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Abstract 

Using neutron spin-echo, we will investigate the nanoscale collective dynamics of long entangling 

polymer chains in their melt. By means of this experiment, we will illustrate the principles of the 

neutron spin-echo technique, the required measurements and corrections, and the process of 

reducing the measured "echoes" to obtain the intermediate scattering function. From the analysis 

of the intermediate scattering functions, we will examine the Rouse relaxation at short times and 

obtain the size of the confining tubes in which the chains reptate at longer times.  
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1. Introduction 

 

1.1. The dawn of the Neutron Spin Echo 

Neutron Spin Echo (NSE) spectroscopy is a relatively new technology among neutron 

scattering techniques. A Hungarian physicist, Ferenc Mezei, first proposed the principle of NSE 

in 1972 [1]. In the first text book of NSE published in 1980 [2] he described the discovery of the 

technique as follows: “The idea of Neutron Spin Echo was born in April 1972 at a red traffic light 

at the corner of Alagút street in Budapest. Within two weeks the basic points were experimentally 

verified at the reactor of the Budapest Central Research Institute for Physics. By the end of the 

year I was also able to demonstrate (this time at the Institut Laue-Langevin in Grenoble) that by 

this method one can really observe very small velocity changes of a neutron beam, independently 

of the velocity spread. Soon after, in January 1973, the ILL Council approved the construction of 

a proposed spin echo spectrometer (later to become known as IN11) for high resolution inelastic 
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neutron scattering experiments. ~ by F. Mezei, in preface of Neutron Spin Echo (Lecture Notes in 

Physics vol. 128)” The key technical concept here is expressed by the specification ‘independently 

of the velocity spread’; this implies that a new method was discovered to perform neutron 

spectroscopy with unprecedented resolution without sacrificing incoming beam flux, which, in 

turns, make the measurement practically feasible. Excitement about Mezei’s work lead to the rapid 

development of the first NSE spectrometer in the early 1970s. Nowadays, this technique has been 

spread worldwide, but is still limited by the number of available instruments (only 2 in the U.S.). 

Although there are only a few spectrometers in the world, NSE provides new and unique 

information about dynamics of materials. In this section 1, we introduce some basic concepts about 

neutron scattering and how we measure dynamics using neutrons. 

 

1.2. Properties of the neutron 

Neutrons are non-charged particles (neutron mass mn=1.67x10-27 kg) which display both 

particle and wavelike nature. A free neutron has momentum 𝐩 = ℏ𝐤 and energy 𝐸𝑝 = |
𝐩𝟐

2𝑚n
| =

ℏ𝜔𝑛 , where k and n are the wavevector and frequency, of the associated wave function. k 

characterizes the propagation direction and the speed of wave, and the magnitude of k is |𝐤| =

𝑘 =
2𝜋

𝜆
, where  is the wavelength. 

Neutrons interact with nuclei during a scattering event. The neutron-nucleus interaction 

potential Vp is expressed by adopting Fermi’s pseudopotential  

  𝑉𝑝(𝒓) =
2𝜋ℏ2

𝑚𝑛
𝑏𝑖𝛿(𝒓)       (1) 

where ℏ =
ℎ

2𝜋
  and h is the Planck’s constant, bi is the so-called neutron scattering length which 

characterizes the neutron interaction with a given atomic nucleus i, and 𝛿(r) is delta function and 

𝒓 is the position vector from the scattering center (position of the nucleus i). Different isotopes or 

spin state of nuclei give different bi. Since isotopes and nuclear state are randomly distributed in 

the samples, it is useful to define the coherent, σcoh, and incoherent, σinc, scattering cross sections 

as the average and variance of the possible b of a nucleus: 

𝜎𝑐𝑜ℎ = 4𝜋〈𝑏〉2; 𝜎𝑖𝑛𝑐 = 4𝜋(𝑏 − 〈𝑏〉)2      (2) 

where 〈… 〉  indicates an average over all of the possible magnetic nuclear states and isotope 

compositions. The neutron scattering community frequently uses the difference in the scattering 

cross sections of different isotopes to tune the scattering length of the materials by the isotope 

substitution. The values for bi, σcoh, and σinc are available at http://www.ncnr.nist.gov/resources/n-

lengths/.  

Although neutrons are non-charged particles, the internal structure of the neutron allows it 

to have a magnetic moment. This feature is significant for NSE since we use polarized neutrons, 

which means one state of the magnetic moment is selected and used in the scattering experiments. 

Neutron spectroscopic techniques generally use neutrons that have a kinetic energy that is close to 
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thermal energy, which make neutrons a unique and powerful probe to measure the dynamical 

features of materials.  

 

Q1:Confirm the energy of neutrons is close to the thermal energy for various wavelengths. 

Figure 1. Basic scheme of a scattering experiment. 

 

1.3. Basics of neutron scattering 

Consider a neutron beam characterized by its wavevector k. If the incoming wave interacts 

with a nucleus (potential Vp) and scatters, the outgoing wave will then have a different wavevector 

k’. Here, we can define the momentum transfer as 

  ℏ𝐐 = ℏ(𝐤𝒊 − 𝐤𝒇)        (3) 

where 𝐐 =  𝐤𝒊 − 𝐤𝒇  is the scattering vector, and the corresponding energy transfer, E, or 

frequency, , is defined as the different energies between incoming, Ei, and outgoing, Ef, wave, 

  𝐸 = ℏ𝜔 = E𝑖 − E𝑓 =
ℏ2

2𝑚𝑛
(𝑘𝑖

2 − 𝑘𝑓
2)      (4) 

Eqns. (3) and (4) describe the momentum and energy conservation of the scattering process, 

respectively. A basic scheme of a scattering experiment is shown in Figure 1. Here, we consider 

the magnitude of Q by defining the angle between 𝐤𝒊  and 𝐤𝒇  as the scattering angle, , and 

applying k𝑖 ≈ k𝑓 (i.e. small energy transfer) as, 

  |𝐐| = 𝑄 = 2𝑘 sin (
𝜃

2
) =

4𝜋

𝜆
sin (

𝜃

2
)      (5) 

Using Bragg’s law of 2𝑑 sin (
𝜃

2
) = 𝑛𝜆, where d is the lattice constant and n is an integer, a 

relationship between Q and a length scale, l, can be roughly established as 𝑄 ≈
2𝜋

𝑙
. The primary 

aim of neutron scattering is to determine the probability of neutrons being scattered in Q and , 

which is defined as the dynamic structure factor S(Q,). The Fourier transform of S(Q,) is called 

the Intermediate Scattering Function (ISF), I(Q,t), which is defined as: 

ki, Ei 

kf, Ef 

Sample 

Detector 

θ 

Q 

ki 

kf 
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𝑆(𝐐, 𝜔) = 𝐹𝑇{𝐼(𝐐, 𝑡)}       (6) 

𝐼(𝐐, 𝑡) = 〈𝑒𝑥𝑝{−𝑖𝐐[𝐫(𝑡) − 𝐫(0)]}〉      (7) 

where 〈… 〉 indicates an ensemble average. 

In a static structure measurement, we ignore the energy exchange between the neutrons 

and our samples and integrate the scattering over all neutron energies,  

  𝑆(𝐐) = ∫ 𝑆(𝐐, 𝐸)𝑑𝐸
∞

−∞
       (8) 

which corresponds to the Fourier transform of the instantaneous spatial atomic correlations in the 

system, i.e. the structure of our sample. In the following discussion, we only consider isotropic 

scattering cases for simplicity, and treat the vector Q as a scalar Q. 

 

1.4. Small-angle scattering 

Now let’s revisit our definitions of 𝑄 =
4𝜋

𝜆
sin (

𝜃

2
) ≈

2𝜋

𝑙
. If we want to look at large 

structures (large l), then we need to measure scattering at small Q, which means we need to 

measure scattering at small angles (small ). Small angle scattering (SAS) is used to study the 

structure of materials with sizes ranging from ≈1 nm to ≈200 nm. These length scales are now 

much larger than the atomic distances, so it is useful to define the scattering length density (SLD), 

, of a material, 

 𝜌 = ∑
𝑏𝑖

𝑣

𝑁
𝑖          (9) 

in which v is the volume containing N atoms. In other words, we’re averaging the scattering length 

over the volume of the material. This also means that when we are looking at small Q, we care 

about the difference in material properties 𝜌1  and 𝜌2 , ∆𝜌 = 𝜌1 − 𝜌2 , which we refer to as the 

scattering contrast. It is well-known in the SAS community that one can play tricks with the 

scattering contrast to make certain parts of our samples appear and disappear in order to highlight 

specific structural and dynamical features, which is referred to as contrast matching. Among 

neutron spectroscopic techniques, NSE is the only one whose accessible Q range significantly 

overlaps with the small angle region, and, hence, is the only one which extensively employs the 

SLD concepts; other techniques more often deal with atomic scattering lengths and cross-sections. 

