
07/12/2015

1

Numerical Reproducibility for Parallel

Stochastic Simulation “Exascale Ready”

D.R.C. Hill, F.Y.P. Congo, T. Dao Van

Blaise Pascal University

ISIMA/LIMOS UMR CNRS 6158

The goal of Exascale computing is to multiply by 20x the

performance of the fastest machine on operation.

We can anticipate that Exascale systems will have around

around 109 computing cores.

This also means that at the same time each standard nodes

will be able to deliver tenths of teraflops.

This will help to generate much faster, more precise and

more complex simulations, higher quality medical imaging

will yield faster and personalized medicine with smarter

medical diagnostic and treatment.

Parallel Stochastic simulations are useful at this scale,

particularly because they are “fault” tolerant.

Exascale Computing…

07/12/2015

2

3

Some scalability problems

1. Really ‘Big’ data & output Results interpretability

2. Software costs for:

 Optimization with Numerical reproducibility and
ability to debug !

3. Reliability (hardware errors will be the rule…)

 Software & Hardware (including « soft » errors)

4. Performances: the need for « disruptive technologies »

 Processors, InterConnect, IO (at affordable energy cost)

5. Energy questions

4

Programmability

Exascale application will involve approximately

around O(109) logical cores (hardware threads).

No human being can program, debug or optimize

directly this many threads.

Hope: High-level languages and DSL will allow us to express

that parallelism more effectively

Positive: data-parallel applications, can use the same kind of

automation that has proved successful in areas like geometry

and meshing and then map them onto complex graphical

representations.

Task-parallel applications: we can give a new focus on

statistical methods and Monte Carlo approaches to develop

more resilient software.

07/12/2015

3

5

Reliability

Mandatory co-design (Hard. & Soft.)

They are currently separated (eg. Introduction of- Out of

order instructions…) is it a real option for “Exascale Comp” ?

Hardware designers have been struggling with how to make

systems a thousand times more reliable per bit-operation to

keep us at the same level we are at in today’s best systems.

The only reason to do Exascale computing is to address

increasingly more complex issues. This will require even more

complex software.

Software complexity is the N°1 cause of unreliability

in computation today… far exceeding hardware’s worst

efforts!

6

Reliability & HPC…

…Silent & Soft errors…
1. Change the system state (external forces)

 Alpha particles

 Cosmic rays (High Energy Particles from space)

 Thermal neutrons

 Variation in voltage, temperature, etc.

2. They are at the origin of ECC…

1. To avoids bits flips in memory cells

2. There is also a rising of soft errors in arithmetic units !!!

3. The more we size down the more this problem increases.

4. Chip manufacturers spend money and silicon space to avoid

this kind of errors

3. Soft errors are difficult to detect and reproduce – use spare

time of Titan ?

07/12/2015

4

7

Silent Data & Result Corruption

The integrity and the accreditation of the Science

discoveries we want to make with computers is

threatened (electrons speed above light speed…?!)

Soft errors are not only corrupting data, but they

now affect calculations. (1 per month currently

it could affect one per hour at Exascale !)

ECC is essential for memory, but is does not solve

this problem. We also have to face this with O.S.

systems, middleware, and programming models.

Indeed, soft errors will increase with the machine

size and they also increase within modern arithmetic

units.

8

Protecting state & logic (Reliability)

We can effectively protect correctness of state but

correctness of logic poses special challenges.

State can be protected at about a 10% energy overhead.

Logic correctness requires more invasive approaches with

some degree of redundancy that could well exceed the 10%

overheads

Current R&D focuses on residue checking (self checking FPU)

and redundant multi-threading. This approach has a

significant energy overheads;

Due to the energy issues, we are going to be more limited

than we should have been in protecting logic paths.

This will require a significant degree of cooperation between

software and hardware engineers.

07/12/2015

5

9

HW/SW Codesign (Reliability)

Can we identify at compile time certain critical

regions which need stronger correctness guarantees?

