ExBLAS: Reproducible and Accurate BLAS Library

Roman lakymchuk^{1,2}, Sylvain Collange³, David Defour⁴, and Stef Graillat¹

¹Sorbonne Universités, UPMC Univ Paris VI, UMR 7606, LIP6
²Sorbonne Universités, UPMC Univ Paris VI, ICS
³INRIA – Centre de recherche Rennes – Bretagne Atlantique
⁴DALI–LIRMM, Université de Perpignan

roman.iakymchuk@lip6.fr

NRE2015 at SC15, November 20, 2015 Austin, TX, USA

2015 Petascale: we able to perform 33.86 petaflops

2015 Petascale: we able to perform 33.86 petaflops 2017 Petascale: we plan to perform 100 - 200 petaflops

2015 Petascale: we able to perform 33.86 petaflops 2017 Petascale: we plan to perform 100 - 200 petaflops 2020 Exascale: we aim to perform exaflops (10^{18} flops)

2015 Petascale: we able to perform 33.86 petaflops 2017 Petascale: we plan to perform 100 - 200 petaflops 2020 Exascale: we aim to perform exaflops (10^{18} flops) $\downarrow\downarrow$

 10^{18} round-off errors per second

• To compute BLAS operations with floating-point numbers fast and precise, ensuring their numerical reproducibility, on a wide range of architectures

ExBLAS – Exact BLAS

- ExBLAS-1: ExSUM, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: EXGER, EXGEMV, EXTRSV, EXSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

- Accuracy & Reproducibility of FP Operations
- Our Multi-Level Reproducible and Accurate Algorithms
- 3 Performance Results
- 4
- Conclusions and Future Work

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $(-1+1) + 2^{-53} \neq -1 + (1+2^{-53})$ in double precision

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $2^{-53} \neq 0$ in double precision

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $(-1+1)+2^{-53}\neq -1+(1+2^{-53}) \quad \text{in double precision}$

- Consequence: results of floating-point computations depend on the order of computation
- Results computed by performance-optimized parallel floating-point libraries may be often inconsistent: each run returns a different result
- **Reproducibility** ability to obtain bit-wise identical results from run-to-run on the same input data on the same or different architectures

Performance-optimized floating-point libraries are prone to non-reproducibility for various reasons:

- Changing Data Layouts:
 - Data partitioning
 - Data alignment

Performance-optimized floating-point libraries are prone to non-reproducibility for various reasons:

- Changing Data Layouts:
 - Data partitioning
 - Data alignment
- Changing Hardware Resources
 - Number of threads
 - Fused Multiply-Add support
 - Intermediate precision (64 bits, 80 bits, 128 bits, etc)
 - Data path (SSE, AVX, GPU warp, etc)
 - Cache line size
 - Number of processors
 - Network topology

Existing Solutions

• Fix the Order of Computations

- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead
- → Example: Intel Conditional Numerical Reproducibility (slow, no accuracy guarantees)

Existing Solutions

• Fix the Order of Computations

- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead
- → Example: Intel Conditional Numerical Reproducibility (slow, no accuracy guarantees)

• Eliminate/Reduce the Rounding Errors

- Fixed-point arithmetic: limited range of values
- Fixed FP expansions with Error-Free Transformations (EFT)
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)
- "Infinite" precision: reproducible independently from the inputs
- → Example: Kulisch accumulator (considered inefficient)

Existing Solutions

• Fix the Order of Computations

- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead
- → Example: Intel Conditional Numerical Reproducibility (slow, no accuracy guarantees)

• Eliminate/Reduce the Rounding Errors

- Fixed-point arithmetic: limited range of values
- Fixed FP expansions with Error-Free Transformations (EFT)
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)
 - "Infinite" precision: reproducible independently from the inputs
- → Example: Kulisch accumulator (considered inefficient)

Libraries

- ReproBLAS: Reproducible BLAS (Demmel and Nguyen)
- → For BLAS-1 on CPUs only

Our Multi-Level Reproducible Summation

- Parallel algorithm with 5-levels
- Suitable for today's parallel architectures
- Based on FPE with EFT and Kulisch accumulator
- Guarantees "inf" precision
- \rightarrow bit-wise reproductibility

