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Motivation

2015 Petascale: we able to perform 33.86 petaflops

2017 Petascale: we plan to perform 100− 200 petaflops

2020 Exascale: we aim to perform exaflops (1018 flops)

⇓

1018 round-off errors per second

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 2 / 22



Motivation

2015 Petascale: we able to perform 33.86 petaflops

2017 Petascale: we plan to perform 100− 200 petaflops

2020 Exascale: we aim to perform exaflops (1018 flops)

⇓

1018 round-off errors per second

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 2 / 22



Motivation

2015 Petascale: we able to perform 33.86 petaflops

2017 Petascale: we plan to perform 100− 200 petaflops

2020 Exascale: we aim to perform exaflops (1018 flops)

⇓

1018 round-off errors per second

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 2 / 22



Motivation

2015 Petascale: we able to perform 33.86 petaflops

2017 Petascale: we plan to perform 100− 200 petaflops

2020 Exascale: we aim to perform exaflops (1018 flops)

⇓

1018 round-off errors per second

Roman Iakymchuk (ICS & LIP6, UPMC) ExBLAS November 20, 2015 2 / 22



Goal

To compute BLAS operations with floating-point numbers
fast and precise, ensuring their numerical reproducibility,
on a wide range of architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
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Accuracy and Reproducibility

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
results from run-to-run on the same input data on the
same or different architectures
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Sources of Non-Reproducibility

Performance-optimized floating-point libraries are prone to
non-reproducibility for various reasons:

Changing Data Layouts:
Data partitioning
Data alignment

Changing Hardware Resources
Number of threads
Fused Multiply-Add support
Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Cache line size
Number of processors
Network topology
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Existing Solutions

Fix the Order of Computations
Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility

(slow, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel and Nguyen)

→ For BLAS-1 on CPUs only
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Our Multi-Level Reproducible Summation

Parallel algorithm with
5-levels

Suitable for today’s parallel
architectures

Based on FPE with EFT and
Kulisch accumulator

Guarantees “inf” precision
→ bit-wise reproductibility
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Level 1: Filtering
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Level 2 and 3: Scalar Superaccumulator
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Level 4 and 5: Reduction and Rounding
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Experimental Environments

Table : Hardware platforms employed in the experimental evaluation

Intel Core i7-4770 (Haswell) 4 cores with HT

Mesu cluster (Intel Sandy Bridge) 64× 2× 8 cores

Intel Xeon Phi 3110P 60 cores × 4-way MT

NVIDIA Tesla K20c 13 SMs × 192 CUDA cores

NVIDIA Quadro K5000 8 SMs × 192 CUDA cores

AMD Radeon HD 7970 32 CUs × 64 units
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Parallel Reduction
Performance Scaling on Intel Xeon Phi
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Parallel Reduction
Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06
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Dot Product
Performance Scaling on NVIDIA Tesla K20c

DDOT: α := xT y =
∑N

i xiyi
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Triangular Solver
Performance Scaling on NVIDIA Tesla K20c

DTRSV: Ax = b
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Triangular Solver
Accuracy

DTRSV: Ax = b
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Parallel Matrix Product
Performance Scaling on NVIDIA Tesla K20c

DGEMM: C := αAB + βC
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Parallel Summation with MPI
Performance Scaling on Mesu cluster; n = 16e06
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Conclusions and Future Work

Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling

Deliver comparable performance to the classic implementations

Perfect scaling with the increase of the problem size or the
number of cores

The ExTRSV and ExGEMM performance needs to be enhanced

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ...

ExBLAS-3: ExGEMM, ExTRMM, ExSYR2K, ...
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Thank you for your attention!

URL: https://exblas.lip6.fr
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