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 Modern large-scale cyber-physical systems (CPSs) involve a large 
number of uncertain parameters. 

 

 

 

 

 

 

 

 

Uncertainties 

 Modulate system’s 

dynamics 

 Pose significant 

challenges for real-time 

system evaluation & 

decision-support 

 

Management of physical dynamics must be 

designed in a way to achieve robust performance 

under the uncertainties 

Effective 

uncertainty 

evaluation 
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 Problem Formulation 

 

 

 

 

 

 

 

 

Goal: correctly 

estimate the 

mean output 

Air Traffic Flow Management 

Uncertain input parameters: 

total traffic delay 

of aircraft over a 

time span 

 Example Application 
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Traffic System 

Weather start times 

Weather durations 

Weather intensities 

Output:  



 Monte Carlo Simulation Method 

 

 

 

 

 

High Computational Cost !! 
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Original System Mapping:   Low-order Mapping: 
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Predict the correct mean output! Reduce the number of simulations 

from 

2𝑚  𝑛𝑖

𝑚

𝑖=1
  𝑛𝑖

𝑚

𝑖=1
 

 Multivariate Probabilistic Collocation Method (M-PCM)  

Y. Zhou, Y. Wan, S. Roy, C. Taylor, C. Wanke, D. Ramamurthy, J. Xie, “Multivariate Probabilistic Collocation Method for Effective 

Uncertainty Evaluation with Application to Air Traffic Management”, IEEE Transactions on Systems, Man and Cybernetics: 

System, Vol. 44, No. 10, pp.1347-1363, 2014. 



    Possibility of Further Reduction 

 M-PCM assumes that there exist cross-multiplication terms for all 
combinations of uncertain parameters of all degrees 

 Suppose 𝑛𝑖 = 1, 𝑖 = 1,2, . . , 𝑚 
𝑔 𝑥1, 𝑥2, … , 𝑥𝑚 = 𝑎0 + 𝑎1𝑥1 + ⋯ + 𝑎𝑚𝑥𝑚 + 𝑎𝑚+1𝑥1𝑥2 + ⋯ + 𝑎𝑁𝑥1𝑥2 … 𝑥𝑚 

 

Computational load issue for 

real-time applications  
m=2 

m=100 

22 

2100 

Number of 

parameters  

Number of 

simulations 
Suppose 𝑛𝑖 = 2, 𝑖 = 1,2, . . , 𝑚 

Number of simulations:  𝑛𝑖
𝑚
𝑖=1 =2𝑚 

Still too large !! 

Some of these terms may not exist (𝑎𝑖 ≈ 0 

or 𝑎𝑖 = 0 ) in realistic applications 

 Limitation of M-PCM: Not scalable with the number of parameters 
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    Approach: Integration of M-PCM with the orthogonal fractional      
factorial design (OFFD)------ M-PCM-OFFD 

  OFFDs meet our need to reduce the number of simulations 

   Both OFFDs and our study are motivated by the same assumption 

          ---high-order interactions among parameters are insignificant in real 
applications 

 

 

 

 

Numerical 

Truncation 

…
 

Simulation 

points 

mean output 

prediction 

Complex system 

Run 

simulation 

This is possible ! 

 Challenge: existence of a practical numerical issue 

 Many system simulations have constraints on the resolutions of 

input parameters 
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Incorrect 



     Full Factorial Designs 
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‘−’ lower level 

‘+’ higher level 

𝑥1, 𝑥2, 𝑥3 are factors 

(input parameters) 

𝑦 is the output 

23 full factorial design 

     Orthogonal Fractional Factorial Designs 
(OFFDs) 

 Selects a subset of experimental combinations that 
best estimate the main effects of single factors and 
low-order interaction effects. 

All possible combinations of levels of all factors. 