Level 1: Filtering

Level 2 and 3: Scalar Superaccumulator

Level 4 and 5: Reduction and Rounding

Table : Hardware platforms employed in the experimental evaluation

Intel Core i7-4770 (Haswell)	4 cores with HT
Mesu cluster (Intel Sandy Bridge)	$64 \times 2 \times 8 \text{ cores}$
Intel Xeon Phi 3110P	60 cores $ imes$ 4-way MT
NVIDIA Tesla K20c	13 SMs \times 192 CUDA cores
NVIDIA Quadro K5000	8 SMs $ imes$ 192 CUDA cores
AMD Radeon HD 7970	32 CUs \times 64 units

Parallel Reduction

Performance Scaling on Intel Xeon Phi

Parallel Reduction

Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06

6

Dot Product

Time [secs]

Performance Scaling on NVIDIA Tesla K20c

 Based on TwoProduct and Reproducible Summation

1:
$$r \leftarrow a * b$$

2:
$$s \leftarrow fma(a, b, -r)$$

•
$$fma(a, b, c) = a * b + c$$

Triangular Solver

Performance Scaling on NVIDIA Tesla K20c

Triangular Solver

Accuracy

- Round superaccs for each element of the solution
- Saturated by division

Parallel Matrix Product

Performance Scaling on NVIDIA Tesla K20c

Time [secs]

Parallel Summation with MPI

Performance Scaling on Mesu cluster; n = 16e06

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Thread scheduling

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Thread scheduling
- Deliver comparable performance to the classic implementations
- Perfect scaling with the increase of the problem size or the number of cores

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Thread scheduling
- Deliver comparable performance to the classic implementations
- Perfect scaling with the increase of the problem size or the number of cores
- The ExTRSV and ExGEMM performance needs to be enhanced

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Thread scheduling
- Deliver comparable performance to the classic implementations
- Perfect scaling with the increase of the problem size or the number of cores
- The ExTRSV and ExGEMM performance needs to be enhanced

ExBLAS – Exact BLAS

- ExBLAS-1: ExSUM, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: ExGER, ExGEMV, ExTRSV, ...
- ExBLAS-3: ExGEMM, ExTRMM, ExSYR2K, ...

This work undertaken (partially) in the framework of CAL-SIMLAB is supported by the public grant ANR-11-LABX-0037-01 and used the HPC resources of ICS funded by Region Ile-de-France and the project Equip@Meso (ANR-10-EOPX-29-01) both overseen by the French National Research Agency (ANR) as part of the "Investissements d'Avenir" program (ANR-11-10EX-000-402)

This work was partially supported by the INTERTWINE project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 671602

Thank you for your attention!

URL: https://exblas.lip6.fr

ExBLAS -- Exact BLAS Main / HomePage

MENU	About ExBLAS
CTIONS	
ïew	ExBLAS stands for Exact (fast, accurate, and reproducible) Basic Linear Algebra Subprograms.
dit	The increasing power of current computers enables one to solve more and more complex problems.
listory	This, therefore, requires to perform a high number of floating-point operations, each one leading to a
Print	round-off error. Because of round-off error propagation, some problems must be solved with a longer floating-point format.
Find	As Exascale computing is likely to be reached within a decade, getting accurate results in floating- point arithmetic on such computers will be a challenge. However, another challenge will be the reproducibility of the results – meaning getting a bitwise identical floating-point result from multiple runs of the same code – due to non-associativity of floating-point operations and dynamic scheduling on parallel computers.
	ExBLAS aims at providing new algorithms and implementations for fundamental linear algebra operations – like those included in the BLAS library – that deliver reproducible and accurate results with small or without loses to their performance on modern parallel architectures such as Intel Xeon Phi many-core processors and GPU accelerators. We construct our approach in such a way that it is independent from data partitioning, order of computations, thread scheduling, or reduction tree schemes.