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Abstract

In object-oriented software development, a class is the basic unit of semantic abstraction,
acomponent is aclosely related collection of classes, and a systemis a collection of
components designed to solve a problem. An object is an instance of aclass. Each
object consists of state and behavior, where state is determined by the values of state
variables identified in the class definition, and behavior is determined by methods (i.e.
functions or procedures), defined in the class, that operate on one or more object
instances to read or modify their state variables. Objects communicate by sending
messages to one another, where a message is a request to invoke one of the recipient
object’s methods. Conformance testing of object-oriented software is often done in three
stages: unit testing, to ensure that the individual methods of a class are properly defined
over all possible object instances; component testing, to ensure that methods restricted to
the component under test operate as specified by rules of how the component should
behave and that messages to external objects are properly sent; and system testing, to
ensure that the entire system behaves as specified by some overall system functiona
specification. Both component testing and system testing rely heavily on integration
testing, which ensures that messages from objects in one class or component are sent and
received in the proper order and have the intended effect on the state of external objects
that receive the messages. This new work focuses on integration testing. It is strongly
influenced by the work of Hong, Kwon, and Cha, who model asingle class as afinite
state machine, transform that representation into a data flow graph that explicitly
identifies the definitions and uses of each state variable of the class, and then apply
conventional data flow coverage criteria and testing techniques to produce a collection of
abstract test cases that can be used to test conformance of the given classto its functional
specification. This paper extends those ideas to an arbitrary number of classes and
components. It introduces flexible representations for message sending and receiving
among objects and allows parallel processing among any, or al, classes and components.
Our approach relies on finite state machines, database modeling and processing
techniques, and algorithms for analysis and traversal of directed graphs. A prototype
implementation of the approach demonstrates its eff ectiveness on non-trivial, real-world
problems.

Keywords: (Conformance testing; data flow graph; data modeling; finite state machine;
object-oriented; software testing; statistical methods)



1 Introduction

Conformance testing of object-oriented softwareisa
difficult problem because the software being tested is often
constructed from a combination of previously written, off-
the-shelf components with some new components
developed to satisfy new requirements. The previously
written components are often “sealed” so that source codeis
not available, yet objectsin the new components will
interoperate via messages with objectsin the existing
components. Software conformance testing is the act of
determining whether or not a software product conforms to
afunctiona specification, where the functional specification
isaset of rulesthat the product must satisfy. The goal of
this paper is to provide conformance testing techniques for
new components to be integrated into an existing software
system.

We assume that each component is object-oriented, that is,
it consists of acollection of object classes. In object-
oriented software devel opment, a class is the basic unit of
semantic abstraction, a component is a closely related
collection of classes, and a systemis a collection of
components designed to solve aproblem. An object isan
instance of aclass. Each object consists of state and
behavior, where state is determined by the values of state
variablesidentified in the class definition, and behavior is
determined by methods (i.e. functions or procedures),
defined in the class, that operate on one or more object
instances to read or modify their state variables. The
behavior of an object when acted upon by amethod is the
effect the method has on the state variables of the object.

If the states of an object are represented by afinite state
machine, then the effect of the method can be captured as a
set of transition rules. Thus finite state machines are often
used for class specification in object-oriented analysis and
design [3,4,5,14,19]. Objects within each class may pre-
exist, asis often the case with off-the-shelf components, or
the component interface may provide access to the
constructor methods of a class for new object creation. The
behavior of acomponent is specified by the behavior of its
constituent classes. The public interface to a component is
alist of publicly accessible methods from the classes within
the component. A state/transition specification for a class
isthe set of state transition rules for each method that is
visiblein the class's public interface. Given a
state/transition specification for each component in a
software system, our goal is to construct an abstract set of
tests, i.e. an abstract test suite, that can be used to construct
an executable test suite for determining if an
implementation of a software system conformsto its
functional specification.

We follow the lead of Hong, et al. [10] and use definitions
from Brooch [2] and Rumbaugh, et al. [18] to characterize

an object as something that has state, behavior, and identity,
and to characterize an object’ s classin terms of the states,
events, and transitions of afinite state machine. In afinite
state machine, atransition is a change of state caused by an
event. When an event is received, the next state depends on
the current state as well asthe event. For aclass, astateisa
predicate on the state variables of the class, an event isan
invocation of one of the class methods on an object instance
of the class, and atransition is any change of state caused
by the method invacation. For an individual object

instance, atransition is composed of a source state, atarget
state, a method applied to that instance, aguard, i.e. a
condition that must be satisfied before the transition can
occur, and an action, i.e. operations that reference or

mani pul ate the state variables of the given object or send
messages to itself or other objects in the system.

This research began as an attempt to determine a sample
space for data flow analysis in object-oriented software so
that software testing by statistical methods [1] could be
applied. The paper describes a process that begins with
state/transition specifications for each classin an object-
oriented software system, defines the relevant transitions for
a specific component of that system, translates the relevant
transitions into a data flow graph with nodes and edges
labeled for variable definition and usage, and concludes
with selection of a set of paths that constitute an abstract
test suite. Using statistical methods, one can then choose an
executable test suite from the abstract test cases for
determining, within a given confidence interval, whether a
software product conforms to its specification.

In anticipation of the application of this processto
moderately large software systems, we define database
representations for the structures at each step. The
attributes and constraints of classes and methods are
modeled as attributes and constraints of tablesin arelational
database. In this manner, mathematical specifications over
the class properties trandate to database operations. Section
2 presents a non-trivial automobile system as an example,
Section 3 gives theinitial database representations for
state/transition specification of the classes, Section 4
defines the transitions relevant to a given component of the
software system, Section 5 describes the associated data
flow graph, Section 6 describes variable definition, variable
usage, and their representation as tables, Section 7 defines
data flow path coverage, and Section 8 describes the
selection of abstract test cases. The Conclusions discuss
some related work and follow-on directions.