 

1.5. Coherent and incoherent scattering 

The scattered neutron signal is divided into two components; coherent 𝑆coh(𝑄, 𝐸)  and 

incoherent 𝑆incoh(𝑄, 𝐸)  scattering, namely 𝑆(𝑄, 𝐸) = 𝑆coh(𝑄, 𝐸) + 𝑆incoh(𝑄, 𝐸) . 𝑆coh(𝑄, 𝐸) 

originates from correlations between relative positions of atoms at different times, and, thus, it 

contains information about the collective dynamics in our material. In comparison, 𝑆incoh(𝑄, 𝐸) 

comes from correlations between the positions of an atom at different times, which does not 

provide any structural information but contains single particle dynamics information. Specifically, 

a hydrogen atom has a large incoherent scattering cross section of about 80 barn, and, therefore, it 

is easy to track the motion of hydrogen atoms via 𝑆incoh(𝑄, 𝐸). It is interesting to note that these 
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two scattering contributions can be distinguished by employing polarization analyses in NSE. Here, 

we show examples of static structure factors for simplicity, but the basic principle applies for all 

the scattering events. (See Appendix B for more information about the incoherent scattering and 

its application to NSE.) Coherent scattering is non-spin-flip scattering (NSF), thus the spin state 

of neutrons does not change before and after scattering. Overall, there is a 2/3 probability for spin-

flip scattering (SF) to occur in incoherent scattering. Using an incoming beam of polarized 

neutrons (have the same spin state) and a spin analyzer right before the detector that only allows 

one state of polarized neutrons to pass through to the detector, we can measure the polarization 

state of the scattered neutrons. A device called -flipper can then be used to intentionally change 

the neutron spin state from one to the other. The flipper is turned on to measure the intensity of 

NSF (Nup), and turned off to measure the SF (Ndown), as 

  𝑁up(𝑄) = 𝑆coh(𝑄) +
1

3
𝑆incoh(𝑄)      (10) 

  𝑁down(𝑄) =
2

3
𝑆incoh(𝑄)       (11) 

Experimentally, care should be taken to measure the instrumental polarization and background 

scattering to calculate 𝑆coh(𝑄) and 𝑆incoh(𝑄).   

 

  

Figure 2. An example of the scattering intensity profile S(Q) together with the characteristics of 

coherent 𝑆coh(𝑄) and incoherent 𝑆incoh(𝑄) signals as a function of Q. The main panel shows the 

profile in log-linear scale, while inset shows the same profile in log-log scale. Depending on the 

Q values, the dominant contribution varies between 𝑆coh(𝑄) and 𝑆incoh(𝑄). 

 

𝑆coh(𝑄) depends strongly on the scattering angle and thus on Q, while in contrast, 𝑆incoh(𝑄) 

is independent of Q (for simplicity here we ignore atomic vibrations and the resulting Debye-

Waller factor). Figure 2 shows a typical example of a neutron scattering signal 𝑆(𝑄) over a wide 

Q-range. The inset plots the same scattering pattern on a logarithmic Q scale. At small scattering 

angles (small Q), a large 𝑆coh(𝑄)  is recognized due to long range scattering length density 

fluctuations. The 𝑆coh(𝑄) decreases with increasing Q, and at some Q-ranges 𝑆incoh(𝑄) dominates 
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the scattered intensity. Due to structural correlations at smaller length scales, 𝑆coh(𝑄) might again 

dominate the intensity at higher Q (for example at Q ≈ 8 nm-1 and 17 nm-1 in Figure 2). By varying 

the isotopic composition of the sample, both coherent and incoherent scattering contributions can 

be altered. 

 

1.6. Inelastic/quasielastic scattering techniques 

The dynamic structure factor S(Q,) is determined by analyzing the exchanged energy 

contribution to the scattering at a defined Q. This measurement is called inelastic or quasielastic 

neutron scattering. Most of the neutron spectrometers determine the incoming and outgoing 

neutron energies, and their difference corresponds to the energy exchanged. Table 1 summarizes 

various neutron spectroscopy techniques and their incoming energy and the energy resolution. 

Since these techniques directly determine the incoming and scattered neutron energies to analyze 

the energy transfer with the samples, narrow wavelength distribution (/) are required in order 

to achieve higher energy resolution, which limits the number of useful neutrons. Unfortunately, 

this means that a scattering experiment with high energy resolution would be impossible because 

of poor counting statistics. As explained below, the NSE technique broke through this limitation, 

and significantly improved the energy resolution without requiring a narrow /. 

 

Table 1. Various neutron spectroscopy and typical parameters. 

Technique 
Triple-axis 

spectrometer 
Time-of-flight Backscattering Neutron spin echo 

Instrument BT7, MACS, SPINS DCS HFBS NGA-NSE 

Incoming neutron 

energy 

Variable 

(e.g. 35 meV) 

Variable (typically 

1 meV to 9 meV) 
2.08 meV 0.3 meV to 3 meV 

Device to define 

neutron energy 
Monochromator Chopper Monochromator Velocity selector 

Neutron 

wavelength  
(e.g. 1.5Å) 

(typically  

3 Å to 10 Å) 
6.3 Å 5 Å to 15 Å 

Wavelength 

distribution  
10-3 Variable 1.86  10-5 0.1 to 0.2 

Energy resolution 
Variable 

(e.g. 1 meV) 
10 eV to 10 meV 1 eV  neV 

*1 eV corresponds to 1.60x10-19 J and to 2.42x1014 Hz. 
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1.7. Characteristics of the NSE technique 

Here at the NCNR, the energy resolution for the NGA-NSE spectrometer is ≈ 10 neV, and 

the best instrument in the world, IN15 in Grenoble, France, is aiming for a few neV. Still the / 

are of the order of 10%, which gives you enough neutron flux to perform experiments. Figure 3 

shows a layout of a NSE instrument. The NSE technique uses polarized neutrons and employs the 

Larmor precession of the neutron’s spin as an ‘internal’ clock [1]. When the neutron spin direction 

is parallel to a magnetic field, the polarization of the spin state is kept the same. On the other hand, 

when the spin is perpendicular to a magnetic field, the spin starts to rotate around the magnetic 

field (called Larmor precession). 

 
Figure 3. Schematic of the NSE spectrometer and motion of the neutron spins looking 

perpendicular to the beam direction. 

 

Since the Larmor precession information on the incoming velocity of each neutron is stored 

on the neutron itself, it can be compared with the outgoing velocity of the same neutron. The basic 

idea is the following: polarized neutrons are flipped perpendicular to the magnetic field by a so 

called π/2-flipper. The precession frequency is controlled by a magnetic field along the flight path 

from the π/2-flipper to the sample. A symmetric setup is placed in the flight path from the sample 

to a second π/2-flipper. Close to the sample, a π-flipper reverses the precession angle such that for 

an elastically scattered neutron there is no net spin turn at the second π/2-flipper, irrespective of 

the starting velocity of the neutron. The precession angles in the primary and secondary paths are 
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only different when the symmetry is distorted because of a change in the neutron velocity after 

interacting with the sample. In this case, a polarization change after the second π/2-flipper is 

observed. Using this set-up, it is possible to make extremely accurate measurements of the energy 

change during the scattering process, and therefore design a spectrometer with high resolution. 

Detailed principles of the spectrometer are illustrated in Appendix A.  

Figure 4. Phase space diagram indicating the regions accessible to the high-resolution 

spectrometers at the NCNR. Many different fields of application of elastic and inelastic neutron 

scattering are reported as well. 

 

The reason why we can use relatively broad wavelength distribution and still have a high 

energy resolution neutron spectroscopy is that the energy resolution of neutron itself (determined 

by the distribution of velocity Vn or wavelength ) is decoupled from the energy resolution of the 

sample’s energy transfer that is determined by measuring neutron polarization state in the NSE 

experiments. This characteristic allows NSE to be the highest energy resolution machine among 

neutron spectrometers. The use of the NSE technique automatically performs a Fourier 

transformation in energy and the NSE provide results in the time domain, while all the other 

neutron spectrometers work in the energy domains. This means that while the conventional neutron 

spectroscopy measures dynamic structure factor S(Q,), NSE measures its Fourier transform, the 

intermediate scattering function, I(Q,t). Because of this unique character, NSE is best suited to 

measure relaxation processes rather than excitation processes. 
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1.8. Dynamic range of neutron spectroscopy 

Figure 4 summarizes the phase space diagram of neutron spectrometers. Among neutron 

spectrometers, the NSE covers the smallest Q (largest length scales) and energy scales (highest 

energy resolution and longest times). Since the coverage of the phase space is at relatively large 

scale and long time scales, this spectrometer is suited for the investigation of thermal fluctuations 

in polymer or biological systems. It allows us to investigate length scale up to tens of nanometers 

and relaxation times from a fraction of a nanosecond to three hundred nanoseconds.  