We are already generating terabytes to petabytes of

state per second. At exascale we will be generating

exabytes of state each second.

A single wrong bit can vitiate the entire calculation.

For many scientific calculations: we should be able

to gracefully tolerate many kinds of bit errors, and

also the loss of many kinds of local resources.

For example: in many Monte Carlo simulations, the

loss of a processor does not imply the inherent

failure of the simulation.

10

Checkpointing (Reliability)

Limits of classical checkpointing will be reached : a fault

every hour (or less) with current MTF – but an Exascale

checkpoint could last 30 minutes at 1 Terabyte/s !!!

Without a radical change we are going to be

much worse than we are today…

We have to build a much higher level of local check-pointing

capability into our software and hardware systems.

Parallel Stochastic Simulations could checkpoint must

faster with only intermediate results and all the pseudo-

random number generator statuses.

Using raided non-volatile memory, we could checkpoint

state very often by moving copies of needed application state

to nearest neighbor nodes (they only draw power when in

use, this would have minimal energy implications).

07/12/2015

6

REPRODUCIBILITY

Reproducibility (contd.)
In Fomel and Claerbout 2009:

Reproducibility often means replication

depending on scientists

In Drummond 20091:

“Reproducibility requires changes; replicability avoids them”

In Demmel and Nguyen 2013

“Reproducibility, i.e. getting bitwise identical results from

run to run”

In Revol and Théveny 2013.

“What is called numerical reproducibility is the problem of

getting the same result when the scientific computation is run

several times, either on the same machine or on different

machines, with different numbers of processing units, types,

execution environments, computational loads, etc.”

1: http://www.site.uottawa.ca/ICML09WS/papers/w2.pdf

07/12/2015

7

Some Reasons for numerical

reproducibility failures

Zoom in « Out of Order Execution »

of floating point instructions

Out-of-order execution is also known as dynamic execution. Most

modern high-performance microprocessors optimize the execution

of instructions based on the availability of input data to avoid

delays.

The original order of instructions in a program is no more respected.

The micro-processor avoids having parts of its internal computing

units being idle by processing the next instructions which are able

to run immediately and “independently”.

It is the equivalent of the software dynamic recompilation (or just-

in-time compilation JIT) which enables the

improvement of instruction scheduling.

Remember: floating point arithmetic is

not associative (for + & *) ex: a+(b+c) != (a+b)+c.

07/12/2015

8

15

 Easier if they fit with the Independent bag-of-work

paradigm.

 Stochastic simulations can easily tolerate a loss of jobs,

if hopefully enough jobs finish for the final statistics..

 Must use “independent” Parallel random streams.

 Statuses should be small and fast to store at Exascale

(Original MT – 6Kb status – MRG32K3a 6 integers)

 Should fit with different distributed computing

platforms

 Using regular processors

 Using hardware accelerators (GP-GPUs, Intel Phi…)

Some requirements for Stochastic

Applications using massive parallelism

A method for reproducible

parallel stochastic simulations
1. A process or object oriented approach has to be chosen for

every stochastic objects which has its own random stream.

2. Select a modern and statistically sound generators
according to the most stringent testing battery (TestU01);

3. Select a fine parallelization technique adapted to the
selected generator,

4. The simulation must be designed first as a sequential
program which would emulate parallelism: this sequential
execution – with a compiler disabling of “out of order”
execution will be the reference to compare parallel and
sequential execution at small scales.

[Hill 2015] : Hill D., “Parallel Random Numbers, Simulation, Science and
reproducibility”. IEEE/AIP - Computing in Science and Engineering, vol. 17, no 4,
2015, pp. 66-71.

07/12/2015

9

An object-oriented approach?

A system being of collection of interacting “objects”
(dictionary definition – a simulation will make all
those objects evolve during the simulation time with
a precise modeling goal.

Assign an « independent » random stream to each
stochastic object of the simulation.

Each object (for instance a particle) must have its
own reproducible random stream.