23−1 OFFDs 



     Main Effect and Interaction 

 Main effect 𝑀𝐸𝑖 of factor 𝑥𝑖  

Interaction effect 𝑀𝐸𝑖𝑗 of 𝑥𝑖𝑥𝑗  

Regression Model: 

𝑦 = 𝛽0 +  𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+   𝛽𝑖.𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=𝑖+1

+ϵ 

𝑘−1

𝑖=1

 

The least square estimators 

for 𝛽, denoted as 𝛽  are: 

𝛽 𝑖 =
1

2
𝑀𝐸𝑖 ,  𝛽 𝑖𝑗 =

1

2
𝑀𝐸𝑖𝑗 
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e.g., 𝑀𝐸3 =
𝑦5+𝑦6+𝑦7+𝑦8

4
−

𝑦1+𝑦2+𝑦3+𝑦4

4
 

𝑀𝐸23 =
𝑦1 + 𝑦2 + 𝑦7 + 𝑦8

4
−

𝑦3 + 𝑦4 + 𝑦5 + 𝑦6

4
 



 The main effects and interactions estimated by the subset of simulations 

selected by OFFDs are aliased.  

𝐼 = 𝑥1𝑥2𝑥3 

𝑥3 = 𝑥1𝑥2 

𝑥1 = 𝑥2𝑥3 

𝑥2 = 𝑥1𝑥3 

𝛽0 + 𝛽1.2.3 

𝛽1 + 𝛽2.3 

𝛽2 + 𝛽1.3 

𝛽3 + 𝛽1.2 

𝑀𝐸1
 = 𝑀𝐸1 + 𝑀𝐸2.3 

𝑀𝐸2
 = 𝑀𝐸2 + 𝑀𝐸1.3 

𝑀𝐸3
 = 𝑀𝐸3 + 𝑀𝐸1.2 
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𝑥3 = 𝑥1𝑥2 

Generator: 𝐼 = 𝑥1𝑥2𝑥3 

Regression Model: 

𝑦 = 𝛽0 +  𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+   𝛽𝑖.𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=𝑖+1

+ϵ 

𝑘−1

𝑖=1

 

These are what 

OFFD estimates 



11 Generate the 𝑃𝑚−𝛾 

full factorial design 

for 𝑚 − 𝛾 factors 

Determine the levels of all 

other 𝛾 factors for each 

experimental run 

Specify 𝛾 

generators 

e.g., 23−1 OFFD, 𝑃 = 2 ,𝑚 = 3, 𝛾 = 1, 

22 full factorial design 23−1 OFFD 

Step 1 Step 2 Step 3 

Generator 

𝐼 = −𝑥1𝑥2𝑥3 

𝒙𝟑 = −𝒙𝟏𝒙𝟐 

‘−’ lower level 

‘+’ higher level 11 

𝑃: the number of levels 

𝑚: the number of factors 

𝛾: the fractionation constant 



 If we view all simulation points selected by M-PCM as a full factorial 
design, the OFFDs provide systematic procedures to select a subset of 
simulation points. 

 Design Procedures 

 

Choose 𝟐𝒎 

M-PCM 

simulation 

points  

Produce 

the low-

order 

mapping 

Run simulation at 

selected points 

Original System Mapping:   Low-order mapping: 

Check if  

1≤ 𝝉 ≤
𝒎

𝟐
− 𝟏 

Calculate 𝜸 and 

select simulation 

subset using 𝟐𝒎−𝜸 

OFFD 

Assumption: cross-terms 

involve at most 𝜏 parameters 



 Lemma 2: 

 

If the original system mapping 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑚) contains cross-

terms of at most 𝜏 parameters 

The low-order mapping 

𝑔∗(𝑥1, 𝑥2, … , 𝑥𝑚) also contains cross-

terms of at most 𝜏 parameters 

If 1≤ 𝝉 ≤
𝒎

𝟐
− 𝟏 

2𝑚−𝛾𝑚𝑎𝑥 OFFD can further reduce the number of 

simulations from 2𝑚 to 2𝑚−𝛾𝑚𝑎𝑥,  

where 𝛾𝑚𝑎𝑥 = 𝑚 − 𝑙𝑜𝑔2( 𝑖
𝑚

𝜏
𝑖=0 )    

Lemma 1 

Lemma 2 

Lemma 3 

The matrix 𝑳 ∈ 𝑹𝒍𝒐𝒇𝒇𝒅×𝒍 constructed by the M-PCM-OFFD is full column 

rank, and can be represented by 𝐿 = QU, where 𝑄 ∈ 𝑅𝑙𝑜𝑓𝑓𝑑×𝑙 is an 

orthogonal matrix and 𝑈 ∈ 𝑅𝑙×𝑙 is an upper triangular matrix.  