 

2. Dynamics of polymers [3] 

Dynamic processes in polymers occur over a wide range of length and time scales. A 

typical example is shown in Figure 5. At the local scale, motions like vibrations, short range 

rotations or secondary relaxation are possible. At temperatures above the glass transition 

temperature, Tg, the primary relaxation (-relaxation) originated by the interchain dynamics 

becomes active. Over larger length scales, conformational dynamics within a polymer chain take 

place but are limited by confinement effects caused by the mutually interpenetrating chains. This 

latter dynamic process is responsible for the “rubbery” rheological behavior of polymers. The 

longest relaxation process is the translational diffusion of the chain. Depending on the molecular 

weight, the characteristic length scales from the motion of a single bond to the overall chain 

diffusion may cover about three orders of magnitude, while the associated time scales easily may 

be stretched over ten or more orders of magnitude. Different neutron scattering techniques can be 

used to obtain information on these dynamical processes.  

 

 
Figure 5. Hierarchical nature of dynamic processes in polymers (adapted from [3]). 

 

Among the experimental techniques for studying the dynamics of polymers, neutron spin-

echo spectroscopy plays a unique role because of mainly two reasons: 

i. The suitability of the length and time scales, which allows the exploration of large 

scale properties (e.g. diffusion and Rouse dynamics) as well as features 

characteristic for more local scales (e.g. the inter- and intrachain correlations) 

ii. The possibility to use isotopic substitution and contrast matching techniques which 

allows specific structural units or molecular groups in complex systems to be 

selectively studied.  
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During this NSE session, we will focus on the mesoscale polymer chain dynamics, namely 

the Rouse and reptation dynamics (see Figure 5), that can be measured using NSE. Recent NSE 

investigations on the long time chain dynamics confirmed de Gennes’ prediction [4] on the 

mechanism of tube-like confinement and reptation in polymer melts and dense systems. [5] Here, 

we will perform a similar NSE experiment and measure the ISF of a single polymer chain in a melt 

as described in detail in the next sections. These measurements will allow us to determine the 

parameters describing the conformational dynamics of the chains and their entanglements. These 

results will be compared with literature values obtained using rheological measurements. 

 

2.1. Structure of linear homopolymers 

The unique power of neutron scattering for revealing essential features in the field of 

polymer science can be exemplified by the experimental proof, using Small Angle Neutron 

Scattering (SANS), of the random coil conformation of polymer chains in the melt or in the glassy 

state, as proposed in the 1950s by Flory, [6] which was only possible by using contrast variation. 

In general, flexible long chain polymers possess a very large number of internal degrees of freedom. 

At length scales somewhat larger than the size of the monomer the detailed chemical structure of 

the chain building blocks is not important so that very general properties are determined by 

statistical mechanics of the chain. According to the central limit theorem the most probable 

arrangement is that of a Gaussian coil, i.e. the polymer chain performs a random walk in space. 

From these assumptions, the form factor for the single chain, which can be measured by SANS, is 

predicted: 

 𝐼(𝑄) = 𝑓𝐷𝑒𝑏𝑦𝑒(𝑄2𝑅𝑔
2) =

1

𝑄4𝑅𝑔
4 [𝑒𝑥𝑝(−𝑄2𝑅𝑔

2) − 1 + 𝑄2𝑅𝑔
2]   (12) 

with Rg being the radius of gyration. 

 

2.2. Rouse dynamics 

If pieces of a chain perform fluctuations out of equilibrium, an entropic force arising from 

the derivative of the free energy acts on these segments to restore them to the most probable 

contorted state. This is the basis of the so-called Rouse model, [7] and the simplest picture of the 

model is shown in Figure 6 as a chain of beads connected by springs. The ISF for both single 

particle dynamics and the collective single chain dynamics can be theoretically predicted and 

directly measured through opportune deuteration schemes in the incoherent and coherent neutron 

scattering signal. 

 

2.2.1. Incoherent scattering 

The single particle ISF can be measured using hydrogenated samples and measuring the 

incoherent dynamics. The motion of each hydrogen atom in the chain is described as follows: 

𝐼𝑠𝑒𝑙𝑓(𝑄, 𝑡) = 〈∑ 𝑒𝑥𝑝{−𝑖𝑄[𝐫𝑖(𝑡) − 𝐫𝑖(0)]}𝑁
𝑖=1 〉 = 𝑒𝑥𝑝[−𝑄2𝐷𝑅𝑡]𝑒𝑥𝑝 {− [

𝑡

𝜏𝑠𝑒𝑙𝑓(𝑄)
]

1 2⁄

} (13) 
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where DR is the translational diffusion coefficient of the polymer chain: 𝐷𝑅 =
𝑘𝐵𝑇

𝑁𝜁0
=

𝑊𝑙4

3𝑅𝐸
2 , with 0 

denoting a friction coefficient, kBT is the thermal energy, l, N, RE=Nl2, and 𝑊 = 3
𝑘𝐵𝑇

𝜁0𝑙2
 being the 

polymer segment length, the number of segments in the chain, the end-to-end distance, and the 

elementary Rouse rate, respectively. The other parameter describing the single particle Rouse 

dynamics is: 

  𝜏𝑠𝑒𝑙𝑓(𝑄) =
9𝜋

𝑊𝑙4𝑄4
        (14) 

Within the Gaussian approximation the mean squared displacement of the polymer segments 

results: 

  〈𝑟2(𝑡)〉 = 6𝐷𝑅𝑡 +
1

6
√(

9𝜋

𝑊𝑙4𝑄4) 𝑡      (15) 

As shown by Eq. (15), for short times, before the chain diffusive dynamics can be observed, the 

mean squared displacement scales with the square root of time.  

 

 
Figure 6. Illustration of chain dynamics in a polymer as the simple bead-spring model that changes 

its conformation with time. rN is the position vector of a bead and ksp is the spring constant (adapted 

from [8]). 

 

As Q increases, and the investigated length scale gets shorter, local dynamics within the 

monomer become increasingly important and the Rouse model is not applicable.  

The single particle Rouse dynamics of a polymer chain can be measured using NSE as well 

as other techniques such as backscattering. It is reported here solely to highlight how different 

spectrometers can be used in conjunction to validate or complement obtained results. 

 

2.2.2. Coherent scattering 

Dispersing a small amount of hydrogenated polymer chains in a matrix of deuterated chains, 

the small angle region will record the coherent signal from the single hydrogenated chains. The 

single chain dynamics will be measured as the dynamics of one segment with respect to the others: 

𝐼𝑐ℎ𝑎𝑖𝑛(𝑄, 𝑡) = 〈∑ 𝑒𝑥𝑝{−𝑖𝑄[𝐫𝑖(𝑡) − 𝐫𝑗(0)]}𝑁
𝑖=1 〉 =

1

𝑁
𝑒𝑥𝑝[−𝑄2𝐷𝑅𝑡]  

∑ 𝑒𝑥𝑝 {−
1

6
|𝑖 − 𝑗|𝑄2𝑙2}𝑖,𝑗 𝑒𝑥𝑝 {−

2

3

𝑅𝐸
2𝑄2

𝜋2
∑

1

𝑝2
{𝑐𝑜𝑠 (

𝑝𝜋𝑖

𝑁
) 𝑐𝑜𝑠 (

𝑝𝜋𝑗

𝑁
) [1 − 𝑒𝑥𝑝 (−

𝑡𝑝2

𝑡𝑅
)]}𝑝 } (16) 

Where 𝑡𝑅 =
1

𝑊
(

𝑁

𝜋
)

2

 is called the Rouse time. For t=0 we have 𝐼𝑐ℎ𝑎𝑖𝑛(𝑄, 𝑡) = 𝑆𝑐ℎ𝑎𝑖𝑛(𝑄); i.e. the 

structure factor corresponds to a snapshot of the chain structure: 
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 𝑆𝑐ℎ𝑎𝑖𝑛(𝑄) = 〈∑ 𝑒𝑥𝑝{−𝑖𝑄[𝒓𝑖(0) − 𝒓𝑗(0)]}𝑁
𝑖=1 〉 =

1

𝑁
∑ 𝑒𝑥𝑝 {−

1

6
|𝑖 − 𝑗|𝑄2𝑙2}𝑖,𝑗  (17) 

 These predictions have been validated experimentally on short polymer chains. [9] 

A simpler approximate expression of the high Q behavior of the single chain dynamics can 

be obtained: 

𝐼𝑐ℎ𝑎𝑖𝑛(𝑄,𝑡)

𝑆𝑐ℎ𝑎𝑖𝑛(𝑄)
= ∫ 𝑒𝑥𝑝 {−𝑢 −

2

𝜋
√Ω𝑅𝑡  [√𝜋𝑒

𝑢2

4Ω𝑅𝑡 +
1

2
𝜋

𝑢

√Ω𝑅𝑡
(1 − 𝐸𝑟𝑓 (

𝑢

2√Ω𝑅𝑡
))]}

∞

0
 (17a) 

The only variable in Eq. (17a) is Ω𝑅𝑡 =
𝑊𝑙4

36
𝑄4𝑡, which allows to construct a master curve 

of data taken at different Q values. We are going to use this model to calculate the Rouse time, tR, 

and calculate the elementary Rouse rate W in the hands-on-experiment. 

 

2.3. Reptation dynamics 

As the polymers length increases above the entanglement molecular weight (Me), the 

available conformations are limited by additional topological constraint which can be thought of 

as ‘reptation tube’ as illustrated in Figure 7. The polymer chain then starts to move along the tube, 

which is called reptation. 
 