2 Automobile example

Consider an automobile control system. The software
consists of the following existing components:
Acceleration, Brakes, Clutch, Engine, InstrumentPanel, and
SystemControl. Suppose a new component, CruiseControl,



isto be added to the system with the prerequisite that none
of the existing components, except SystemControl, can be
modified. The only modifications allowed for System
Control are the addition of simple methods to notify
CruiseControl whenever aBrake or Clutch object becomes
active. With the addition of the new CruiseControl
component, the Automobile system will consist of the
following components and classes.

Component Classes
Acceleration GasUser, Throttle
Brakes BrakeUser, BrakeControl
Clutch ClutchUser
CruiseControl CruiseUsar, CruiseUnit
Engine Engine
I nstrumentPanel Gauges
SystemControl AutoSystem

Assume the existence of a state/transition specification for
each class. An on-line reference to the classes, variables,
methods, states, and transitions of the system is given in the
Conclusions section of this paper. Our initial goal isto
determine the transitions in each existing class relevant to
the new component under test, i.e. CruiseControl. In some
cases only afew transitions are relevant; for example, the
only state of BrakeControl relevant to CruiseControl is
whether or not the brakes are engaged. When the brakes are
engaged, a message is sent to AutoSystem, and AutoSystem,
in turn, sends a message to CruiseUnit.

Figure 1 presents a directed graph that shows the relevant
communication paths among the classes. Since the Gauges
classis passive, the arrows between CruiseUnit and Gauges
indicate that methods in CruiseUnit can read from and write
to state variables in Gauges. The Throttle class, however, is
active and can change the pedal position in GasUser as well
asincrease the gas supply to the Engine. In order to
simulate road conditions, e.g. hills, the Engine class has an
externally controlled drag variable that entersinto the speed
calculation.

3 Database representation

From[10], each class C produces a Class State Machine
defined asatuple (V, F, S, T) where V isthe set of state
variables defined by C, F is the set of methods (i.e.
functions) defined by C, Sisaset of states associated with
C, and T isaset of transitions associated with S and C.
Using the relational database model [6,7,15], we choose to
represent classes, and sets associated with classes, astables.

Figure 1 — Class-to-Class Data Flow

The resulting schema definition is shown in Figure 2. The
underlined items are primary keys for each table. The
arrows are referential integrity constraints that show class
dependencies, e.g. in the Transition table, both the Sourceld
and the Targetld of atransition must reference a State from
the same class as the transition.

Each classisidentified by a unique Classld, which then
determines the component and system for that class. Each
classis owned by exactly one component even though it
may be used by many components. The ClassAliasisa
surrogate for Classld and is used to reference the classin
state and guard predicates, and in the Action of a Transition.

Class
Classld Char(3)  notnull
ClassAlias Varchar(18) not null
Classld = Classld ClassName Varchar(18) not null Classld = Classld
ComponentName Varchar(18) not null
SystemName Varchar(18) not null
Description Varchar(255) null
Variable Clssid — Char(9) porail
Classld Char(3)  notnull 259 Char(3)  notnull
Eunld Char(3)  notnull
Varld Char(3)  notnull -
ClassAlias Varchar(18) not null é\II:s”sAlias 322}52’(18) zg: 23::
VariableName Varchar(18) notnull | cassid = Classld FunName  Varchar(21) not null
DataType Varchar(40) not null
Default Varchar(25) null InputType  Varchar(40) null
Constraint Varchar(255) null ReturnType Varchar(40) not null
Isinherited  Char(1) null
IsIinherited Char(1) null Effect Char(3) null
Description Varchar(255) null Description  Varchar(255) null
State
Classld Char(3)  notnull
Stateld Char(3 not null

ClassAlias Varchar(18) not null
StateName Varchar(18) not null
DefnPredicate Varchar(255) not null

Classld = Classld Classld = Classld
Stateld = Sourceld Stateld = Targetld

Transition
Classld Char(3 not null
Tranld Char(4)  notnull
ClassAlias ~ Varchar(18) notnull [T Ciassid = Classld
Sourceld Char(3) not null Funld = Funld
Targetld Char(3) not null

Funid
Type
IsFeasible

Char(3) not null
Char(1) null
Char(1) null
Varchar(255) not null
Varchar(255) null

Guard
Action

Figure 2 — Relational Database Schema



Similarly, VariableName, FunName, and StateName are
surrogates for Varld, Funld, and Stateld, respectively; each
need be unique only within itsclass. In the syntax for
predicates, guards, and actions, full qualified names are
used as needed for disambiguation.

In the Function table, the Avail attribute identifies each
function as being private (PRI), protected (PRO), public
(PUB), or external (EXT). Public functions may be invoked
by any other class in the system, whereas external functions
are part of the external component interface and can be
invoked by other systems. In our example, only external
functions, e.g. clutch and gas pedal positions, are available
to the human user. FunName values include parenthesesto
identify the number of input variables, e.g.

Pedal Position(x), so ClassAlias, FunName, InputType, and
ReturnType determine the signature of afunction. The
Effect allows categorization of functions as Get, Set, New,
etc. A Get function isread-only and is said to be an actor
method on the object, a Set function can update state
variables and is said to be a mutator method, and a New
function can create new object instances and so is said to be
aconstructor method. If variables or functions are inherited
from superclasses, then the IsInherited attribute is set to yes.

In the State table, the DefnPredicate is a Boolean predicate
over the state variables. 1t may reference an in-class
variable by name only, and may reference avariablein
another class by invoking the appropriate actor method, if it
isavailable, to read the value of that external variable. Itis
not legal to call anything other than an actor method from a
state’' s definition predicate. Mutator and constructor
methods may only be called from an Action that is part of a
transition. In the automobile example, state predicates for
the CruiseUnit class read the value of the cruise control
indicator in the Gauges class.

