
ExBLAS: Reproducible and Accurate BLAS Library

Roman Iakymchuk1,2, Sylvain Collange3, David Defour4, and Stef Graillat1

1Sorbonne Universités, UPMC Univ Paris VI, UMR 7606, LIP6
2Sorbonne Universités, UPMC Univ Paris VI, ICS

3INRIA – Centre de recherche Rennes – Bretagne Atlantique
4DALI–LIRMM, Université de Perpignan

roman.iakymchuk@lip6.fr

NRE2015 at SC15, November 20, 2015
Austin, TX, USA

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 1 / 22

Motivation

2015 Petascale: we able to perform 33.86 petaflops

2017 Petascale: we plan to perform 100− 200 petaflops

2020 Exascale: we aim to perform exaflops (1018 flops)

⇓

1018 round-off errors per second

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 2 / 22

Motivation

2015 Petascale: we able to perform 33.86 petaflops

2017 Petascale: we plan to perform 100− 200 petaflops

2020 Exascale: we aim to perform exaflops (1018 flops)

⇓

1018 round-off errors per second

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 2 / 22

Motivation

2015 Petascale: we able to perform 33.86 petaflops

2017 Petascale: we plan to perform 100− 200 petaflops

2020 Exascale: we aim to perform exaflops (1018 flops)

⇓

1018 round-off errors per second

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 2 / 22

Motivation

2015 Petascale: we able to perform 33.86 petaflops

2017 Petascale: we plan to perform 100− 200 petaflops

2020 Exascale: we aim to perform exaflops (1018 flops)

⇓

1018 round-off errors per second

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 2 / 22

Goal

To compute BLAS operations with floating-point numbers
fast and precise, ensuring their numerical reproducibility,
on a wide range of architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 3 / 22

Outline

1 Accuracy & Reproducibility of FP Operations

2 Our Multi-Level Reproducible and Accurate Algorithms

3 Performance Results

4 Conclusions and Future Work

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 4 / 22

Accuracy and Reproducibility

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
results from run-to-run on the same input data on the
same or different architectures

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 5 / 22

Accuracy and Reproducibility

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

2−53 6= 0 in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
results from run-to-run on the same input data on the
same or different architectures

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 5 / 22

Accuracy and Reproducibility

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
results from run-to-run on the same input data on the
same or different architectures

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 5 / 22

Sources of Non-Reproducibility

Performance-optimized floating-point libraries are prone to
non-reproducibility for various reasons:

Changing Data Layouts:
Data partitioning
Data alignment

Changing Hardware Resources
Number of threads
Fused Multiply-Add support
Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Cache line size
Number of processors
Network topology

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 6 / 22

Sources of Non-Reproducibility

Performance-optimized floating-point libraries are prone to
non-reproducibility for various reasons:

Changing Data Layouts:
Data partitioning
Data alignment

Changing Hardware Resources
Number of threads
Fused Multiply-Add support
Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Cache line size
Number of processors
Network topology

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 6 / 22

Existing Solutions

Fix the Order of Computations
Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility

(slow, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel and Nguyen)

→ For BLAS-1 on CPUs only

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 7 / 22

Existing Solutions

Fix the Order of Computations
Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility

(slow, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel and Nguyen)

→ For BLAS-1 on CPUs only

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 7 / 22

Existing Solutions

Fix the Order of Computations
Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility

(slow, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel and Nguyen)

→ For BLAS-1 on CPUs only

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 7 / 22

Our Multi-Level Reproducible Summation

Parallel algorithm with
5-levels

Suitable for today’s parallel
architectures

Based on FPE with EFT and
Kulisch accumulator

Guarantees “inf” precision
→ bit-wise reproductibility

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 8 / 22

Level 1: Filtering

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 9 / 22

Level 2 and 3: Scalar Superaccumulator

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 10 / 22

Level 4 and 5: Reduction and Rounding

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 11 / 22

Experimental Environments

Table : Hardware platforms employed in the experimental evaluation

Intel Core i7-4770 (Haswell) 4 cores with HT

Mesu cluster (Intel Sandy Bridge) 64× 2× 8 cores

Intel Xeon Phi 3110P 60 cores × 4-way MT

NVIDIA Tesla K20c 13 SMs × 192 CUDA cores

NVIDIA Quadro K5000 8 SMs × 192 CUDA cores

AMD Radeon HD 7970 32 CUs × 64 units

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 12 / 22

Parallel Reduction
Performance Scaling on Intel Xeon Phi

 0

 5

 10

 15

 20

 25

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

G
ac

c/
s

Array size

Parallel FP sum
Demmel fast

TBB deterministic
Superacc

FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc

FPE8EE + Superacc

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 13 / 22

Parallel Reduction
Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 1e+20
 1e+40

