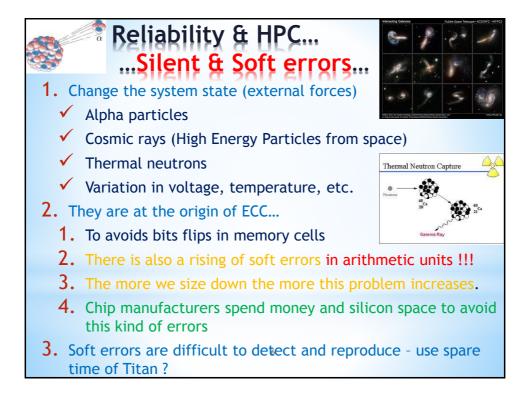
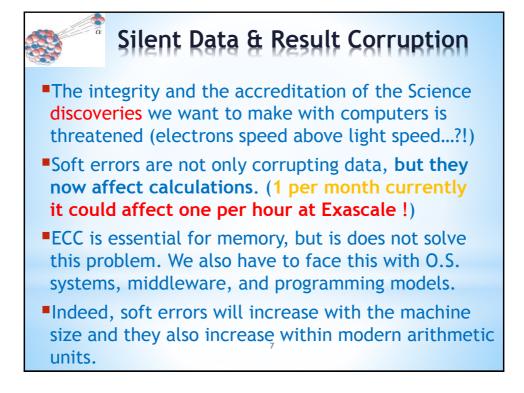
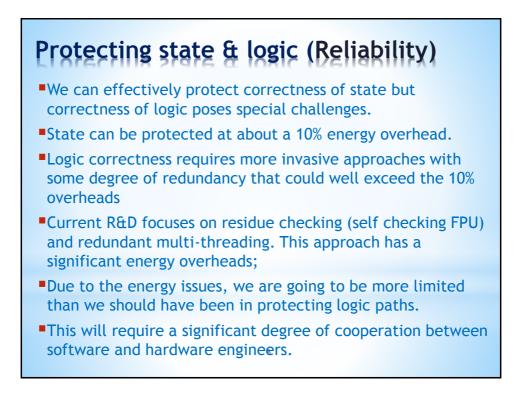
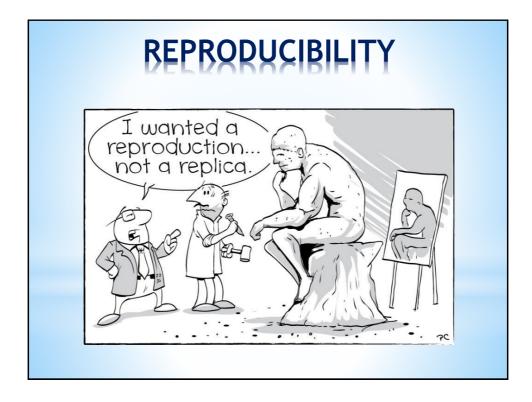
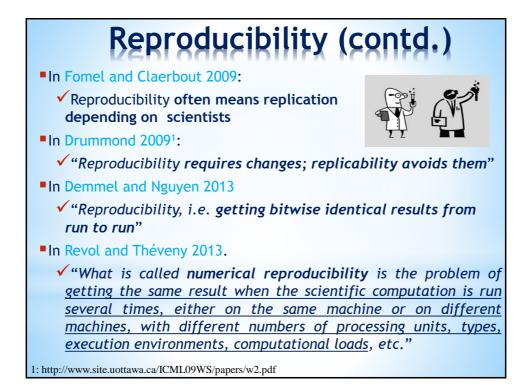

Numerical Reproducibility for Parallel Stochastic Simulation "Exascale Ready"