 
Figure 7. Illustration of the reptation tube. The test chain is trapped in a tube (indicated by the 

gray area) created by neighboring chains. The crossings represent the intersection of the 

neighboring chains with the curved surface on which the test chain lies. The test chain moves along 

the tube like a reptile, whose motion is called reptation motion (adapted from [8]). 

 

Accordingly, the single chain ISF will change. Qualitatively we would expect to measure 

the following behavior with increasing time, illustrated in Figure 8: 

i. At short times, the chain will perform unrestricted Rouse motion.  

ii. In the regime of local reptation the chain has already explored the tube laterally and 

further density fluctuations of the labelled chain will only be possible via Rouse 

relaxation along the tube. Under such circumstances the structure factor, to a first 

approximation, will mirror the form factor of the tube Ichain(Q,t)/Ichain(Q) ≈ exp(–

Q2d2/36). In this regime the experiment should reveal the size of the topological 

constraints, i.e. the reptation tube diameter, d, without applying any detailed model. 
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iii. In the creep regime, t > tR the memory of the tube confinement will be gradually lost. 

iv. Finally, at even longer times at very small Q (QRg<<1), the reptation diffusion will be 

probed. 

A tractable analytic expression for the coherent dynamic structure factor in the regime ii 

can be obtained by neglecting the initial Rouse regime. Thus, the dynamic structure factor is 

composed from two contributions Iloc(Q,t) and Iesc(Q,t) reflecting local reptation and escape 

processes (creep motion) from the tube: 

  
𝐼𝑐ℎ𝑎𝑖𝑛(𝑄,𝑡)

𝐼𝑐ℎ𝑎𝑖𝑛(𝑄)
= [1 − 𝑒𝑥𝑝 (−

𝑄2𝑑2

36
)] 𝐼𝑙𝑜𝑐(𝑄, 𝑡) + 𝑒𝑥𝑝 (−

𝑄2𝑑2

36
) 𝐼𝑒𝑠𝑐(𝑄, 𝑡) (18) 

The local reptation part is: 

  𝐼𝑙𝑜𝑐(𝑄, 𝑡) = 𝑒𝑥𝑝 (
𝑡

𝜏0
) 𝑒𝑟𝑓𝑐 (√

𝑡

𝜏0
)      (19)  

Where 𝜏0 =
36

𝑊𝑙4𝑄4 and erfc is the complementary error function. In the NSE timescale, it 

is sufficient to assume Iesc(Q,t)=1, because the creep motion is too slow. A pronounced plateau in 

Ichain(Q,t) is a signature for confined motion. In the hands-on-experiment, we will access the tube 

diameter d from the Q-dependent plateau with this reptation model, Eq. (18). 

 

Figure 8. The regimes of an entangled chain dynamics. te is the cross-over time from Rouse to 

reptation behavior; tR is the Rouse time; td is the terminal time after which the chain has left its 

original tube. 
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3. Hands-on-Experiment: Rouse dynamics and reptation tube in Poly(Ethylene Oxide) melts 

 

3.1 Sample characteristics 

The polymer used in the experiments is poly (ethylene oxide) (PEO). The repeating unit of 

PEO is ethylene glycol and the end groups are typically -OH as shown in Figure 9.  

 PEO is hydrophilic, biocompatible and easy to crosslink to form gels with tunable 

mechanical properties suitable for many biomedical applications such as drug release. [10] In 

addition, PEO is one of the most widely studied polymers for ion conducting membranes in 

lithium-ion batteries due its ability to form complexes with a variety of salts. [11] The glass 

transition temperature of PEO is Tg ≈ 213 K. Due to the lack of bulky groups on the chain backbone, 

PEO crystallizes below Tm ≈ 340 K to adopt a semi-crystalline phase (coexisting mixture of 

amorphous and crystalline phases).  The entanglement molecular weight of PEO is Me ≈ 2 kg/mol. 

Some other physical parameters for the homopolymer we will use are listed in Table 2. 

 

 
Figure 9. Molecular structure of linear polyethylene oxide with OH terminated ends. 

 

Table 2. The physical parameters for PEO used in NSE experiments 

Properties Deuterated PEO Hydrogenated PEO 

Formula (C2D4O)n (C2H4O)n 

MW/ g mol-1 35,000 35,000 

Dispersity  1.09 1.08 

Density/ g ml-1 1.06 1.06 

SLD/ Å-2 6.0810-6 0.610-6 

 

3.2 Planning the NSE experiment 

A successful experiment in NSE requires careful planning of the sample preparation as 

well as of the measurements.  

 

3.2.1. Setting the goal 

The large scale dynamical properties of a given long linear polymer can be estimated by 

knowing the elementary Rouse parameter, Wl4, and the reptation tube diameter, d. Both Wl4 and d 

can be determined for PEO using NSE at an appropriate temperature. We will perform NSE 

experiments in the liquid state of PEO at 400 K, well-above the melting point and where PEO has 

been studied in NSE previously. [11-13]  
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Q2. In NSE, we measure the dynamic structure factor up to 100 ns. What types of 

chain motions would you expect to observe for PEO with Mw=300 Da, Mw=2 

kDa, and Mw=35 kDa at 400 K in NSE? What about PolyStyrene, Mw=100kDa?  

 

3.2.2. Obtain the single-chain conformation 

The contrast from the single chain is obtained by homogenously mixing a small amount of 

hydrogenated polymer in a matrix of deuterated polymer of the same molecular weight. This way 

the incoherent scattering from the hydrogenated chains is minimized while sufficiently large 

amount of scatterers are introduced in the material. Typically, 10 % to 25 % hydrogenated chains 

are used. In this experiment, we will use 25 % h-PEO in 75 % d-PEO of Mw=35 kg/mol (supplied 

by Polymer Source Inc.*). In such conditions, the SANS profiles from the single chain PEO was 

obtained as shown in Figure 10.  

 

Q3.  Calculate the contrast between h-PEO and d-PEO. Consider the following 

mixtures of h-PEO and d-PEO: 10 % h-PEO/90 % d-PEO, 20 % h-PEO/80 % d-

PEO, 50 % h-PEO/50 % d-PEO, 90 % h-PEO/10 % d-PEO; what advantages and 

disadvantages do each of these compositions offer for a NSE experiment? 

Imagine to disperse gold nanoparticles in your PEO polymer matrix, how could 

you contrast match the nanoparticles? 

Figure 10. SANS profile obtained from 35 kg/mol PEO (25/75 h-PEO/d-PEO). [13] The line is 

the best fit to Debye form factor, fDebye(Q
2Rg

2), [Eq. 12] for a Gaussian chain with Rg ≈ 7 nm. 

 

3.2.3. Determine the time and length-scales of interest 

This is perhaps the most important step in the experimental planning. Here, we should 

consider both sample behavior and instrument limitations to optimize the measurements. 

Our goal is to obtain the intermediate scattering function, ISF, and determine the 

elementary Rouse parameter, W, as well as the length of the confining tube along which the chains 

 
* The identification of any commercial product or trade name does not imply endorsement or recommendation by 

the National Institute of Standards and Technology. 
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reptate, d. Therefore, we want to be at Q<<2π/l, with l being the segment length, to observe the 

segmental level relaxation. For PEO, l=5.8 Å, so you want to choose, Q<< 1 Å-1. However, this 

should not be our highest limit. We want to measure the collective dynamics which requires the 

signal to be from coherent scattering as opposed to incoherent scattering (that would give the self-

motion of H-atoms often measured in HFBS). If we look at the SANS profile in Figure 10, the 

incoherent background starts contributing significantly above (0.2 to 0.3) Å-1. To avoid further 

difficulties on subtracting the incoherent scattering, we will limit the highest Q to be 0.3 Å-1.  

At larger length scales, if Q < 2π/RE (≈0.05 Å-1 for PEO), we probe the whole chain and 

may observe the creep motion (for long entangling chains) or center of mass diffusion (for short 

unentangling chains) in addition to internal Rouse modes (this also strongly depends on the 

timescale of the technique as discussed next). So, the nature of the sample itself narrows down our 

length-scale of interest to the range 0.05 Å-1 < Q <0.3 Å-1.  

We now determine the dynamic range. Again, we want to see both the Rouse decay and 

entanglement plateau, so we need to estimate the crossover time between the two regimes, te. From 

the literature, te 
≈ 10 ns for PEO at 400 K, [12] which sets the lower limit for the longest Fourier 

time to be measured.  

 

To summarize, our measurements should be performed at 0.05 Å-1 < Q <0.3 Å-1 and tNSE,max 

>>10 ns to achieve our goal.   

 

Q4. How would you estimate the crossover time between Rouse and entanglement if 

you never directly measured in NSE before?  