In the Transition table, the Tranld attribute uniquely
determines a transition within a class. Thusthe pair

(Classld, Tranld) determines all of the other properties of a
transition. In particular, the source and target states are
identified by Sourceld and Targetld, respectively. The Type
attribute is away to identify transitions that exist but may
not be very important, typically they may not even show up
in a state/transition diagram because they have no Action,
do not affect any state changes, and may never get called by
any other methods in the components under analysis. For
completeness, they are included, but because they are
derived automatically as part of a completeness check, they
are labeled as of Derived (D) type. Other transitions may be
well-defined, but are blocked from execution by arule or by
physical impossibility. For example, in the automobile
system, the cruise control Accel button cannot be pushed at
the same time as the Decel button because their physical
placement prohibits them from being depressed
simultaneously. Such transitions, though well-defined, are

labeled as not feasible and the IsFeasible attribute is set to
no; such transitions may not participate in any data flow
analysis.

Later sections of this paper depend upon notions like “the
set of variables referenced by a predicate”’ or “the set of
variables assigned a value by an action”. These are
semantic notions that depend upon an analysis of whatever
syntax is used to represent state predicates, transition
guards, and transition actions in the state transition model.
In the automobile example, we use a simple syntax that
allows these notions to be made concrete without extensive
analysis. In subsegquent work, we hope to expand this part
of our prototype to include syntactic analysis of predicates
and actions specified in UML [20], Java[11], or other
commonly used class definition languages.

Once this syntactic analysis is complete, the results can be
captured in the database representation as the following new
tables. For each table, theitemsin parentheses following
the table name are the primary key columns.

Action_DEFINE Variable

(Classld, Tranld, Varld)
Action_REF ActorExtFunction

(ActionClassld, Tranld, FunClassld, Funld)
Action_REF_LocalFunctionCallQueue

(Classld, Tranld, Funid)
Action_REF L ocalFunctionlmmediate

(Classld, Tranld, Funid)
Action_REF MutateExtFunction

(ActionClassld, Tranld, FunClassld, Funld)
Action_REF Variable

(Classld, Tranld, Varld)
Guard_REF_ActorExtFunction

(GuardClassld, Tranld, FunClassld, Funld)
Guard REF Variable

(Classld, Tranld, Varld)
State REF_ActorExtFunction

(StateClassld, Stateld, FunClassld, Funld)
State REF Variable

(Classld, Stateld, Varld)
Variable ASSOC_ActorFunction

(Classld, Varld, Funid)

Each of the above tables satisfies appropriate referential
integrity constraints to the corresponding Transition,
Variable, Function, or State tables. For example, in the
Guard_REF_ActorExtFunction table, the pair
(GuardClassld, Tranld) identifies the transition that
contains the guard, and the pair (FunClassld, Funld)
identifies the Get function that is referenced by the guard.

The automobile example uses some specia syntax, i.e. Put
CheckState() on Call Queue, to distinguish a situation
where an object sends a message to itself with the intent that



the message is put on a queue to be acted uponin a
subsequent transition. Thisisused in several classes, in lieu
of asystem clock, to keep processes from terminating. A
local function call without this special syntax will be
executed immediately as part of the Action. Thetwo
Action_REF _ Local Function tables above distinguish these
two situations.

Every state variable in a class definition will be associated
with two pre-defined methods, one to Get its value and one
to Set itsvalue. For example, Pedal Position() reads the
value of the Pedal Position state variable, whereas

Pedal Position(x) setsitsvalueto x. The abovetable,
Variable ASSOC_ActorFunction, maintains the
relationship between a state variable and the Get function
that reads its value.

Every table can be associated with a mathematical s,
wherethe set is a set of sequences consisting only of the
primary key elements of the table. In this sense, the
sequence (c,f) is an element of the Function set if and only
if there exists arow in the Function table with
Function.Classld = ¢ and Function.Funld = f. If X issuch a
table-derived set, if ¢ isanon-key column of the
corresponding table T(X), and if xeX, then we define c(x)
to be the value in column ¢ of the row of table T(X)
identified by x. Wewill use this notational convenience
freely in the following sections, and will denoteby C, F, V,
S, and T, respectively, the sets derived from the tables
Class, Function, Variable, State, and Transition.

4 Relevant transitions

If M isacomponent to be added to an existing system, and
if our testing god isto determineif M is properly integrated
with existing components of that system, then we must first
determine the transitions from the overall system
specification that are relevant to M. Thiswill include all
transitions from any class in the system that can influence a
state variable of any class of M, aswell asdl transitions
that can be invoked, directly or indirectly, from actions
derived from any transition of any classof M. Thefirst
type of transition islabeled as an In transition, since data
flowsinto M, and the second type is labeled an Out
transition, since actions flow outward from M to other
components in the system. Transitions from classesin M
are labeled as Base transitions. The following definition
identifies al In and Out transitions associated with M,
generalizes the notion of In and Out to transitions that affect
any transition already so labeled, and then defines the
transitions that are relevant to M.

Definition 4.1 Let ¥ denote an object-oriented software
system and let M denote a component of . Assume that
every class of every component of ¥ has a state/transition
specification, and that the totality of all classes, functions,

variables, states, and transitions of that system are
represented by thesetsC, F, V, S, and T, defined as above.
Denote by R(M) the set of transitionsin ¥ that are relevant
to M, defined iteratively as follows:

