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@ To compute BLAS operations with floating-point numbers
fast and precise, ensuring their numerical reproducibility,
on a wide range of architectures

ExBLAS — Exact BLAS

@ ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY,
@ ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR,

o ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K,
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Outline
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0 Accuracy & Reproducibility of FP Operations
e Our Multi-Level Reproducible and Accurate Algorithms
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e Conclusions and Future Work
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Accuracy and Reproducibility

@ Floating-point arithmetic suffers from rounding errors

@ Floating-point operations (+,x) are commutative but
non-associative

(—14+1)+275 £ -1+ (1+27%) in double precision
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Accuracy and Reproducibility

@ Floating-point arithmetic suffers from rounding errors

@ Floating-point operations (+,x) are commutative but
non-associative
(—14+1)+275 £ -1+ (1+27%) in double precision

@ Consequence: results of floating-point computations
depend on the order of computation

@ Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

@ Reproducibility — ability to obtain bit-wise identical
results from run-to-run on the same input data on the
same or different architectures Iip
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Sources of Non-Reproducibility Ul
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Performance-optimized floating-point libraries are prone to
non-reproducibility for various reasons:

@ Changing Data Layouts:
e Data partitioning
o Data alignment
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Sources of Non-Reproducibility

Performance-optimized floating-point libraries are prone to
non-reproducibility for various reasons:

@ Changing Data Layouts:
e Data partitioning
o Data alignment

@ Changing Hardware Resources
o Number of threads

Fused Multiply-Add support

o Intermediate precision (64 bits, 80 bits, 128 bits, etc)
e Data path (SSE, AVX, GPU warp, etc)

@ Cache line size
o
(]

Number of processors
Network topology
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Existing Solutions

@ Fix the Order of Computations
@ Sequential mode: intolerably costly at large-scale systems
o Fixed reduction trees: substantial communication overhead

— Example: Intel Conditional Numerical Reproducibility
(slow, no accuracy guarantees)
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@ Eliminate/Reduce the Rounding Errors
o Fixed-point arithmetic: limited range of values

o Fixed FP expansions with Error-Free Transformations (EFT)
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Existing Solutions uome

@ Fix the Order of Computations
e Sequential mode: intolerably costly at large-scale systems

o Fixed reduction trees: substantial communication overhead

— Example: Intel Conditional Numerical Reproducibility
(slow, no accuracy guarantees)

@ Eliminate/Reduce the Rounding Errors
o Fixed-point arithmetic: limited range of values

o Fixed FP expansions with Error-Free Transformations (EFT)
— Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)
o “Infinite” precision: reproducible independently from the inputs
— Example: Kulisch accumulator (considered inefficient)

@ Libraries

@ ReproBLAS: Reproducible BLAS (Demmel and Nguyen)
— For BLAS-1 on CPUs only ﬁp
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Our Multi-Level Reproducible Summation
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@ Parallel algorithm with
— 5-levels

@ Suitable for today’s parallel
architectures

@ Based on FPE with EFT and
Kulisch accumulator

o i o i @ Guarantees “inf” precision
"""""""""""""""""""""" — bit-wise reproductibility

Level 5 (Rounding)
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Level 1: Filtering —MC
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Level 2 and 3: Scalar Superaccumulator
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Level 4 and 5: Reduction and Rounding
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Experimental Environments !
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Table : Hardware platforms employed in the experimental evaluation

Intel Core i7-4770 (Haswell) 4 cores with HT

Mesu cluster (Intel Sandy Bridge) 64 x 2 x 8 cores

Intel Xeon Phi 3110P 60 cores x 4-way MT
NVIDIA Tesla K20c 13 SMs x 192 CUDA cores
NVIDIA Quadro K5000 8 SMs x 192 CUDA cores
AMD Radeon HD 7970 32 CUs x 64 units
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Parallel Reduction UPMC

Performance Scaling on Intel Xeon Phi
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Parallel Reduction
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Data-Dependent Performance on NVIDIA Tesla K20c
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Dot Product Ul

Performance Scaling on NVIDIA Tesla K20c

DDOT: a := 2Ty = ZN
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Triangular Solver
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Performance Scaling on NVIDIA Tesla K20c
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Triangular Solver
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Parallel Matrix Product
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Performance Scaling on NVIDIA Tesla K20c
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Conclusions and Future Work

@ Compute the results with no errors due to rounding

@ Provide bit-wise reproducible results independently from
o Data permutation, data assignment
@ Thread scheduling
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Conclusions and Future Work

@ Compute the results with no errors due to rounding
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@ Provide bit-wise reproducible results independently from

e Data permutation, data assignment
@ Thread scheduling

@ Deliver comparable performance to the classic implementations

@ Perfect scaling with the increase of the problem size or the

number of cores

@ The EXTRSV and ExGEMM performance needs to be enhanced
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ExBLAS — Exact BLAS

@ ExBLAS-1: ExSUM, , ExDOT, p 000
@ ExBLAS-2: ExGER, , ExTRSV,
@ ExBLAS-3: ExGEMM, , ExSYR2K, ...
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Thank you for your attention!

URL: https://exblas.lip6.fr |

ExBLAS -- Exact BLAS

Main / HomePage

MENU
About EXBLAS
ACTIONS
" ExBLAS stands for Exact (fast, accurate, and reproducible) Basic Linear Algebra Subprograms.
Edit The increasing power of current computers enables one to solve more and more complex problems.
History This, therefore, requires to perform a high number of floating-point operations, each one leading to a
Print round-off error. Because of round-off error propagation, some problems must be solved with a

longer fioating-point format.

SEARCH As Exascale computing is likely to be reached within a decade, getting accurate results in floating-

l:l point arithmetic on such computers will be a challenge. However, another challenge will be the
reproducibility of the results — meaning getting a bitwise identical floating-point result from multiple
Tuns of the same code - due to non- y of fioating-point op nd dynamic

scheduling on parallel computers.

ExBLAS aims at providing new algorithms and implementations for fundamental linear algebra
operations — like those included in the BLAS library - that deliver reproducible and accurate results
with small or without losses to their performance on modern parallel architectures such as Intel Xeon
Phi ly- p nd GPU . We construct our approach in such a way thatitis
independent from data partitioning, order of computations, thread scheduling, or reduction tree
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