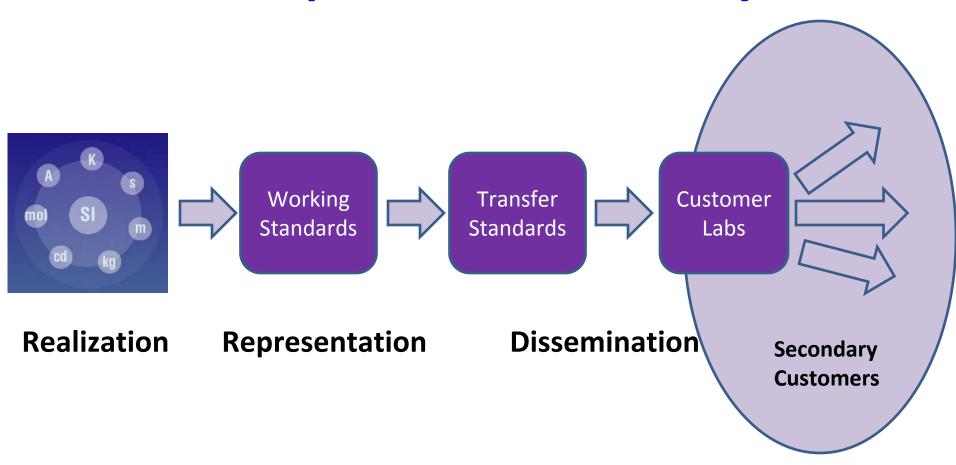

# Strengthening Calibration Services through Improved Focus and Planning

James Olthoff
Deputy Director
for Measurement Services
Physical Measurement Laboratory


# **Points**

- Calibrations are critically important
- We have great strengths
- We have issues and weaknesses
- We are moving forward

# **Building on a foundation**



# **NIST provides traceability**



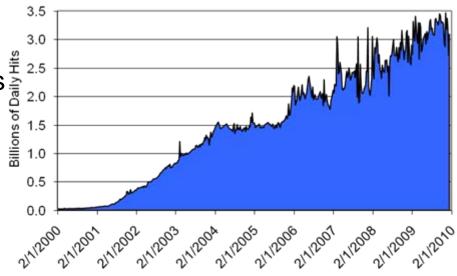
# Calibrations are critical

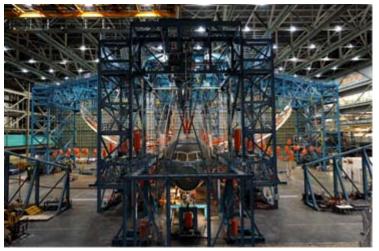


 40+ million mammograms delivered at 9,000 US facilities trace back to 2 dozen proficiency tests and calibrations per year from NIST

- NIST supports the US power system (\$300B annually) through approximately 25 power and energy calibrations per year
- 400,000 annual calibrations of mass standards performed at State Weights and Measures Laboratories rely on just 30 highly accurate calibrations performed at NIST

# **Calibrations are critical**





 NIST calibrations ensure the accuracy and reliability of over 1.8 million Navy calibrations performed on approximately 140,000 different types of instruments

- 203 calibrations for DoE supported over 70,000 subsequent calibrations that help ensure the reliability and performance of the entire U.S. nuclear arsenal
- 8 NIST calibrations annually for the Air Force underpin 22,000 high voltage calibrations, 158,000 ac measurements, 77,000 inductance calibrations, and over 400,000 dc voltage calibrations

# Calibrations are critical

Synchronizing computers and networks more than 3 billion times 2.5 and 1 billions of dollars of financial transactions each day.