Ry(M) ={(c,t,Base) | ccC & ComponentName(c)=M
& (c)eT & IsFeasible(c,t)=yes}

Given R,(M), define
R..1(M) =R,(M) U R, where
R=R,UR,UR;UR,UR,UR;UR, URgU R,
and
R, ={(ctIn) |ceC & (ct)eT & IsFeasible(c,t)=yes
& Jf[(c,f)eF & Funld(c,t)=f]
& 3L, d[(¢NeT & (¢,£,d)eR (M) & (¢,t,¢,f)eX]}
where X represents table Guard_REF_ActorExtFunction,
R,={(ctIn) |ceC & (ct)eT & IsFeasible(c,t)=yes
& Jf[(c,f)eF & Funld(c,t)=f]
& 3L, d[(¢N)eT & (¢,£,d)eR (M) & (¢,t,¢,f)eX]}
where X represents table State REF_ActorExtFunction,
R;={(ctIn) |ceC & (ct)eT & IsFeasible(c,t)=yes
& Jf[(c,f)eF & Funld(c,t)=f]
& 3L, d[(¢N)eT & (¢,£,d)eR (M) & (¢,t,¢,f)eX]}
where X represents table Action_REF_ActorExtFunction,
R, ={(c,t,0ut) | ceC & (c,t)eT & IsFeasible(c,t)=yes
& Jf[(c,f)eF & Funld(c,t)=f]
& 3L, d[(¢,)eT & (¢,£,d)eR (M) & d=In
& (¢,t,cf)eX]}
where X represents table Action REF_MutateExtFunction,
R; ={(c,t,0ut) | ceC & (c,t)eT & IsFeasible(c,t)=yes
& 3L 5, d[(¢,0)eT & (¢,6,d)eR (M) & d=In
& (¢,f)eF & Funld(¢,n)=f & (ct,¢,f)eX]}
where X represents table Action REF_ActorExtFunction,
Rs={(ctIn) | ceC & (ct)eT & IsFeasible(c,t)=yes
& 3¢5, d[(¢,0)eT & (¢,6,d)eR (M)
& (¢,f)eF & Funld(¢,n)=f & (ct,¢,f)eX]}
where X representstable Action REF_MutateExtFunction,
R, ={(ct,0ut) | ccC & (c,t)eT & IsFeasible(c,t)=yes

& 3f[(c.f)eF & Funld(c,t)=f]
& 3t,d(c)eT & (cf,d)eR,(M)



& d#In& (c,t',f)eX]}
where X represents Action_REF_L ocal FunctionCallQueue,

Rg={(ct,In) | ceC & (ct)eT & IsFeasible(c,t)=yes
& 3tf,dv(c.)eT & (cf,d)eR (M) & d=In
& (c,feF & Funld(c,t)=f & (c,v)eV & (c,v,feX
& (CtV)EY]}

where X represents table Variable ASSOC_ActorFunction
and Y represents the table Action_ DEFINE_Variable,

Ry = {(c,t,0ut) | ceC & (c,t)eT & IsFeasible(c,t)=yes
& 3f[(c,f)eF & Funld(c,t)=f]
& 3t,dV[(c,t)eT & (c,t,d)eR,(M) & d=Out
& (cV)eV & (cv,HeX & (ctV)eY]}

where X represents table Variable ASSOC_ActorFunction
and Y represents the table Action_ DEFINE_Variable.

The iterative process continues until R = @ for some value
of n. Letn bethat value.

R(M) isthe projection of R,(M) onitsfirst two terms, i.e.
R(M) ={(c.) [ 3d[(ct.d)eR,(M)}

Clearly theiterative processin Definition 4.1 must stop
because each R (M) isafinite set, increasingin sizeasn
increases, that is bounded above by the finite set T x { Base,
In, Out}. Inthe automobile example this process stops after
thethird iteration, yielding 106 relevant transitions.

5 Constructing a Data Flow Graph

Inclassical testing [5,8,9,12,13,16,17,19,21], a data flow
graph isagraphical representation of aprogram’s control
structure and the flow of data through that structure. We
will construct a data flow graph to represent both the
control and data flows of the relevant state/transitions of a
component. Our definitions are extensions of those found
in[10] and [18].

Definition 5.1 Let M be any component of a software
system ¥, and let R(M) be the set of al transitionsin ¥ that
arerelevant to M. Then the data flow graph of M in W isa
directed graph G=(N,E) with nodes and edges satisfying

N=N;UN UN;UN,
E=BUEyUE,UE,UE,
U Egth ES(SU EXtSU EXttU ECIS

where

N, ={ces|ceC & Tt[(c,t)eR(M) & (Sourceld(c,t)=s

OR Targetld(c,t)=9)] }
N, ={cet | (c,)eR(M)}
N, ={ceget | ccC & (c,)eR(M) & Guard(c,t) #true}

N, ={ceEsf | ccC & 3t[(c,t)eR(M) & Funld(c,t)=f
& (cf)eF & Avail(c,f)=EXT]}

where @ is the concatenation operator for strings, and

Ey = {(nyn) | nEeNg & neN, & 3c,st[n=cas & n=cat
& Sourceld(c,t)=s & Guard(c,t)=true] }

Ey = {(nyny) I nENg & neNy & Jc,stn=ces & n=cegest
& Sourceld(c,t)=s & Guard(c,t)#true] }

Eq = {(ng:n) [ ngeN,y & neN, & Jct[n=ceget & n=cet
& Guard(c,t)#true] }

E.= {(n,n) | neN, & neN; & Jc,st[n=cet & n=Cces
& Targetld(c,t)=g }

E. ={(n,n) | neN, & neN, & 3cf,t[n,=ceEef & n=cet
& Funld(c,t)=f] }

Egtg = {(ntang) | nIENt & ngeNg
& Jc,t.Cyty f[N= cet, & n=c,eget,

& Funld(c,t)=f & (c,t,.c.f)eX] }
where X represents table Guard REF_ActorExtFunction,

Ess = {(nun) [ neN, & neN;
& Jc.t.f.c,9n= cet, & n~Ccos
& Funld(c,t)=f & (cys,c.,f)eX] }

where X represents table State REF_ActorExtFunction,

Eus = {(nn) [neN, & neNg
& 3c,.t,Ct,f,9gn= cet, & n~cos
& Funld (cyt)=f & Sourceld(c,t)=s
& (GutuCyf)eX] }

where X represents table Action REF_MutateExtFunction,
Extt = {(ntint’) | nteNt & nt‘ENt

& 3, LCtf[n= cet, & n=get,

& Funld(c,t)=f & (c.t,c,f)eX] }

where X represents table Action REF_ActorExtFunction,

Eas = {(Mun) [ neN, & neN;
& Jct,t,f.9n= cat, & n=ces
& Funld(c,t)=f & Sourceld(c,t)=s



& (ct,feX]}
where X represents Action_REF_L ocal FunctionCallQueue.

