of uncertain parameters.
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PROBLEM FORMULATION

Problem Formulation
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X1, X0, ", xm
1, %2 Complex System y Goal: correctly
Black Box: . i
ack Box » FO) Sy eostimate the
V= g(xl' X2, Xm)

mean output

Example Application

Air Traffic Flow Management

Uncertain input parameters:
Weather start times

Output:
>

total traffic delay S

of aircraft over a

Weather durations | Traffic System

Weather intensities time span




N simulation runs

EXISTING METHODS

Monte Carlo Simulation Method

High Computational Cost !!
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M-PCM

= Multivariate Probabilistic Collocation Method (M-PCM)

Knowledge of the two Simulation of the Reduced-order
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NEEDS

* Limitation of M-PCM: Not scalable with the number of parameters

Supposen; = 2,i =1,2,..,m Number of Number of
Number of simulations: [[[%, n;=2™ parameters simulations

@ , m=100 , 2100
m=2

Computatlona} loa}d issue for 22 Still too large !!
real-time applications

= Possibility of Further Reduction
= M-PCM assumes that there exist cross-multiplication terms for all
combinations of uncertain parameters of all degrees
= Supposen; =1,i =1,2,..,m
g(X1, X0, e, X)) = Qg+ A1 X1 + - F QX F A1 X1X0 + 0 F Ay X Xy Xy
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Some of these terms may not exist (a; = 0
or a; = 0) in realistic applications @




FURTHER REDUCTION

= Challenge: existence of a practical numerical issue

= Many system simulations have constraints on the resolutions of
input parameters

Complex system This is possible !
. Incorrect
Simulation - Numerical . Run. |, mean output
points ", Truncation simulation prediction

= Approach: Integration of M-PCM with the orthogonal fractional
factorial design (OFFD)------ M-PCM-OFTFD

= OFFDs meet our need to reduce the number of simulations
= Both OFFDs and our study are motivated by the same assumption

---high-order interactions among parameters are insignificant in real

applications @



PRELIMINARY: OFFD

= Orthogonal Fractional Factorial Designs
(OFFDs)

= Selects a subset of experimental combinations that
best estimate the main effects of single factors and
low-order interaction effects.

= Full Factorial Designs

All possible combinations of levels of all factors.
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PROPERTIES OF OFED

Main Effect and Interaction
Regression Model

Main effect ME; of factor x;
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PROPERTIES OF OFFD (CONT)

= The main effects and interactions estimated by the subset of simulations
selected by OFFDs are aliased.
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PROCEDURES OF APPLYING OFFD

Step 1 Step 2 Step 3
Generate. the P"."V Specify y Determine the levels of all
full factorial design generators mm)  other y factors for each

for m — y factors experimental run

P:the number of levels
m: the number of factors
y: the fractionation constant

e.g.,23 1 OFFD,P =2 ,m =3,y =1,
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X1 X2 X3 I'= —X1X2X3 X1 X2 X3
_ _ X3 = —X1X2 _ . _

|
_|_

|

_|_

+ |+

‘—’lower level

+ + ‘+’ higher level + + - (@)




M-PCM-OFFD

= If we view all simulation points selected by M-PCM as a full factorial
design, the OFFDs provide systematic procedures to select a subset of
simulation points.

= Design Procedures

Original System Mapping: Low-order mapping:
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ESTIMATION OF MEAN OUTPUT

 Lemma 1:

If the original system mapping The low-

order mapping
g(x{, %y, ..., X,;,) contains cross- - g*(xq, x5,

..., X, ) also contains cross-
terms of at most 7 parameters terms of at most T parameters

» Lemma 2:

2M~Ymax QFFD can further reduce the number of
Ifl<t< [g] -1 » simulations from 2™ to 2" Vmax,

where ¥,,,, = m — |log, (21?:0(7;))]

| Constructed by selected simulation points to
= Lemma 3:

4 estimate the coefficients of the low-order
The matrix L € R'o/7¢*! constructe mapping.

rank, and can be represented by L = QU, where Q € R'ffa*! is an
orthogonal matrix and U € R**! is an upper triangular matrix.
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ROBUSTNESS TO NUMERICAL ERRORS

= Problem Formulation
= The M-PCM-OFFD involves the calculation of L™! or (LTL) LT

= [, must be full column rank —>  Guaranteed using OFFD

= Numerical errors may easily push L to lose rank and fail the computation

= To facilitate the calculation and minimize the impact of such numerical error-
induced disturbances, L. needs to have a large margin to rank loss.

= Metric: full-column-rank margin

* The full-column rank margin for matrix L to rank loss is
D(L) = min{|le||lr | rank(L +e) <[}
where e € Rlorra*l is a perturbation matrix

We proved that L matrix obtained using OFFD, denoted as L4, has the
largest margin to rank loss, among all designs of the same size.

€



SIMULATION STUDY

= Original Mapping:

oy ) 43 L w2 e 31321 . 32 e L

g(xy,x3,x3) = X +7 31 X +2 + x5 33 23 +x3 4 1 Step 4: Estimate the coefficients of
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Step 3: Run simulations to evaluate
g(x1,x2,x3)at these 4 M-PCM points

1
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1
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= Illustration of Design Procedures t
Step 1: Choose 8 M-PCM points based Step 2: Use 23;;! OFFD to select 4
on the pdf of each parameter M-PCM points
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SIMULATION STUDY (CONT.)

= Jllustration of Performance

Estimation of Mean Output
E[g(xll X2, x3)] = E[g*(xli X2, Xg)] = 3381.1

= |\lonteCarlo Simulation
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E zzzz Robustness to Numerical Exrors
R — D(Lofsq) = 14142  D(L) = {0,0.866,1.4142}

max(D(L)) = D(LO ffd) Selected by OFFD
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CONCLUSION & FUTURE WORK

= An effective and scalable uncertainty evaluation method for
large-scale complex systems

reduces the number of simulations from 22™ to at most
2[log2(m+1)]

M-PCM-OFFD accurately predicts the output mean under broad
assumptions

1s the most robust to numerical errors compared with
designs of the same size

= New interpretations of the optimality of OFFDs
= In the future work

= Generalize the degree of uncertain input parameters by
exploring multiple-factor OFFDs

= Exploit parameter dependency to further reduce the number of

simulations required. (@)
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