 

3.2.4 Determine the instrument configuration 

For the accessible Q-range and dynamics range of NSE, refer to the table given below 

(https://www.ncnr.nist.gov/instruments/nse/NSE_details.html) 

https://www.ncnr.nist.gov/instruments/nse/NSE_details.html
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We now want to determine the wavelength to be used based on our Q and dynamic range 

of interest. Apparently, the Q-range we are interested in (0.05 Å-1 < Q <0.3 Å-1) can be accessed 

using λ = (6, 8, 11 and 15) Å. For the dynamic range, we would like to obtain times well above 

the crossover time, tNSE,max >>10 ns. 15 ns (at λ = 6 Å) and 40 ns (at λ = 8 Å) may not be enough 

to identify the entanglement plateau. Therefore, using λ = 11 Å which gives Fourier times up to 

100 ns would be ideal.  

 

Q5. λ = 15 Å can allow Fourier times up to 200 ns. What is the main limitation of 

using this configuration, particularly for our polymer sample? 

 

In summary, we will perform our experiments using the following configuration: 

Neutron wavelength: 11 Å 

Fourier times: (0.5, 1, 2, 5, 8, 10, 20, 30, 50, 65, 80, 90, 95 and 100) ns 

Q-range: 0.05 Å-1 < Q <0.3 Å-1 

Temperature: 400 K 

 

3.2.5 Resolution, transmission and background 

We will use charcoal as a resolution and fully deuterated PEO as the background. We 

obtain the echoes at the same configurations as used for the sample. The transmission for the 

sample and background will be measured and used for background subtraction. See Appendix A 

for the detailed procedure. 
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3.3 Data interpretation 

 NSE experiment measures the single chain dynamics of the PEO molecules. The data for t 

< te will be analyzed using Eq. (17a) and compared with the results reported in the literature. [12] 

Similarly the data for t > 𝑡𝑒 will be globally fitted for all Q using Eq. (18) fixing the value of 0 to 

its reported value. [12] 

Compare the results obtained with those reported in Table 3, and, please, fill in the missing 

values for the structural and dynamical properties of PEO at 400 K.  

 

Table 3. The static and dynamic chain parameters for 35 kg/mol PEO at 400 K. 

Parameters Definition Value  Unit 

Segment length l 0.58 nm 

Rouse parameter Wl4 1.51 nm4/ns 

End-to-end distance Nl2  nm2 

Tube diameter d  nm 

Molar mass of monomer Mo 44 g/mol 

Total number of segments N  - 

Entanglements per chain  Mw/Me
 

 - 

End-to-end distance 𝑅𝐸 = √𝑁𝑙2  nm 

Radius of gyration 𝑅𝑔 = √𝑁𝑙2 6⁄   nm 

Rouse diffusion coefficient 𝐷𝑅 = 𝑊𝑙4 (3𝑅𝐸
2)⁄   nm2 /ns 

Rouse time 𝑡𝑅 = 𝑁2 (𝜋2𝑊)⁄   ns 

Crossover time between 

Rouse and Reptation 
𝑡𝑒 =

𝑑4

𝜋2𝑊𝑙4
 

 ns 

Reptation time 𝑡𝑑 =
3𝑁3

𝜋2𝑊
(

𝑙

𝑑
)

2

 
 ns 

Reptation diffusion 

coefficient 
𝐷𝑅𝑒𝑝 =

𝑅𝑔
2

𝜏𝑑
 

 nm2 /ns 

 

NSE results provide microscopic information on the parameters of the Rouse dynamics as 

well as on the tube size of PEO. These parameters can also be determined from macroscopic 

measurements of the polymer’s rheology. The monomeric friction coefficient is a basic quantity 

in all rheological measurements. This quantity can be inferred indirectly for example from 

viscosity measurements, where in the Rouse regime, i.e. for molecular weight below entanglement: 

  𝜂𝑅𝑜𝑢𝑠𝑒 =
𝑁𝐴

36

𝜌

𝑀0
𝜁𝑙𝑚𝑜𝑛

2 𝑁𝑚𝑜𝑛       (20) 

Where NA is the Avogadro number,  is the polymer density, M0 is the monomer mass, 𝑙𝑚𝑜𝑛
2 =

𝑅𝐸
2

𝑀
𝑀0 , and Nmon=N/n, n being the number of bonds per monomer. The monomeric friction 

coefficient  is directly related to the Rouse rates which can be obtained from the dynamic neutron 

scattering measurements: 
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  𝜁 = (
3𝑘𝐵𝑇

𝑊𝑙4
) 𝑙𝑚𝑜𝑛

2         (21) 

For molecular weights above entanglement: 

  𝜂𝑅𝑒𝑝𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑞𝜂𝑅𝑜𝑢𝑠𝑒 (
𝑀

𝑀𝑒
)

2

      (20) 

Where q is a prefactor which in this case can be approximated to 1.[12] 

The dynamic modulus of a polymer melt is characterized by a plateau in frequency which 

broadens with increasing chain length. In this plateau regime, the polymer melt acts like a rubber. 

In analogy, it is suggestive to assume that the entanglements between the chains in a melt lead to 

the formation of a temporary network, which then displays rubber elastic properties. Based on such 

assumptions, the reptation model of de Gennes [4] and Doi and Edwards [14] was formulated. In 

this model, the dominating chain motion is a reptile-like creep along the chain profile, the reptation 

tube. d relates to the plateau modulus of the melt as: 

  𝑑2 =
4

5

𝑅𝐸
2

𝑀
𝜌𝑁𝐴

𝑘𝐵𝑇

𝐺𝑁
0         (22) 

with 𝐺𝑁
0 , being the plateau modulus. 

Using the Eqs. (20) to (22), compare the predictions of the rheological theories on the basis 

of the NSE results with the values reported in the literature [12,15] for the viscosity and plateau 

modulus of PEO. 
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Appendix A: 

The principle of neutron spin echo 

 

A.1. The NSE technique and the spectrometer 

Figure 3 in the main text shows in detail the manipulation of the neutron spins through the 

NSE spectrometer. After the neutron beam (λ/λ = 10% to 20%, depending on the tilt angle of the 

velocity selector) is polarized in the longitudinal direction by a Mezei cavity, the neutron spins are 

rotated by 90° by the first π/2-flipper, which begins the precession of the neutron in the field 

produced by the main coil. In a perpendicular magnetic field H1, a neutron spin will undergo 

precessions at a frequency 𝜔𝐿 = −𝛾𝐿𝐻1. If a neutron is polarized perpendicular to a homogeneous 

field, it will precess through an angle 

  𝜑𝑖 = 𝛾𝐿
𝑚𝑛𝜆

ℎ
∫ 𝐻𝑖(𝑙)𝑑𝑙

 

𝑖
= 𝛾𝐿

𝑚𝑛𝜆

ℎ
𝐽𝑖      (A1) 

where 𝐽𝑖 = ∫ 𝐻𝑖(𝑙)𝑑𝑙
 

𝑖
 is the field integral along solenoid i. Note that the maximum Ji for the NGA-

NSE is ≈ 0.5 Tm. For a beam of neutrons with an incident wavelength distribution f(λ) and 〈𝜆〉 =

〈𝜆1〉, each neutron undergoes a spin precession of 𝜙1(𝜆) in the first arm of the spectrometer. The 

neutron beam, with its broad band of wavelength, will completely depolarize in this first precession 

field. Just before scattering from the sample, a neutron passing through the π-flipper will change 

its phase from 𝜙 (𝑚𝑜𝑑 2𝜋) to −[𝜙 (𝑚𝑜𝑑 2𝜋)]. Then, on passing through the second precession 

field, if the scattering is elastic and the two field integrals are the same, the beam recovers its full 

polarization at the second π/2-flipper, which rotates the spins back to the longitudinal direction, 

thereby stopping the precessions. 

If the neutrons are scattered quasi-elastically from the sample, changing wavelength by 𝛿λ, 

then they will undergo a spin precession with phase angle 2 in the second arm of the spectrometer. 

The phase difference will be: 

  𝜑 = 𝜙1(𝜆) − 𝜙2(𝜆 + 𝛿𝜆) = 𝜙1(𝜆) − 𝜙1(𝜆 + 𝛿𝜆) + ∆𝜙(𝜆 + 𝛿𝜆)  (A2) 

where ∆𝜙(𝜆) = 𝜙1(𝜆) − 𝜙2(𝜆). 

To the first order in λ𝛿λ and , the phase shift is composed of a term from the inelasticity 

and a term from the difference in the field integrals (recall that 𝜙 ∝ 𝜆): 

  𝜑 = 𝜙1(〈𝜆1〉)
𝜆

〈𝜆1〉
− 𝜙1(〈𝜆1〉)

𝜆+𝛿𝜆

〈𝜆1〉
+ ∆𝜙(〈𝜆1〉)

𝜆

〈𝜆1〉
=

𝜙1(〈𝜆1〉)𝛿𝜆+∆𝜙(〈𝜆1〉)𝜆

〈𝜆1〉
 (A3) 

The inelasticity of the scattering can be written as a change in wavelength: 

  ℏ𝜔 = 𝐷𝐸 = 𝐸1 − 𝐸2 =
ℎ2

2𝑚𝑛
[

1

𝜆2 −
1

(𝜆+𝛿𝜆)2]     

 (A4) 

where to the first order in 𝛿λ 

  ℏ𝜔 =
ℎ2

𝑚𝑛

𝛿𝜆

𝜆3         (A5) 
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which connects 𝛿λ to ω (or equivalently to E; please, keep also in mind that it is common practice 

to indicate E simply as E). 