The external user nodes N, determine the external interface
to the system. In black-box conformance testing, it isonly
through this interface that oneis allowed to provide input
values for test cases to determine if component M conforms
to its specification. Various combinations of these inputs
will produce different paths through the data flow graph
(N,E). Our goal isto find appropriate paths through the
graph, i.e. abstract test cases, to ensure that all aspects of
the specification are thoroughly covered, and then to choose
input values, i.e. executable test cases, to execute those
paths.

In the automobile example, the set N, represents the
following user actions:

BrakeUser.IsActive(x) X € {true, false}

BrakeUser.Pedal Pressure(x) 0<x<99
ClutchUser.Pedal Position(x) 0<x<99
CruiseUser.Cancel()
CruiseUser.Mode(x) x € { None, Set/Decdl,
Resume/Accel}
CruiseUser.Switch(x) x € {On, Off}
Engine.External Drag(x) Q9<x<9
GasUser.Pedal Position(x) O0<x<99

The external interface of the automobile example, and the
transitions of its CruiseControl component, are modeled on
the cruise control characteristics of a 1995 Acura Legend.
The data flow graph for CruiseControl, with all of its
relevant transitions, consists of 215 nodes and 565 edges.
Our subsequent analysis will identify 2716 abstract test
cases as paths through this graph. Various combinations of
the above input values will produce over 1300 executable
test cases, each traversing one or more of the identified
paths.

6 Variabledefinition and usage

Given a data flow graph, there are a number of different
criteria, e.g. all_definition, all_uses, all_paths, etc., for
determining coverage of the graph for testing purposes.
These have been discussed and compared extensively in the
literature [e.g. 8,16, etc.]. Many researchers have concluded
that paths linking the definition of avariable to itsfirst
subsequent use provide adequate coverage for most testing
purposes. The following definitions pursue this definition-
usage criterion for determining coverage of adata flow

graph.

Definition 6.1 Let M be any component of a software
system W, let R(M) be the set of transitionsin ¥ that are
relevant to M, and let G=(N,E) be the data flow graph of M

in¥. Let v=(c,v) € V, whereV isthe set of al variablesin
¥, then:

a) v is defined at atransition-node neN, if n, is an element
of D(9v), where

D(0) ={ n,| neN, & Ft[n=cat & (c,tv)eX] }
and X represents the table Action DEFINE_Variable,

b) v is directly computation-used at a transition-node neN,
if n,isan element of DCU(9), where

DCU(®) ={ n,| neN, & 3t[n=cet & (c,t,v)eX] }
and X represents the table Action REF Variable,

¢) v isindirectly computation-used at a transition-node
neN, if n isan element of ICU(V), where

ICU®) ={ n,|neN, & Jc,tfn=cet & (c,t,cf)eX
& (cv,HeY]}

and X represents the table Action REF_ActorExtFunction
and Y representstable Variable ASSOC_A ctorFunction,

d) v isdirectly predicate-used at a state-transition-edge
(ny,n)eEy if (n,n,) is an element of DPU(0), where

DPU4(0) = { (nsny) | (nsn)eEy
& 3st[n=ces & n=cet & (c,sVv)eX] }

and X represents the table State REF_Variable,

€) v isindirectly predicate-used at a state-transition-edge
(n,n)eEy if (nyn,) isan element of IPU(V), where

IPU(0) ={ (nyny) | (Nyn)€E; & e stf[n=ces
& n=cet & (c,feF & (c,sc,feX & (c,v,f)eY]}

and X represents the table State REF_ActorExtFunction
and Y representstable Variable ASSOC_ActorFunction,

f) v isdirectly predicate-used at a state-guard-edge
(ngny)€Eg, if (ngn,) is an element of DPU (%), where

DPU(0) ={ (ngny) | (nyny)eEy,
& Jst[n=ces & n=ceget & (C,sv)eX] }

and X represents the table State REF Variable,

0) v isindirectly predicate-used at a state-guard-edge
(ngny)€Eg, if (ngn,) is an element of IPU(v), where

IPU4(0) ={ (nyny) | (ngny)eEy & T, stf[n=ces
& n=ceget & (c,f)eF



& (¢,schHexX & (cv,feY]}

and X represents the table State REF_ActorExtFunction
and Y representstable Variable ASSOC_ActorFunction,

h) v is directly predicate-used at a guard-transition-edge
(ngn)eEy if (ng,n,) is an element of DPU (%), where

DPU(b) ={ (ne,n) | (ng,n)€Ey & Ft[n=ceget
& n=cet & (ct,v)eX]}

and X represents the table Guard_REF Variable,

i) v isindirectly predicate-used at a guard-transition-edge
(ngn)eEy if (ng,n,) isan element of 1PU(v), where

IPU4(0) ={ (ng,ny | (ng,:n)eEy & 3, tf[n=cet
& ng=ceget & (c,f)eF
& (c,t,cfeX & (cv,feY]}

and X represents the table Guard_REF_A ctorExtFunction
and Y representstable Variable ASSOC_ActorFunction.