 1e+60
 1e+80

 1e+100
 1e+120

 1e+140

G
ac

c/
s

Dynamic range

Parallel FP Sum
Demmel fast

Superacc
FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 14 / 22

Dot Product
Performance Scaling on NVIDIA Tesla K20c

DDOT: α := xT y =
∑N

i xiyi

 0.0001

 0.001

 0.01

 0.1

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
[s

ec
s]

Array size

Parallel DDOT
Superacc

FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

Based on TwoProduct
and Reproducible
Summation
TwoProduct(a, b)

1: r ← a ∗ b
2: s← fma(a, b,−r)
fma(a, b, c) = a ∗ b+ c

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 15 / 22

Triangular Solver
Performance Scaling on NVIDIA Tesla K20c

DTRSV: Ax = b

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
[s

ec
s]

Matrix size [n]

Parallel DTRSV
Superacc

FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE4EE + Superacc
FPE8EE + Superacc

Blocked ExTRSV

Based on ExDOT

Internal ExGEMV

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 16 / 22

Triangular Solver
Accuracy

DTRSV: Ax = b

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
10

10
20

10
30

10
40

10
50

R
e
la

ti
v

e
 f

o
rw

a
rd

 e
rr

o
r

Condition number

DTRSV

ExTRSV

Round superaccs for
each element of the
solution

Saturated by division

cond(A, x) = ‖|A−1||A||x|‖∞
‖x‖∞

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 17 / 22

Parallel Matrix Product
Performance Scaling on NVIDIA Tesla K20c

DGEMM: C := αAB + βC

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

T
im

e
[s

ec
s]

Matrix size [m = n = k]

Parallel DGEMM
Superacc

FPE3 + Superacc
FPE4 + Superacc
FPE6 + Superacc
FPE8 + Superacc

FPE4EE + Superacc Extensive usage
of memory→
lower performance

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 18 / 22

Parallel Summation with MPI
Performance Scaling on Mesu cluster; n = 16e06

 0

 2

 4

 6

 8

 10

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

N
o
rm

il
iz

ed
 t

im
e

to
 p

ar
al

le
l

su
m

m
at

io
n

Number of processors

Computation
Reduction

6432168421

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 19 / 22

Conclusions and Future Work

Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling

Deliver comparable performance to the classic implementations

Perfect scaling with the increase of the problem size or the
number of cores

The ExTRSV and ExGEMM performance needs to be enhanced

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ...

ExBLAS-3: ExGEMM, ExTRMM, ExSYR2K, ...

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 20 / 22

Conclusions and Future Work

Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling

Deliver comparable performance to the classic implementations

Perfect scaling with the increase of the problem size or the
number of cores

The ExTRSV and ExGEMM performance needs to be enhanced

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ...

ExBLAS-3: ExGEMM, ExTRMM, ExSYR2K, ...

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 20 / 22

Conclusions and Future Work

Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling

Deliver comparable performance to the classic implementations

Perfect scaling with the increase of the problem size or the
number of cores

The ExTRSV and ExGEMM performance needs to be enhanced

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ...

ExBLAS-3: ExGEMM, ExTRMM, ExSYR2K, ...

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 20 / 22

Conclusions and Future Work

Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling

Deliver comparable performance to the classic implementations

Perfect scaling with the increase of the problem size or the
number of cores

The ExTRSV and ExGEMM performance needs to be enhanced

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ...

ExBLAS-3: ExGEMM, ExTRMM, ExSYR2K, ...

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 20 / 22

Acknowledgement

This work undertaken (partially) in the framework of CAL-
SIMLAB is supported by the public grant ANR-11-LABX-
0037-01 and used the HPC resources of ICS funded by
Region Île-de-France and the project Equip@Meso (ANR-
10-EQPX-29-01) both overseen by the French National
Research Agency (ANR) as part of the “Investissements
d’Avenir” program (ANR-11-IDEX-0004-02)

This work was partially supported by the AllScale project
that has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No. 671603

This work was partially supported by the INTERTWinE
project that has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 671602

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 21 / 22

Thank you for your attention!

URL: https://exblas.lip6.fr

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 22 / 22

https://exblas.lip6.fr

	Accuracy & Reproducibility of FP Operations
	Our Multi-Level Reproducible and Accurate Algorithms
	Performance Results
	Conclusions and Future Work