Constructed by selected simulation points to 

estimate the coefficients of the low-order 

mapping.  
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 Lemma 1: 

 

 Lemma 3: 

 



   Problem Formulation 

 The M-PCM-OFFD involves the calculation of 𝐿−1 or (𝐿𝑇𝐿)−1𝐿𝑇 

 𝐿 must be full column rank              

 Numerical errors may easily push 𝐿 to lose rank and fail the computation 

 To facilitate the calculation and minimize the impact of such numerical error-
induced disturbances, 𝐿 needs to have a large margin to rank loss. 

where 𝑒 ∈ 𝑅𝑙𝑜𝑓𝑓𝑑×𝑙 is a perturbation matrix 

We proved that  𝐿 matrix obtained using OFFD, denoted as 𝐿𝑜𝑓𝑓𝑑, has the 

largest margin to rank loss, among all designs of the same size.   

Guaranteed using OFFD 

 Metric: full-column-rank margin  

 The full-column rank margin for matrix 𝐿 to rank loss is  
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𝐷 𝐿 = 𝑚𝑖𝑛 𝑒 𝐹      𝑟𝑎𝑛𝑘 𝐿 + 𝑒 < 𝑙} 



 Original Mapping: 

 

 

 

 

 

 

 

  

𝑥1~ 𝑓𝑋1
𝑥1 = 2𝑒−2𝑥1;     

𝑥2 ~ 𝑓𝑋2
𝑥2 =

1

15
, 5 ≤ 𝑥2 ≤ 20;  

𝑥3 ~ 𝑓𝑋3
𝑥3 =

1

5
, 5 ≤ 𝑥2 ≤ 10;  

p1 = (0.2929,8.1699,6.0566), 

p2 = (1.7071,8.1699,6.0566),  

p3 = (0.2929,16.8301,6.0566), 

p4 = (1.7071,16.8301,6.0566),  

p5 = (0.2929, 8.1699,8.9434), 

p6 =(1.7071,8.1699,8.9434),  

p7 =(0.2929,16.8301,8.9434), 

p8 =(1.7071,16.8301,8.9434) 

Step 1: Choose 8 M-PCM points based 

on the pdf of each parameter 

Step 2: Use 𝟐𝑰𝑰𝑰
𝟑−𝟏 OFFD to select 4 

M-PCM points  

{p2, p3, p5, p8} 

 {p1, p4, p6, p7} 

or 

2𝐼𝐼𝐼
3−1 OFFD design table 

Step 3: Run simulations to evaluate 

𝒈(𝒙𝟏, 𝒙𝟐, 𝒙𝟑)at these 4 M-PCM points  

Step 4: Estimate the coefficients of 

the low-order mapping 

 

 Illustration of Design Procedures 
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 Illustration of Performance 

Estimation of Mean Output 

𝐸 𝑔 𝑥1, 𝑥2, 𝑥3 = 𝐸 𝑔∗ 𝑥1, 𝑥2, 𝑥3 = 3381.1 

Robustness to Numerical Errors 

𝐷 𝐿𝑜𝑓𝑓𝑑 = 1.4142 𝐷 𝐿 = {0,0.866,1.4142} 

𝑚𝑎𝑥 𝐷(𝐿) = 𝐷 𝐿𝑜𝑓𝑓𝑑  Selected by OFFD 

Other possible selections 
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 An effective and scalable uncertainty evaluation method for 
large-scale complex systems 

 

 

 

 

 

 

 

 

 

 

M-PCM-OFFD 

reduces the number of simulations from 22𝑚 to at most 

2 𝑙𝑜𝑔2(𝑚+1)  

accurately predicts the output mean under broad 
assumptions 

is the most robust to numerical errors compared with 
designs of the same size 

 In the future work 

 Generalize the degree of uncertain input parameters by 
exploring multiple-factor OFFDs  

 Exploit parameter dependency to further reduce the number of 
simulations required. 

 

 

 

 New interpretations of the optimality of OFFDs  
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