Definition 6.2 Let M be any component of a software
system W, let R(M) be the set of transitionsin ¥ that are
relevant to M, and let G=(N,E) be the data flow graph of M
inY. Let v=(c,v) € V, whereV isthe set of al variablesin
W, then the set of all definition-usage pairs associated with
0 isdenoted by DU(0), where

DU®) = {(n,d) |n € D() & @ € CU®) U PU®)}

and
and

CU(%) = DCU(%) U ICU(b)
PU(9) = DPU4(6) U IPU4(6) U DPU(0)
U IPU(6) U DPU(6) U IPU(5)

Not every variable produces a non-empty set of definition-
usage pairs. Some variables, e.g. class constants, may be
defined when an object is created and never redefined in
any relevant transition; others may be defined in arelevant
transition, as a non-relevant side effect, but never used in
any other relevant transition. All such variables are ignored
in the following sections.

We pay special attention to transition nodes where a
variableis both defined and used. Here the order of
execution isimportant, since a variable may be defined and
then used in the same action. If avariableisused firstinan
action beforeit isdefined, or if it isdefined last after itis
used, then that node may continue to be relevant to other
definitions or usages of the variable. We distinguish these
cases as follows:

Definition 6.3 Let v be avariable that is both defined and
used at one or more transition nodes. Denote by DFTU(b)

the set of al transition nodesin D(v) N CU(V) wheret is
defined and then used, and denote by UFDL () the set of al
transition nodes in D(0) N CU(V) where ¥ is used first
beforeit is defined or defined last after it isused. In each
case, the content of the set is determined by a syntactic
analysis of the Action associated with the transition.

The sets DFTU() and UFDL (v) need not be mutually
exclusive. A transition involving variable x with an action
consisting of the sequence x:=x+1; y:=f(x) would be an
element of both sets.

In our database representation, we define new tables to hold
values for nodes, edges, variable-defn-nodes, variable-c-
usage, variable-p-usage, and variable-to-defn-usage pairs.
The set-to-table relationship is:

Set
N
E

Table Name
Nodes

Primary Key
Nodeld

SourceNode
TargetNode

Classld
Varld
DefnNode

Classld
Varld
UseNode

Classld
Varld
SourceNode
TargetNode

Classld
Varld
DefnNode
Usageltem

Edges

D(v) VarDefn

CU(W) Var_C_Usage

PU(0) Var_P Usage

DU®) | VarDefnUsage

The relational database schema definition for these new
tablesisgivenin Figure 3. In the Nodestable, the Nodeld
is derived from the three other non-comment attributes as
follows: If NodeType is Sate or Transition, then Nodeld =
Classld @ Typeld where Typeld is the corresponding
Stateld or Tranld and @ is the string concatenation operator.
If NodeTypeis Guard, then Nodeld = Classild e ‘g @
Typeld where Typeld isthe Tranld of the transition that
contains the guard. If NodeType is ExternalUser then
Nodeld = Classld @ ‘E’ @ Typeld where Typeld isthe
Funld of afunction having EXT availability.

The VarDefn table associates variables with a definition
node, i.e. anode that assigns avaueto the variable. The
Var_C_Usage table associates variables with transition
nodes having an action that reads the variable, either
directly in itsown class or indirectly via an externa



function call; these are called computation nodes (c-nodes)
because the variable is used in a computation. The variable
may also be defined by the same action, but that association
isrecorded in the VarDefn table.

Variable Classld = Classld
Classld Char(3)  not null Varld = Varld
Varld Char(3)  not null
ClassAlias Varchar(18) not null
VariableName Varchar(18) not null
DataType Varchar(40) not null VarDefn
Default Varchar(25) null Classld Char(3) not null
CO”;“?i”; X?’C’Z;’ (255) ”“:‘I Varld Char(3)  notnull
IsInherite ar nu Defn ot null
Description Varchar(255) null g:sfcnrli\:)sgr? %&—S)} El?"t null
Nodes
Nodeld Varchar(10) not null
Classld Char(3) null Nodeld = DefnNode
Classld = VarClassld |NodeType  Char(1) null
Varld = Varld Typeld Varchar(4)  null

Description  Varchar(255) null

L LNodeld = TargetNod!
Nodeld = SourceNodeW T

Edges

Varchar(10) not null
Varchar(10) not null

Varchar(255) null

Nodeld = UseNode

Var_C_Usage
VarClassld Char(3)
Varld Char(3)
UseNode  Varchar(10) not null
Description Varchar(255) null

not null
not null

SourceNode
TargetNode

Description

Classld = VarClassld
Varld = Varld

VarDefnUsagel (*)
VarDefn.Classld AS Classld
VarDefn.Varld AS Varld
VarDefn.DefnNode AS DefnNode
Var_C_Usage.UseNode AS L

SourceNode = SourceNode
TargetNode = TargetNode

5 varefn Var_P_Usage
8 var_C_Usage VarClassld  Char(3) not null
Varld Char(3) not null
VarDefnUsage2 (*) SourceNode Varchar(10) not null
VarDefn.Classld AS Classld TargetNode  Varchar(10) not null
VarDefn.Varld AS Varld Description Varchar(255) null

VarDefn.DefnNode AS DefnNode
SourceNode || "' || TargetNode AS L
B varDefn

B var_P_Usage

Figure 3 — Schema for Nodes, Edges and Usage

The Var_P_Usage table associates variables with edges
where the source node of the edge is a state or aguard that
reads the variable; these are called predicate edges (p-
edges) because the variable is used in a predicate. We use
edges to record this usage, rather than just a state or guard
with the actual predicate, because our primary goal isto
associate data members of aclass (i.e. the variables) with
their behavior (i.e. the functions of atransition).

Finally, VarDefnUsagel isanatura join of VarDefn and
Var_C _Usage, and VarDefnUsage? is a natura join of
VarDefn and Var_P_Usage; Their mathematical unioniis
the table VarDefnUsage that represents the sets DU(v) of all
potential definition/usage pairs for any variable. Note that
when the Usageltem isanode, it is equal to the Nodeld, but
when it isan edgeit is equal to a concatenation of the

edge’ s SourceNode, a separator “:”, and the edge’s
TargetNode. This makes a p-edge usage item a path of
length 2 in the data flow graph (cf. Defn 7.1).