An object could also encapsulate a random variate
used at some points of the simulation. Every
random variate could also have their own random
stream.

[Hill 1996] : HILL D., “Object-oriented Analysis and Simulation”,
Addison-Wesley, 1996, 291 p.

Back to basics for stochastic simulations

Repeatable Par.Rand.Num.Generators

Quick check with some top PRNGs used with
different hardware, different operating systems,
different compilers…

1. Use same inputs

2. Execute on various environments

3. Compare our outputs
achieved with author’s
outputs (from publications
or given files)

07/12/2015

10

Numerical Reproducibility results 1/4

 Errors found:
• for different hardware,

• different operating systems,

• different compilers.

Numerical Reproducibility results 2/4

Errors found:
• Different Compilers (2 cases)

• With Identical Hardware (2 cases) and Operating
Systems (2 cases)

07/12/2015

11

Numerical Reproducibility results 3/4

Errors found :
Problems Encountered With 32 And 64 Bits Architecture For

The Same Compiler (Lcc compiler 32 bits – ok for 64 bits)

Numerical Reproducibility results 4/4

Errors found :
when comparing between:
a “Real” Core 2 Duo T7100 and a “Virtual Machine” (Virtual
Box on top of Windows 7 with Intel(R) Core™ i7-4800MQ)

07/12/2015

12

23

Some top PRNGs (Pseudo Random Number
Generators)Only Green PRNG are recommended:

LCG (Linear Congruential Generator)
xi = (a*xi-1 + c) mod m forget them for Sci. Computing

LCGPM (Linear Congruential Generator with Prime Modulus –
could be Mersenne or Sophie Germain primes)

MRG (Multiple Recursive Generator)
xi = (a1*xi-1 + a2*xi-2 + … + ak*xi-k + c) mod m – with k>1

 (Ex: MRG32k3a & MRG32kp – by L’Ecuyer and Panneton)

LFG (Lagged Fibonacci Generator)
xi = xi-p xi-q

MLFG (Multiple Lagged Fibonacci Generator) –
by Michael Mascagni MLFG 6331_64

L & GFSR (Generalized FeedBack Shift Register…) Mod 2

 Mersenne Twisters – by Matsumoto, Nishimura, Saito (MT,
SFMT, MTGP, TinyMT) – WELLs Matsumoto, L’Ecuyer, Panneton
…

24

*The Central Server (CS) technique (avoid for flexible reproducibility)

*The Leap Frog (LF) technique. Means partitioning a sequence {xi, i=0,
1, …} into ‘n’ sub-sequences, the jth sub-sequence is {xkn+j-1, k=0, 1, …} -
like a deck of cards dealt to card players.

*The Sequence Splitting (SS) – or blocking or regular/fixed spacing
technique. Means partitioning a sequence {xi, i=0, 1, …,} into ‘n’ sub-
sequences, the jth sub-sequence is {xk+(j-1)m, k=0, …, m1}
where m is the length of each sub-sequence

*Jump Ahead technique (can be used for both Leap Frog or
Sequence splitting)

*The Cycle Division or Jump ahead approach. Analytical computing of
the generator state in advance after a huge number of cycles
(generations)

*The Indexed Sequences (IS) - or random spacing. Means that the
generator is initialized with ‘n’ different seeds/statuses

Quick survey of random streams parallelization
(1) Using the same generator

07/12/2015

13

Quick survey of random streams parallelization
(2) Using different generators:

Parameterization:

The same type of generator is used with different parameters for each
processor meaning that we produce different generators

In the case of linear congruential generators (LCG), this can rapidly
lead to poor results even when the parameters are very carefully
checked. (Ex: Mascagni and Chi proposed that the modulus be
Mersenne or Sophie Germain prime numbers)

Explicit Inversive Congruential generator (EICG) with prime modulus
has some very compelling properties for parallelizing via
parameterizing. A recent paper describes an implementation of
parallel random number sequences by varying a set of different
parameters instead of splitting a single random sequence
(Chi and Cao 2010).