 Due to the quantum nature of the neutron spin, only one component of the spin, call it z, 

can be determined. The polarization of the scattered beam, which is the quantity measured during 

a NSE experiment, is given by: 

  〈𝑃𝑧〉 = 〈cos(𝜑)〉 = ∫ 𝑓(𝜆) 𝑑𝜆 ∫ 𝑆(𝑄, 𝜔) cos [
𝜙1(〈𝜆1〉)

𝑚𝑛𝜆3

2𝜋ℎ
𝜔+∆𝜙(〈𝜆1〉)𝜆

〈𝜆1〉
] 𝑑𝜔 (A6) 

where we have integrated over the distribution of incoming wavelength and exchanged energies, 

this latter distribution being defined by the scattering function S(Q,ω). 

 Since we have assumed S(Q,ω) is a quasi-elastic scattering law, which is essentially an 

even function of ω, the cosine can be factorized: 

  〈𝑃𝑧〉 = ∫ 𝑓(𝜆) cos [
∆𝜙(〈𝜆1〉)𝜆

〈𝜆1〉
] 𝑑𝜆 ∫ 𝑆(𝑄, 𝜔) cos [

𝜙1(〈𝜆1〉)
𝑚𝑛𝜆3

2𝜋ℎ
𝜔

〈𝜆1〉
] 𝑑𝜔  

   = ∫ 𝑓(𝜆) cos [
∆𝜙(〈𝜆1〉)𝜆

〈𝜆1〉
] 𝑑𝜆 ∫ 𝑆(𝑄, 𝜔) cos(𝜔𝑡𝐹) 𝑑𝜔   (A7) 

 

where 

   𝑡𝐹 =
𝜙1(〈𝜆1〉)𝑚𝑛𝜆3

2𝜋ℎ〈𝜆1〉
= 𝛾𝐿 (

𝑚𝑛

ℎ
)

2 𝜆3

2𝜋
𝐽𝑖     (A8) 

is the Fourier time. 

Q6. In practice, how do we get longer Fourier times? 

Q7. How many turns of neutron spins do you expect? Compare different Fourier time 

conditions. 

 

 By adjusting the field so that the echo condition is met (J1=J2, i.e., =0), the beam 

polarization is: 

  〈𝑃𝑧〉 = ∫ 𝑓(𝜆) 𝑑𝜆 ∫ 𝑆(𝑄, 𝜔) cos(𝜔𝑡𝐹) 𝑑𝜔 = 𝐼(𝑄, 𝑡𝐹)  (A9) 

I(Q,t) is the intermediate scattering function (ISF), which is the spatial Fourier transform of the 

van-Hove correlation function G(r,t) (remember that G(r,t), classically, represents the probability 

that given a particle at the origin at time zero, a particle is at position r at time t. G is composed of 

a self, Gs(r,t) probed by incoherent scattering, and of a distinct part). The scattering function S(Q,E) 

is the cosine transform of I(Q,t). In many experimental cases I(Q,t) varies slowly with λ, and so it 

can be removed from the integrand. In these cases, NSE spectroscopy directly measures the ISF 

and it is not necessary to determine the wavelength distribution. 

The notion “high resolution” used in connection with NSE instruments means high 

achievable Fourier times, tF. There are two parameters available to influence tF: the neutron 

wavelength λ and the field integral J. The former depends on the neutron source characteristics as 

well as on the desired Q-range. At the NCNR the highest neutron flux is at λ ≈ 6 Å, and in order 



 24 

to reach higher tF a price in terms of the neutron flux has to be paid. The field integral depends on 

the design and characteristics of the spectrometers. Different issues limit its value. Achieving a 

high value of J by aiming at a value of the magnetic field H is limited by the costs and by the 

unavoidable inhomogeneity of J, i.e. the differences of J along different neutron paths have to be 

small compared to the value corresponding to half a precession. In order to reduce the 

inhomogeneities related to the radial variation of the field and to the different path length present 

in a divergent beam, special correcting elements, the so-called “Fresnel coils”, have to be inserted 

along the flight path. Figure A1 shows the resolution of the NCNR NSE spectrometer at different 

wavelengths. 

 

Figure A1. Wavelength dependence of the resolution function. 

 

The polarization of the scattered neutrons at the end of the second precession field is 

detected by an analyzer, made of an array of supermirrors in front of the detector that transmits 

only neutrons of one polarization direction. Neutrons are detected by a 3232 cm2 multidetector 

with a resolution of 1 cm2. We will see in the data reduction section how to take full advantage of 

the multidetector to measure different Q values at the same time. 

 A spin echo measurement is usually performed by setting the spectrometer to the echo 

condition (J1=J2), obtaining the ISF using Eq. (A10). As shown in Fig. 5, in practice the counting 

rate (N) is measured for several phase current (c) values near the echo position, then fitted to a 

Gaussian damped cosine function to give the echo amplitude, A: 

  𝑁 = 𝑁0 + 𝐴𝑒𝑥𝑝 [
(𝜙𝑐−𝜙0)2

2𝜎2 ] cos [
360

𝑇
(𝜙𝑐 − 𝜙0)]    (A10) 

Q8. Can you explain why Eq. (A10) is used to fit the echo? 

Q9. What is the relation between the fitting parameters  and T and the incoming 

wavelength distribution f(λ)? 
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Figure A2. NSE signal as a function of the phase difference between the incident and scattered 

beams. The red curve is the fit according to Eq. (A10) (can you tell why  is a fix parameter?). 

The blue, orange, and black lines are the magnetic field along the three orthogonal directions at 

the sample position. In this way the presence of stray magnetic fields due to the environment can 

be recorded. 

 

The effect of the less-than-perfect efficiency of the flippers, the polarizer, and the analyzer 

is removed by measuring the count rates with the π/2-flippers off and the π-flipper both off and on, 

giving the non spin flip, Nup, and spin flip counts, Ndown, respectively. The measured value of the 

polarization of the scattered beam at the echo point PzS is given by: 

  〈𝑃𝑧〉S =
2𝐴

𝑁𝑢𝑝−𝑁𝑑𝑜𝑤𝑛
        (A11) 

Inhomogeneities in the magnetic field may further reduce the polarization. As these 

inhomogeneities are not correlated with S(Q,ω) or f(λ), their effect may be divided out by 

measuring the polarization from a purely elastic scatterer: 

  〈𝑃𝑧〉E =
2𝐴𝐸

𝑁𝑢𝑝
𝐸 −𝑁𝑑𝑜𝑤𝑛

𝐸         (A12) 

 In order to ensure that the dynamic scattering from everything that is not our sample is 

accounted for, a background measurement must be performed. The sample holder (including the 

pure solvent, if any) must be measured under identical conditions as your sample. 

 The normalized ISF is then obtained by: 

  
𝐼(𝑄,𝑡)

𝐼(𝑄,0)
= [

2(𝐴−𝑇𝑟𝐴𝑏𝑔𝑟)

(𝑁𝑢𝑝−𝑁𝑑𝑜𝑤𝑛)−𝑇𝑟(𝑁𝑢𝑝
𝑏𝑔𝑟

−𝑁
𝑑𝑜𝑤𝑛
𝑏𝑔𝑟

)
]

2𝐴𝐸

𝑁𝑢𝑝
𝐸 −𝑁𝑑𝑜𝑤𝑛

𝐸⁄    (A13) 
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where Tr is the ratio of the transmissions of the sample and the background sample. Therefore, 

transmissions of both the sample and the solvent (with respect to an empty beam) must be 

measured at the respective wavelength, so that the correct fraction of solvent scattering (echo 

amplitude) can be subtracted. 

 In an NSE experiment, only scattering in the direction of the second arm can be measured. 

However, using a multidetector, it is still possible to measure I(Q,t) at different Q values (around 

the mean Q value, determined by the scattering angle). At the NSE spectrometer at the NCNR, the 

scattering angle can be varied between ≈2 and 105. The time is varied, according to Eq. (A8), 

by changing the field in the main coils.  

 Having measured the scattering function in the time domain, from Eq. (A13) it can be seen 

that unlike other spectrometers, the instrumental resolution effects in NSE spectroscopy may be 

simply divided out by measuring the response of a purely elastic scattering sample. This is a great 

advantage and spares the user the often complicated task of deconvolving the instrumental energy 

lineshape from the physical lineshape from the sample. 

Q10. How do you know if your sample scatters "well" or "good enough"? 

Q11. How long do you have to count for each measurement? 

 

A.2. Data reduction 

NSE data reduction is not a straightforward process. This is mostly due to the fact that we 

want to achieve full benefit from the multidetector. In fact, the echo determination must be done 

patch by patch on the detector surface to account for the residual phase shifts observed. The pixels 

are usually binned into areas of 22 or 44 pixels, and then these areas are analyzed individually. 