The above definitions do not explicitly consider cases where
multiple object instances of aclass exist simultaneously. In

such situations, each object instance will be represented by
acopy of the state variables from the class definition and
the state of each object will be separately considered. In
static applications, e.g. four wheels in the automobile
example, the object instances are known before program
execution, so each instance can be treated asiif it were from
a separate class. However, in dynamic applications, with
class variables that are themselves objects or object
references, and with methods for ad hoc creation and
destruction of object instances, some of the preceding
definitions will be modified to deal with object identifiers
rather than classidentifiers. This dynamic case will receive
further attention in follow-on work.

7 Dataflow path coverage

To complete the definition-usage approach to abstract test
case cregtion, we look for pathsin the data flow graph
leading from the definition of avariableto itsfirst usage.
Consider triples (0,n,,0) where v isavariable, n,isa
transition node that defines ¥, and @ is a usage item for ¥,
i.e. tiseither ac-node or ap-edge. Doesthere exist apath
in the directed graph leading fromn, to @ ; and if apath
exists, isit free of loops, and does it avoid any modification
of the variable by some other transition? The definitions of
this section clarify these criteria as applied to conformance
testing of object components, and lead to arigorous
definition of abstract test cases.

Definition 7.1 Let G=(N,E) be any directed graph. A path,
p, in G of length k>1 is any element of N* satisfying
(n,n,)eE for 1<i<k-1. If pisapath, then the head of p,
denoted by H(p), isthe first element of the sequence, the
tail of p, denoted by T(p) isthe last element of the sequence,
and the length of p, denoted by L(p), isthe length of the
sequence. If p and q are two paths such that (T(p),H(q))<E,
then the concatenation of the two sequences, denoted by
p:q, isapath with L(p:q)=L(p)+L(q). If pisapathandnis
anode, then nis said to be an element of p, denoted by nep,
if nisamember of the sequence that determines p.

Definition 7.2 Let M be any component of a software
system V¥, let G=(N,E) be the data flow graph of M in ¥,
and let VDU be the set of triples (v,n,0) that represent the
table VarDefnUsage. Let P={(V,n,t,p)} denote a set of
tuples with (0,n,,2)eVDU and with p a path fromn, to a.
The set Pis defined iteratively as follows:

P, ={(,n,n,n) | (b,n,n)eVDU & neDFTU() }

P, = {(®.,n.n.neny) [ (9,n,n)eVDU & (n.n)eE, }
Each P, will be a set of paths of lengthi ori-1. The
definition of P, for i>3 depends upon sets of partial paths,

Qw and unresolved defn-usage pairs, X;, both defined
iteratively below. Each Q, will be atuple (v,n,,i,h,t) where



(0,n,0)eVDU, hisapath from adefn node n, of ¥ to an
intermediate node, and t is a path from some other
intermediate node to a usage item i for v. Each X; will be a
subset of VDU, consisting of variable and defn-usage pairs
that are still in search of a connecting path. Begin with

Q; ={(0,n,a,n,q) | (b,n,a)eVDU }

X,=VDU

X, =VDU - {(v,n,n) | (0,n,n,,n)eP; & ng¢UFDL(®) }
and given Q, define

P., = {(b,n,1,h:t) | (0,n,G,h,t)eQ, & (T(h),H(t))eE}

A, ={(0,n,8) | Iht[(0,n,5,h,)eQ] }

Cip ={(0:0,0) | IP[(0,n,0,p)EP,,] }

X2 = Aiz - Gz

Biiz = Xis1 - Aisz

and given Q,, , define

Qu ={(0,n,g,h:nt) | (9,n,0,h)eQy
& 3n[neN & (T(h),n)eE & ngD(b)
& ngh & net & (6,n,0)eX4,4] }

and given Q,, define

Qaer = { (0,0, T,hNt) | (0,n,T,0,t)EQy
& In[neN & (n,H(t))eE & ngD(b)
& neh & net & (0,n,0)eX ., }-

The iterative process stopswhen X,,, = @. At thispoint set
P =P,,,. This must happen for some vaue of i lessthan the
number of nodesin the graph since the generated pathsin
P..,, each of length greater than i, have no cycles.

It follows from Definition 7.2 that all generated paths (of
length > 1) for some triple (b,n,,i)) will be of the same
length. Thisisbecauseif paths are found in step P,,, then
by the definition of C,, and X,,, atriple (v,n,,i) associated
with any of those pathsis removed from further
consideration. Because of the specia nature of P,, some
triples (0,n,,01) will have apath of length 1 in addition to the
other paths.

Not all elements (b,n,,i)eVDU will yield apathin P. Some
variables may be defined at anode n, and used at a usage
item @, but either no path exists from n, to @, or every such
path contains a re-definition of .

Definition 7.3 A variablet is said to be definition bound at
adefinition node n, of a defn-usage pair (n,,0)eDU(V) if
there does not exist a path, p, with (0,n,,a,p)eP.

The definition bound variables surface during the
calculation of B, =X, - A,,, intheiterative process of
definition 7.2. Atthat pointwehaveC,, € A, < X
It follows that B,,, identifies the defn-usage pairs that were
active during the calculation of X,,,, did not find a path to
joininP,,, yet are no longer active for X,,,. They dropped
out because in the calculation of the previous Q, there did
not exist anode n to form anew edge in the partia paths.
Thus the sets B,,, identify new definition bound items, if
they exist, at each step of the process.

In the automobile example, of the 3167 triples (0,n,,@)
satisfying (n,,i)eDU(V), 454 are definition bound, and the
remaining 2713 have a path in P, and 3 items have a path of
length 1 in addition to their longer paths. Most paths are of
length 9 or less and can be generated in 15-20 minutes on a
PC. Only 62 pairs have paths longer than 9, but it takes an
additional 90 minutes of processing time on a 300mHz PC
to find 544 paths of length 11 to link 22 pairs, and 2560
paths of length 14 to link the remaining 40 pairs. It took
consideration of partial-paths up to length 16 to prove that
92 pairs were definition bound and partial-paths of length
19 to resolve the last 10 remaining pairs as also being
definition bound.