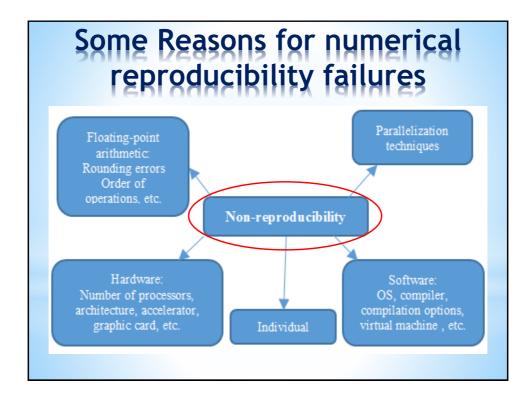


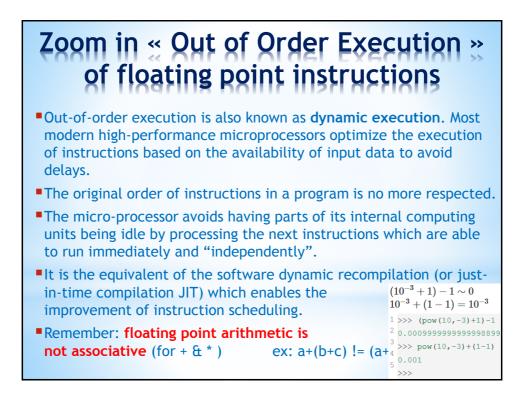


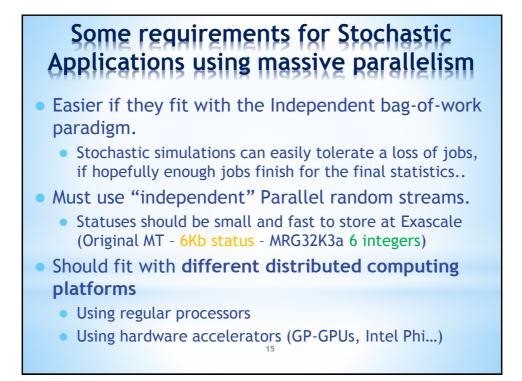


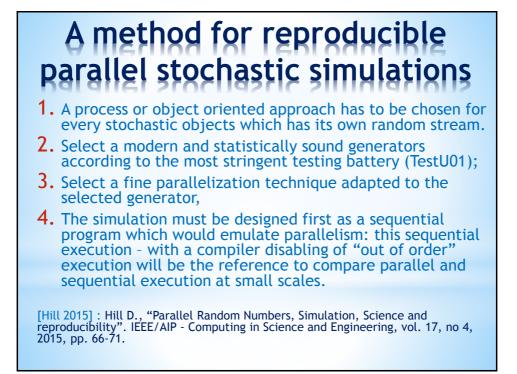


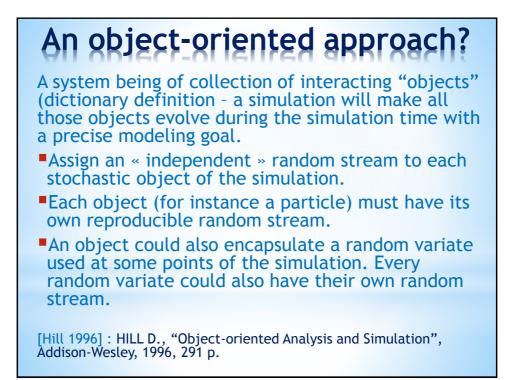

HW/SW Codesign (Reliability)

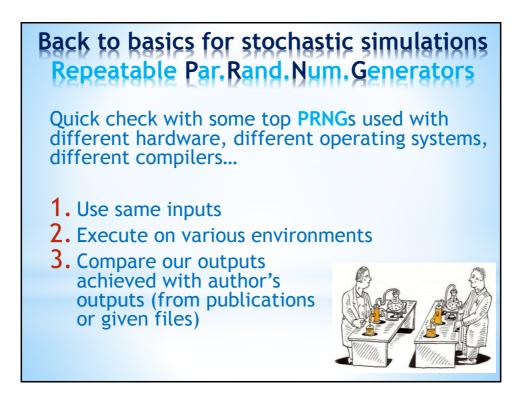

- Can we identify at compile time certain critical regions which need stronger correctness guarantees?
- •We are already generating terabytes to petabytes of state per second. At exascale we will be generating exabytes of state each second.
- A single wrong bit can vitiate the entire calculation.
- •For many scientific calculations: we should be able to gracefully tolerate many kinds of bit errors, and also the loss of many kinds of local resources.
- •For example: in many Monte Carlo simulations, the loss of a processor does not imply the inherent failure of the simulation.

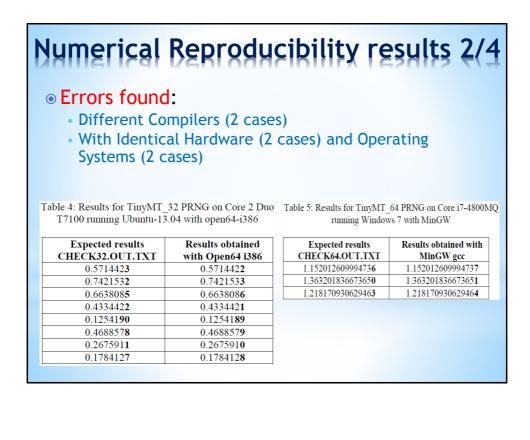

Checkpointing (Reliability)

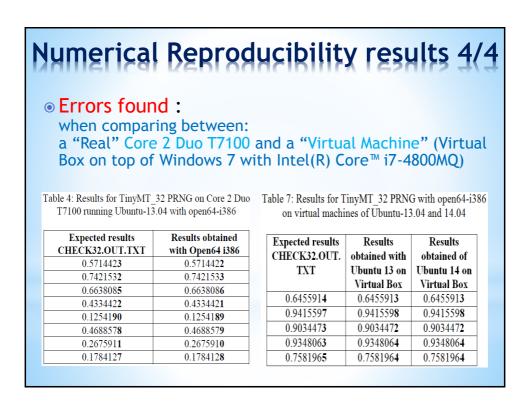

- Limits of classical checkpointing will be reached : a fault every hour (or less) with current MTF - but an Exascale checkpoint could last 30 minutes at 1 Terabyte/s !!!
- Without a radical change we are going to be much worse than we are today...
- •We have to build a much higher level of local check-pointing capability into our software and hardware systems.
- Parallel Stochastic Simulations could checkpoint must faster with only intermediate results and all the pseudorandom number generator statuses.
- Using raided non-volatile memory, we could checkpoint state very often by moving copies of needed application state to nearest neighbor nodes (they only draw power when in use, this would have minimal energy implications).