NIST-calibrated load cells are used to provide traceable force measurements of hundreds of load cells used during dynamic testing of aircraft wing assemblies

# Some success stories

#### Reinvention of oscilloscope calibrations

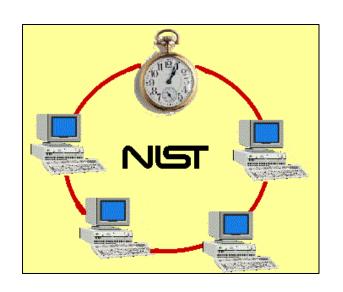
- Collaboration with Intel engineers
- Enables measurement of rapidly time-varying signals like those found in digital electronics
- New procedure for digital waveforms increased pass-fail range by factor of 3 or more, reducing unnecessary circuit board rejections





#### **Solid state lighting**

- In response to 2001 Report of the Council of Optical Radiation Measurements
- Accurate measurement of incremental R&D successes (improved efficiency) by industry
- Resulted in documentary standards, NVLAP accreditation of commercial laboratories, implementation of DOE/EPA SSL Energy Star program and product labels, international standards for SSL commerce/trade, and training


# Some weaknesses



### **Spectral irradiance**

One staff member is responsible for

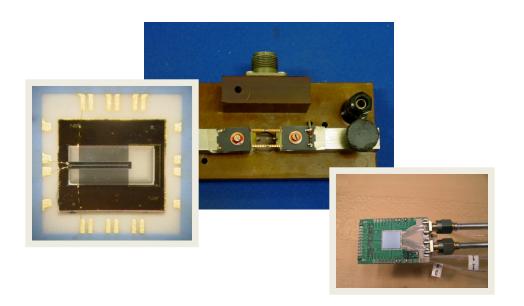
- 5 labs
- 33 measurement services
- Multiple quality systems
- International comparisons



## Time & frequency

Entire service relies on single scientist – NIST Fellow Dr. Judah Levine

•Inventor and sole provider of NIST Internet Time Service and other NIST network time services




# Some weaknesses

#### Low frost point generator

- Aging refrigeration system diminishes ability to maintain needed temperatures below –100 °C
- Limits measurements for Greenhouse gasses measurements (water vapor) and semiconductor water vapor contamination





#### **Electrical metrology**

- Aging primary standards for AC voltage are failing and irreplaceable
- •Research program is only 20% of program in 1990
- Unable to utilize benefits of new technologies such as graphene

# Some unmet needs

#### High dose rate (HDR) <sup>192</sup>Ir brachytherapy sources

- Compelling need
  - Requested of NIST by American Association of Physicists in Medicine (AAPM) and the Council on Ionizing Radiation Measurements and Standards
  - Expanding area in prostate /other cancer therapies
  - Less-than-direct traceability chain back to NIST
  - Sources needed to improve treatment accuracy
- Multiple barriers to NIST engagement
  - Extensive shielding requirements for safety and protection of sensitive instrumentation
  - Dedicated lab required
- Impact
  - Limits the accuracy achievable in treatments



# Significant issues for calibrations

- Inconsistent determination of the relevance and importance of calibration services relative to other programs.
- Full recovery pricing policy results in customers going to other NMIs.
- Flat resourcing has reduced staffing of critical calibrations.
- Legacy systems are difficult to modernize or replace.
- No uniform metrics exist to measure quality, impact, need, or success of existing services.
- Long term plans for the evolution, improvement, or discontinuation of services often do not exist.
- Research planning often is poorly connected to calibration and applied metrology needs.
- Customer interactions are uneven and often not effectual.

# Some unanswered questions

- How do we evaluate the relative importance of large customers and small customers?
  - DoD accounts for 3 of the top 4 customers and approximately 40% of all calibration income
  - Nearly 600 different customers use NIST calibration services
- What resources should NIST commit to involvement in international metrology?
- How do we evaluate the relative importance of technical needs versus competitive needs of customers?
- What if the most effective means of dissemination generates no revenue?
- What do we do if we can no longer support a service that still demonstrates customer needs?

# A path forward

## 2009 calibration income

#### **Previous organization (by division)**

| Division                          | Calibration Income |
|-----------------------------------|--------------------|
| Quantum Electrical Metrology      | \$892,351          |
| Process Measurements              | \$858,359          |
| Precision Engineering             | \$853,697          |
| Manufacturing Metrology           | \$729,736          |
| Optical Technology                | \$647,205          |
| Optoelectronics                   | \$447,357          |
| Ionizing Radiation                | \$426,312          |
| Electromagnetics                  | \$375,532          |
| Electron & Optical Physics        | \$31,415           |
| Building Environment              | \$18,491           |
| Physical & Chemical Properties    | \$10,805           |
| Analytical Chemistry              | \$7,593            |
| Manufacturing Systems Integration | \$3,766            |
| Time & Frequency                  | \$0                |
|                                   |                    |
| TOTAL                             | \$5,302,619        |