This process must be performed very carefully especially for the resolution. It is important that the 

measured phase varies smoothly on the surface of the detector and that it varies about linearly for 

each area as a function of the time. This is not always easy, especially near the edge of the detector 

or at high Fourier times, where the signal-to-noise ratio is not very good. Luckily, once the phases 

are determined for the resolution they can be ‘imported’ for the analysis of the sample itself and 

of the background. 

Finally, data from areas (usually ring segments) representing the same momentum transfer 

Q are collected and evaluated into several I(Qi,t)/I(Qi) curves. For this reason we have to accurately 

measure the position of the beam center. 

Q12. Each pixel of the 2-D detector counts neutrons with a slightly different 

efficiency (± 10 %). Does the non-uniformity of the detector need to be accounted 

for? 
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Appendix B: 

Incoherent scattering measurements with NSE spectroscopy from 

Hydrogenous Samples 

 

There are three sources of incoherent scattering: isotopic variation in the nuclear cross-

section, uncorrelated motions, and variation in the nuclear cross section due to the nuclear spin. In 

this appendix, we discuss nuclear spin incoherence, specifically as it is applied to hydrogenated 

samples. 

With the classical NSE spectrometer design, it is possible to measure the nuclear incoherent 

intermediate structure factor Iincoh(Q,t) in addition to the coherent intermediate structure factor 

discussed above [Icoh(Q,t)]; however, in practice, some difficulties need to be overcome. Most 

importantly, the incoherent scattering intensity is often low. The incoherent scattering is spread 

out isotropically in a solid angle of 4π, therefore its intensity is generally much lower than the 

intensity of coherent scattering, which is concentrated in a limited region of the Q space (consider 

for example how the SANS signal compares to the incoherent background).  

 

 
Figure B1. NSE signal as a function of the phase difference between the incident and scattered 

beams. The upper part of the figures shows the principle difference, in the case of deuterons and 

protons, between the scattering from a nucleus with and without nuclear spin. The lower part shows 

the NSE signals obtained in both cases – the count rate is plotted against the current of the phase 

correction coil. Acoh and Aincoh are the echo amplitudes for coherent and incoherent scattering, N0 

is the average count rate outside the echo, N+ and N- are the maximal and minimal count rates with 

the π/2-flippers on, and NNSF and NSF are the count rates of non spin flip (π-flipper off) and spin 

flip (π-flipper on) measurements made with the π/2-flippers off. 
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Moreover, the nuclear spin incoherent scattering intrinsically reduces the polarization of 

the scattered beam, and therefore the echo amplitude, as shown in Fig. B1. Nuclear spin 

incoherence causes, with a nucleus dependent probability, a spin flip of both the inelastically and 

elastically scattered neutrons. For example, 2/3 of the neutrons scattered from an H atom undergo 

a spin flip, whereas deuterium, which has no nuclear spin, has no influence on the neutron spin. In 

nuclear spin incoherent scattering processes, some fraction of the neutron spins are flipped by 180 

and produce an echo that is reversed with respect to the non-spin-incoherent case. The overall echo 

amplitude is a superposition of the signals with opposite sign from the spin-flipped and non-spin-

flipped neutrons, and so is reduced. For scattering from H atoms, the final signal is -1/3 of the 

signal from the non-spin-incoherent scattering case; the background is strongly increased as well, 

reducing the signal-to-noise ratio considerably. In the ideal case a purely incoherent scatterer gives 

a flipping ratio (NNSF/NSF) of 0.5, whereas for coherent scattering flipping ratios of the order of ten 

are customary. If, in addition, there is some coherent scattering present, the spin incoherent and 

coherent cross sections have opposite signs for the echo signal and so reduce the echo signal in a 

way that cannot be decomposed. 

However, if the incoherent signal is strong enough, for example in the case of aqueous 

systems, the incoherent scattering can be measured. With respect to a measurement performed 

with a time-of-flight or a backscattering spectrometer, the main benefits are a better energy 

resolution and the advantage of working in the time domain. The main drawback is that each Q 

value has to be measured separately. In any case, long counting times are to be expected. 

For these reasons, the main application of NSE spectroscopy is still to measure the coherent 

intermediate scattering function Icoh(Q,t), the coherent density fluctuations that correspond to the 

SANS intensity pattern. The coherent scattering may be orders of magnitude more intense than the 

incoherent contributions. However, studies of the incoherent dynamics with NSE are possible and 

in some cases have been successfully performed in the past. 



 29 

Appendix C: 

Magnetic scattering measurements with NSE spectroscopy 

 

You now know that the neutron spin echo technique is the neutron scattering method with 

the highest energy resolution. Relaxation times of several nanoseconds (corresponding to a 

resolution of the order of 100 neV) are easily measured and hence the technique is suited for slow 

dynamics. Although the majority of experiments done on a NSE spectrometer involve soft 

condensed matter, the technique is also very important in the study of magnetic samples with slow 

spin dynamics. By utilizing polarized neutrons, NSE allows the separation of magnetic and nuclear 

coherent and incoherent scattering.  

 
Figure C1. Example of an echo measured for a magnetic signal. The last six points are the 

measurement of the xyz polarization. The open symbols refer to the down measurements (no spin 

inversion) and the closed symbols to the up measurements (spin inversion). x: circles; z: squares; 

y: diamonds. Note the ‘inversion’ for the z measurements: the up counts are much higher than the 

down. In fact, the magnetic intensity is: SM(Q)=2(zup-zdwn)-(xup-xdwn)-(yup-ydwn). The cyan line 

represents the average intensity: S(Q)=(zup+zdwn+yup+ydwn+xup+xdwn)/6. The distance between the 

red and green line is the normalization factor for the magnetic echo and is equal to the magnetic 

intensity divided by 2. 

 

In fact, in NSE experiments with magnetic samples one almost always employs three-

directional neutron polarization analysis (often referred to as xyz polarization analysis) to measure 
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the magnetic part of the static structure factor S(Q). To do this the instrument is run in polarized 

diffraction mode without an echo but with a π flipper. One measures six cross sections with the 

magnetic field along three axes x, y, and z (‘up’ and ‘down’ for each). 

Certain linear combinations of these cross sections cancel the nuclear coherent and 

incoherent scattering contributions, thus allowing the separation of the purely magnetic scattering, 

magnetic SM(Q). With polarized neutrons, one always identifies the magnetic scattering 

unambiguously.  

During the echo experiment one takes advantage of the fact that a magnetic species does a 

π flip of the neutron (spin inversion). Therefore, one important difference between a magnetic 

experiment and the other experiments done on the spectrometer is the absence of the π flipper near 

the sample position. Now only the spin flipped neutrons from the magnetic scattering contribute 

to the echo, while the nuclear scattering generates a depolarized background. The remaining 

experimental details are the same. The echo amplitude, which is purely due to magnetic scattering, 

is then normalized to the magnetic SM(Q) obtained from the xyz polarization analysis.  

The difficulties with magnetic NSE experiments include the weak signal, neutron 

depolarization from ferromagnetic components to the spin-correlations and the necessity for slow 

spin dynamics. The technique has however proven indispensable in spin-glass physics and 

frustrated magnetism. 
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NSE at a glance 

• Sensitive to the time-dependent density-density correlation function. Directly measures the 

intermediate scattering function I(Q,t) . 

• Bridges the gap in time scale between conventional inelastic neutron scattering and 

dynamic light scattering. (Q-range of 0.01–1.6Å - 1 and Fourier times of up to 10- 7 s 

available.) 

• NIST spectrometer is optimized for measurements of soft condensed matter systems. For 

example:  

Polymers 

Observation and quantitative description of the crossover in dynamics from local segmental 

diffusion to time-dependent behavior governed by entanglements occurring over longer 

length scales. 

Glassy dynamics 

Identification in polymer glasses of the intra- and inter- molecular dynamics responsible 

for the α and βslow relaxation. 

Biological model systems 

Quantitative description of the effect of interlayer coupling in the extended diffusive mode 

of lipid bilayers. 

Proteins 

Intra-molecular diffusion in e.g., pig immunoglobulin G. 

• By using polarized neutrons, NSE provides an intrinsic separation of magnetic and nuclear 

scattering, making data analysis easy and the interpretation unambiguous for this kind of 

experiments. 

 

Spectrometer Operating Characteristics 

 Present Upgrade 

Scattering angle 
up to 105°; 

Qmax = 1.25 Å-1 for 8Å. 

up to 100°; 

Qmax = 1.20 Å-1 for 8Å. 

Qmin and Q-resolution <0.02Å-1. Same 

Polarized beam for wavelengths: > 4.7 Å. Same 

Maximum Field integral |B|dl = 0.438 T·m (40 ns at 8Å). 1 T·m (100 ns at 8Å). 

Flux (10% FWHM wavelength 

distribution). 
2×106 n/cm2/s at 8Å  2 (from cold source upgrade) 

Typical sample size: 3×3 cm2. Same 
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Answers to the Questions: 

 

Q1: Confirm the energy of neutrons is close to the thermal energy for various wavelengths. 