In 2000 Matsumoto et al proposed a dynamic creation technique25

Reproducible HPC Application

Muonic Tomography - billions of threads…

Puy de Dôme
Volcano France

Labex Clervolc
Tomuvol

Experiment

Places of
atmospheric
Muons sensors

Ph.D. Thesis of P. Schweitzer

This part of research was financed by the

French Government Laboratory of Excellence initiative n°ANR-10-LABX-0006,

the Auvergne Region and the European Regional Development Fund

07/12/2015

14

Principle: atmospheric muons will go through matter. Depending on their

energy and of the matter they traverse it is possible to reconstruct the 3D

inner image of a large edifice with multiple sensors (figure by Samuel Béné)

Principle of muonic tomography

Optimization for a single « hybrid » node

(Intel E52650 & Xeon Phi 7120P)

Parallel stochastic simulation of muonic tomography

Parallel programming model using p-threads

On stochastic object for each Muon

Multiple streams using MRG32k3a1

A billion threads handled by a single node

Compiling flags set to maximum reproducibility

(1) P. L'Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton, ``An Objected-Oriented

Random-Number Package with Many Long Streams and Substreams'',

Operations Research, Vol. 50, no. 6 (2002), pp. 1073-1075.

07/12/2015

15

Bit for bit reproducibility

Do not expect bit for bit reproducibility when working on Intel Phi

vs. regular Intel processors1.

We observed bit for bit reproducibility in single precision but not

in double precision (and with the expected compiler flags)

The relative difference between processors (E5 vs Phi) in double

precision were analyzed and are shown below:

(1) Run-to-Run Reproducibility of Floating-Point Calculations for Applications on

Intel® Xeon Phi™ Coprocessors (and Intel® Xeon® Processors) – by Martin Cordel

https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-

point-calculations-for-applications-on-intel-xeon

Relative difference (Phi vs E5)

The results on the two architectures are of the same order,

Both of them have the same sign and the same exponent (even
if some exceptions would be theoretically possible, they would
be very rare).

The only bits that can differ between these results are the least
significant bits of the significand.

For a given exponent e, and a result r1 = m × 2e, the closest
value greater than r1 is r2 = (m + εd) × 2e, where εd is the value
of the least significant bit of the significand: εd = 2-52 ≈ 2.22 10-

16.

Intel Compiler flags:
“-fp-model precise -fp-model source -fimf-precision=high -no-fma”

for the compilation on the Xeon Phi

“-fp-model precise -fp-model source -fimf-precision=high”

for the compilation on the Xeon CPU.

https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-point-calculations-for-applications-on-intel-xeon

07/12/2015

16

Conclusion

Software: Operating systems, middleware, programming
models and applications need to become more and more fault
& soft error aware, and tolerant.

Stochastic applications with independent computing will
certainly be more suitable to less resilient systems, with
such applications we can trade reliability for performance,
power, or cost.

Get prepared with Fault Injection frameworks like (SEFI – Los
Alamos National Library, USA)

Key elements of a method have been presented to produced
numerically reproducible results for parallel stochastic
simulations comparable with a sequential implementation
(before large scaling on future Exascale systems) –

Numerical replication is very important for scientists in many
sensitive areas, finance, nuclear safety, medicine…

32

Perspectives

The proposed method only solve a small part of the whole
problem of scientific reproducibility, though it is a key
element for numerically reproducible research for
independent stochastic parallel computing comparable to
sequential computing.

Simulation of parallel independent processes is “easy”, but
simulating time-dependent entities or interacting entities,
with numerical reproducibility across interactions will be
tough if relying on Operating Systems threads (which could be
depending on O.S. random choices for simultaneity handling,
thus turning into a wreck any hopes of numerical
reproducibility).

Software simulation of co-routines within the simulation
application and synchronous communications will be required
in addition to the assignment of a different random stream to
each stochastic object.

07/12/2015

17

33

Questions?