# 2009 calibration income What's now in PML

| Division                          | Calibration Income |
|-----------------------------------|--------------------|
| Quantum Electrical Metrology      | \$892,351          |
| Process Measurements              | \$858,359          |
| Precision Engineering             | \$853,697          |
| Manufacturing Metrology           | \$729,736          |
| Optical Technology                | \$647,205          |
| Optoelectronics                   | \$447,357          |
| Ionizing Radiation                | \$426,312          |
| Electromagnetics                  | \$375,532          |
| Electron & Optical Physics        | \$31,415           |
| Building Environment              | \$18,491           |
| Physical & Chemical Properties    | \$10,805           |
| Analytical Chemistry              | \$7,593            |
| Manufacturing Systems Integration | \$3,766            |
| Time & Frequency                  | \$0                |
| PML TOTAL                         | \$5,261,964        |

# 2009 calibration income What's now in PML

| Division                          | Calibration Income |
|-----------------------------------|--------------------|
| Quantum Electrical Metrology      | \$892,351          |
| Process Measurements              | \$858,359          |
| Precision Engineering             | \$853,697          |
| Manufacturing Metrology           | \$729,736          |
| Optical Technology                | \$647,205          |
| Optoelectronics                   | \$447,357          |
| Ionizing Radiation                | \$426,312          |
| Electromagnetics                  | \$375,532          |
| Electron & Optical Physics        | \$31,415           |
| Building Environment              | \$18,491           |
| Physical & Chemical Properties    | \$10,805           |
| Analytical Chemistry              | \$7,593            |
| Manufacturing Systems Integration | \$3,766            |
| Time & Frequency                  | \$0                |
| PML TOTAL                         | \$5,261,964        |

99% of all calibration income is now in PML Divisions





# A path forward

- Develop a common NIST vision for calibration services
- Define excellence for calibration services
- Develop strategic plans for services
- Define and monitor appropriate metrics
- Peer assessments
- Organizational planning to identify unmet needs to support resource growth

# A path forward

#### NIST vision for calibration services

- Develop unified view and expectations of calibration services with PML Division Chiefs
- Focus on relative importance of services compared to other projects

#### Excellence for calibration services

- Develop excellence criteria, including impact, need, quality of staff and facility, capabilities
- Perform thorough assessment of capabilities and pricing compared to other major NMIs

#### Strategic plans

- Develop plans for each measurement area
  - Research, calibrations, development
  - Staffing and funding
  - Deliberate goals
- Involve customers in planning discussions
- Manage to the plans

#### Appropriate metrics

- Determine relevant metrics and monitor them
- Reevaluate the NIST Quality System after realignment

#### Peer assessments

- Utilize peers from other NMIs
- Directly engage key customers to evaluate performance
- Determine value of additional "Councils"

#### Identify unmet needs to support resource growth

Utilize strategic plans

# What happens then?

#### Critically evaluate programs

- Achieve excellence in all calibration services
- Manage calibration programs as a portfolio
- Recognize staff performance
- Effectively represent the US in international metrology efforts

#### Develop dynamic programs

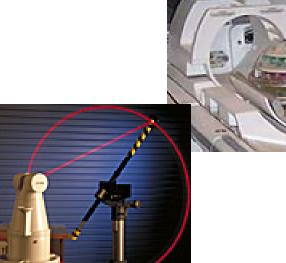
- Better integrate research and calibration programs
- Rapidly respond to industrial and national needs
- Achieve significant and immediate impact solutions

#### Improve service

- Replace and upgrade legacy systems
- Shorten delivery times
- Develop more effective pricing policies

#### Improved customer interactions

- We understand their needs
- They understand our plans
- Increased customer satisfaction with processes


#### Act on critical measurement needs

- Direct existing resources to most important challenges
- Obtain additional resources
- Revitalize supporting research programs
- Fill critical staffing needs

#### PML is recognized as the single-point source for calibration needs

- Consistent policies and implementation
- One-stop shopping
- Improved dissemination of measurement information





# **Questions?**