A follow-on goal of thisresearch isto exploit the unique
structure of a data flow graph for object components, e.g.
categorization of nodes by component, or by class, to
discover processing shortcuts.

8 Abstract and Executable Test Suites

If avariablev is both defined and used, and is not definition
bound, then the path generation of the previous section
produces one or more abstract test cases linking each
definition node n, to its corresponding usage itema. But the
data flow, definition-usage testing criterion only requires
one path per definition-usage pair. For test paths of length
> 1, the generation process ensures that all generated paths
in P from n, to @ will have the same length as the shortest
path from n, to G. We simply need to select one such path in
an arbitrary fashion. Thisis done by using the Group By
operator in the relational table representing P, grouping by
v, n, 4, and L, where L isthe common length of the
generated pathsin P, and then selecting an arbitrary element
from each group.

Definition 8.1 Let M be any component of a software
system W, let (b,n,, i) be any variable-defn-usage triple
generated from the data flow graph of M in ¥, and let P be
generated asin Defn 7.2. An abstract test suite for M,
denoted by ATS(M) is the set defined by



ATSM) ={ (,n,6,L(p).p) | (0,n,1,p)EP & L(p)=1
OR p=SelectOne({ p | (0,n,T,p)eP & L(p)>1})

Each abstract test in ATS(M) is equally important, because
it tests an independent aspect of the state/transition
specification for M and its other related components. Some
of these paths are subsumed by other paths, so atraversa of
alonger path by an executabl e test case may test multiple
abstract aspects of the state/transition specification at the
sametime, but they should still be counted as separate tests!
In any statistical analysis of test case devel opment, we will
assume that these test cases are the sample space from
which al executable test cases are drawn. We will pursue
the creation of an executable test suite, using statistical
methods, as a follow-on activity.

In our database representation we create new tablesto
represent the set P constructed in Defn. 7.2 and the set of
abstract testsin the abstract test suite ATS(M). A relational
schema representation is given in Figure 4. Becauseitis
important to retain the identity of each abstract test casein
any subsequent executable test case development, we create
aspecia table, AbstractTests, that maintains the
relationship between a variable-defn-usage triple and one or
moretest case Id's. Inthe AbstractTestSuite table, the
UsageType column identifies the usage item associated with
the path to be either a c-node (N) or a p-edge (E). Inthe
automobile example, this table identifies 2716 abstract test

VarDefnUsage
Classid Char(3) not null
Varld Char(3) not null
DefnNode Varchar(10) not null
Usageltem  Varchar(21) not null
Classld = Classld | pescription Varchar(255) null
Varld = Varld
DefnNode = DefnNode
Usageltem = Usageltem Classld = Classld
Varld = Varld
DefnNode = DefnNode
Usageltem = Usageltem
PartialPaths
Classld Char(3) not null GeneratedPaths
Varld Char(3) not null Classld Char(3) not null
DefnNode  Varchar(10) not null Varld Char(3) not null
Usageltem  Varchar(21) not null DefnNode Varchar(10) not null
HeadPath Varchar(255) not null Usageltem  Varchar(21) not null
TailPath Varchar(255) not null Path Varchar(255) not null
HeadLength Number(2) not null PathLength Number(2) null
TailLength Number(2) not null Description Varchar(255) null
TailOfHead Varchar(10) not null
HeadOfTail Varchar(10)  not null
Description Varchar(255) null
Classld = Classld
Varld = Varld
DefnNode = DefnNode
Usageltem = Usageltem
,,AbsTeslld = AbsTeslldﬂ
AbstractTests AbstractTestSuite
Classld Char(3) not null AbsTestld Char(8)  notnull
Varld Char(3 not null PLgth Number(2) not null
DefnNode Varchar(10) not null HeadNode Varchar(10) not null
U TailNode Varchar(10) not null
sageltem  Varchar(21) not null
b d Char(8 I UsageType  Char(1) not null
AbsTestl ar(8)  notnu TestPath  Varchar(255) not null
Description Varchar(255) null Description  Varchar(255) null

Figure 4 — Schema for Paths and Testing
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cases, of which 207 represent paths terminating at a c-node
and 2509 represent paths terminating at a p-edge.

Conclusions

This paper presents a process for deriving an abstract test
suite from a state/transition specification of componentsin
an object-oriented software system. The abstract tests are
then suitable for conformance testing of an individual
component of the complete system. The abstract test suite
also provides a suitable sample space for application of
statistical methods to select an executable test suite for
actual conformance testing and to determine, within agiven
confidence interval, whether a software product conforms to
its specification.

With the increasing popularity of object-oriented
specification methods, e.g. UML [20], and especially
state/transition specification of classes, eg. UML’s state
machine package, it becomes possible to more closely align
the specification and testing of object-oriented software.
With the addition of database tools and statistical methods,
it becomes possible to apply finite state analysis and testing
methods to moderate-sized software systems. Our follow-
on work will focus on further integration of the
specification and testing aspects of software development
and on the application of statistical methods.

The automobile example described in section 2 and
referenced throughout this paper is specified via classes,
functions, variables, states, and transitions contained in a
Microsoft Access database file available via FTP protocols
at URL ftp://sdct-sunsrv1.ncsl.nist.gov/stsm/auto/
autoslim.mdb. Theintermediate tables, and al of the SQL
database statements to generate the relevant transitions, the
data flow graph, the defn-usage pairs, the partial paths, and
the abstract test suite arein alarger database file at URL
ftp://sdct-sunsrvl.ncsl.nist.gov/stsm/auto/autosys.mdb.
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