 

The kinetic energy of neutron is 𝐸𝑛 =
𝑚𝑛𝑣𝑛

2

2
=

ℎ2

2𝑚𝑛𝜆2
, where vn and  are the neutron 

velocity and wavelength, respectively. Putting Plank’s constant h = 6.63x10-34 m2kg/s and neutron 

mass mn = 1.67x10-27 kg with considering the atomic scale probe,  is assumed to be 0.1 nm, that 

leads 𝐸𝑛  ≈  1.3 × 10−20J ≈ 3.2𝑘B𝑇, where kB is the Boltzmann constant and T is temperature and 

here we assumed T = 300 K. Even longer wavelength of  = 1 nm is used, then 𝐸𝑛  ≈

 1.3 × 10−22J ≈ 0.032𝑘B𝑇 at T = 300 K. 

 

Q2: In NSE, we measure the dynamic structure factor up to 100 ns. What types of chain motions 

would you expect to observe for PEO with Mw=300 Da and Mw=35 kDa at 400 K in NSE? What 

about PolyStyrene, Mw=100kDa?  

 

The Q range of interest can be estimated as 0.1 Å-1. First, we should estimate the diffusion 

coefficient for the whole chain. From section 2.2.1, we get 𝐷𝑅 =
𝑘𝐵𝑇

𝑁𝜁0
=

𝑊𝑙4

3𝑅𝐸
2 . From table 3, for 

Mw=300 Da, we get 0.219 nm2/ns. This is in the time window of NSE and will be the dominant 

process. For Mw=2 kDa, DR=0.033 nm2/ns, an order of magnitude slower; therefore, the diffusion 

of the whole chain is hardly observable, whereas the Rouse dynamics falls in the NSE window. 

For Mw=35 kDa, we will still observe the Rouse motion at short time, but we are now above the 

entanglement molecular weight and the effect of local reptation would be observed at a longer 

time. It is difficult to access partial escape or center of mass diffusion in entangled polymers, since 

the time scale of these motions are much slower than that are accessed by NSE. To answer the last 

question a little literature search is required, to get: M0=104, l=0.68 nm, Wl4=2 10-6 nm4/ns 

[Macromolecules, 34, 5561 (2001)]. Even the Rouse dynamics is too slow to be appreciable in the 

NSE time window at this temperature. 

 

Q3: Calculate the contrast between h-PEO and d-PEO. Consider the following mixtures of h-PEO 

and d-PEO: 10 % h-PEO/90 % d-PEO, 20 % h-PEO/80 % d-PEO, 50 % h-PEO/50 % d-PEO, 

90 % h-PEO/10 % d-PEO; what advantages and disadvantages do each of these compositions 

offer for a NSE experiment? Imagine to disperse gold nanoparticles in your PEO polymer matrix, 

how could you contrast match the nanoparticles?  

 

Equation (8) in the main text defines the scattering length density, 𝜌 = ∑
𝑏𝑖

𝑣

𝑁
𝑖 . The 

molecular volume is expressed as 𝑣 =
𝑀

𝜌𝑚𝑁𝐴
, where M, m, and NA are the molecular weight, mass 

density, and Avogadro’s number, respectively. In the case of polymer, we calculate the SLD for 

monomer unit. Therefore, for h-PEO, we get SLD as follows: 𝜌ℎ𝑃𝐸𝑂 = 1.06𝑔 𝑚𝐿−1 ×
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6.02×1023𝑚𝑜𝑙−1

44𝑔 𝑚𝑜𝑙−1
× (2 ∗ 6.640 × 10−13𝑐𝑚 + 4 ∗ (−3.7390 × 10−13)𝑐𝑚 + 5.803 × 10−13𝑐𝑚) =

6 × 109𝑐𝑚−2 = 0.6 × 10−6Å−2 , where bound coherent scattering length of C, H, and O of 

6.640 × 10−13𝑐𝑚, −3.7390 × 10−13𝑐𝑚, and 5.803 × 10−13𝑐𝑚 were used. Similarly, 𝜌𝑑𝑃𝐸𝑂 =

1.06𝑔 𝑚𝐿−1 ×
6.02×1023𝑚𝑜𝑙−1

48𝑔 𝑚𝑜𝑙−1
× (2 ∗ 6.640 × 10−13𝑐𝑚 + 4 ∗ 6.671 × 10−13𝑐𝑚 + 5.803 ×

10−13𝑐𝑚) = 6.08 × 1010𝑐𝑚−2 = 6.08 × 10−6Å−2. Therefore, the scattering contrast between h-

PEO and d-PEO is Δ𝜌 = 𝜌𝑑𝑃𝐸𝑂 − 𝜌ℎ𝑃𝐸𝑂 = 5.48 × 10−6Å−2. 

Currently there are various software program that can be used to calculate SLDs of your system. 

One of such is available at https://www.ncnr.nist.gov/resources/activation. 

As the amount of the minority fraction increases the intensity increases, however the incoherent 

background also increases when h-PEO amount is increased. The optimum fraction depends on 

many factors, including the Q range of interest, making it hard to determine in advance; usually 

20 % h-polymer fraction has been used. The scattering length density of the gold nanoparticles can 

be estimated using the macroscopic density, Au=19.3 g/cm3, resulting in sldAu=4.662 10-6 Å-2. The 

contrast matching point is obtained roughly for (h-PEO)0.25(d-PEO)0.75. 

 

Q4: How would you estimate the crossover time between Rouse and entanglement if you never 

directly measured in NSE before? 

 

Use the polymer’s macroscopic rheological behavior, specifically the zero-shear viscosity 

at the NSE temperature and the plateau modulus in melt at any temperature. 

 

Q5: λ=15 Å can allow Fourier times up to 200 ns. What is the main limitation of using this 

configuration, particularly for our polymer sample? 

 

The biggest limitation is the neutron flux. The incident neutron flux is wavelength-

dependent, and the flux maximum for cold neutrons are around  = 6 Å. At  = 15 Å, the neutron 

flux is orders of magnitude smaller than that at  = 6 Å. 

 

Q6: In practice, how do we get longer Fourier times? 

 

In NSE, the magnetic field integral Ji and incoming neutron wavelength  are the two 

variables to tune the Fourier time, tF. In the measurements, we fix wavelength  and change Ji by 

changing the current in the main solenoids. Since tF varies with 3, when a big change in tF is 

needed, we change . In this case, though, we should be careful with changing the incoming 

neutron flux. 

 

Q7: How many turns of neutron spins do you expect? Compare different Fourier time conditions. 
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Eq. (A8) is written as 𝜙1(〈𝜆1〉) =
2𝜋ℎ〈𝜆1〉𝑡𝐹

𝑚𝑛𝜆3
, where 𝜙1 corresponds to the precession angle. 

Thus the number of rotation is 𝑅𝑁 =
𝜙1

2𝜋
=

ℎ〈𝜆1〉𝑡𝐹

𝑚𝑛𝜆3 . Assuming tF = 0.1 ns with  = 0.6 nm, RN ≈ 100, 

while tF = 100 ns with  = 1.1 nm, RN ≈ 33800. So in the high-energy resolution conditions of the 

NSE, we are sensitive to a fraction of degrees precession angle difference in more than 10K Larmor 

precession turns of the neutron spin. 

 

Q8: Can you explain why Eq. (A10) is used to fit the echo? 

 

The neutron count rate shown in Fig. A2 shows an oscillation of the neutron intensity with 

Phase, . This oscillation is captured by the cosine function. The amplitude of the cosine function 

depends on the , and is maximum at the Phase center (0) and then decreases away from the center, 

which is expressed using exponential function. The average of the neutron count rate N0 is average 

of Nup and Ndown (N0=(Nup+Ndown)/2) and the parameter A characterizes the amplitude of the echo 

signal. 

 

Q9: What is the relation between the fitting parameters  and T and the incoming wavelength 

distribution f(λ)? 

 

T is directly proportional to the incoming wavelength , and  relates to the Fourier 

transform of f(). 

 

Q10: How do you know if your sample scatters "well" or "good enough"? 

 

Measure the scattering intensity of your sample at a target Q. If the intensity is higher than 

a certain level, we decide the scattering is good enough. In addition, we measure Nup and Ndown 

(polarization analysis). Depending on whether you want to measure coherent, incoherent or 

magnetic scattering the level can differ, but the ratio of Nup and Ndown (which we call the flipping 

ratio) tells us whether the signal is sufficient to measure NSE. 

 

Q11: How long do you have to count for each measurement? 

 

Usually, we define counting time by checking flipping ratio at a center of the detector at a 

certain Q value, and estimate the count time for either the average value of up and down or the 

difference between up and down exceeds 1000 per the detector pixel size. 

 

Q12: Each pixel of the 2-D detector counts neutrons with a slightly different efficiency (± 10 %). 

Does the non-uniformity of the detector need to be accounted for? 
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Yes, but since we normalize our sample intensity data using resolution intensity data by 

dividing by each other, the non-uniformity corrections are automatically done. Therefore, we do 

not need to pay special attention to this correction. 

 

 