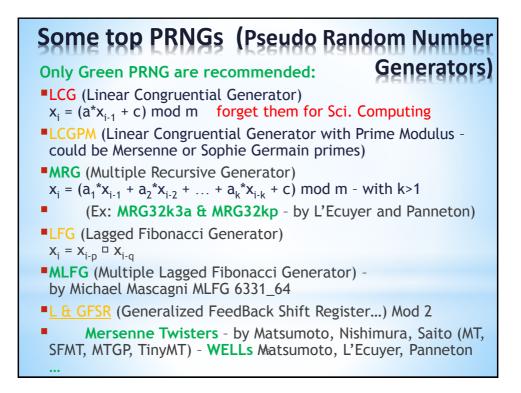












umeri	ca	ļĘ	<u>}e</u>	pr	00	luc	iþ	ilit	y r	esu	lts	§ 1
Errors f	our	d.										
 for dif 	terei	nt n	ard	ware	,							
 differe 	ent o	pera	atin	g svs	sten	ns.						
						,						
 differe 	ent c	omp	ner	S.								
Table 3: Testing of	reprodu	cibility	for 7 di	ifferent I	PRNG	(MT1993	7 with	2 versions	TinvMT	with 2 versi	ons M	RG32k3a
Table 3: Testing of VELL512, MLFG6												
VELL512, MLFG6	4) perfor	med on	5 diffe	rent pro	cessors	(Intel E5-	2650v2	2, Intel E5	-2687W, C		[7100,	AMD 62
VELL512, MLFG6	4) perfor Core i7-4	med on 800MQ	5 diffe)) with	rent pro differen	cessors t comp	ilers (gcc, i	2650v2 icc, lcc	2, Intel E5 , open64, l	-2687W, C MinGW, C	ore 2 Duo 7 ygwin) wer	r7100, e testec	AMD 62
VELL512, MLFG6 Opteron, (4) perfor	med on 800MQ	5 diffe)) with	rent pro	cessors t comp Cor	ilers (gcc, i	2650v2 icc, lcc	2, Intel E5 , open64, 1	-2687W, C MinGW, C	ore 2 Duo 7	r7100, e testec	AMD 62
VELL512, MLFG6	4) perfor Core i7-4	med on 800MQ	5 diffe)) with	rent pro differen	cessors t comp Cor	ilers (gcc, i	2650v2 ice, lee A Ol	2, Intel E5 , open64, l	-2687W, C MinGW, C	ore 2 Duo 7 ygwin) wer	r7100, e testec	AMD 62
VELL512, MLFG6 Opteron, (4) perfor Core i7-4	med on 800MQ	5 diffe)) with	rent pro differen	cessors t comp Cor	ilers (gcc, i	2650v2 ice, lee A Ol	2, Intel E5- c, open64, l AMD pteron	-2687W, C MinGW, C	ore 2 Duo 7 ygwin) wer	0MQ	AMD 62
VELL512, MLFG6 Opteron, O Generator	4) perfor Core i7-4 E5-26 gcc	med on 800MQ 50v2 icc	5 diffe () with E5-2 gcc	rent pro different 687W	cessors t comp Cor 1 gcc	i (Intel E5- ilers (gcc, i e 2 Duo 7100 open64	2650v2 icc, lcc A Ol (TM gcc	2, Intel E5- , open64, 1 AMD pteron A) 6272 open64	-2687W, C MinGW, C C Cygwin	ore 2 Duo 7 ygwin) wer Core i7-480 MinGW	0MQ	AMD 62 l. cc lc64
VELL512, MLFG6 Opteron, (4) perfor Core i7-4 E5-26 gcc Yes	med on 800MQ 50v2 icc Yes	5 diffe)) with E5-2 gcc Yes	rent pro different 687W icc Yes	cessors t comp Cor 1 gcc Yes	i (Intel E5- ilers (gcc, i e 2 Duo 7100 open64 Yes	2650v/ icc, lcc A Ol (TM gcc Yes	2, Intel E5- , open64, 1 AMD pteron A) 6272 open64 Yes	-2687W, C MinGW, C Cygwin Yes	ore 2 Duo 7 ygwin) wer Core i7-480 MinGW Yes	C7100, e testec 0MQ lc Yes	AMD 62 l. cc lc64 Yes
VELL512, MLFG6 Opteron, O Generator	4) perfor Core i7-4 E5-26 gcc	med on 800MQ 50v2 icc	5 diffe) with E5-2 gcc	rent pro different 687W	cessors t comp Cor 1 gcc	i (Intel E5- ilers (gcc, i e 2 Duo 7100 open64	2650v2 icc, lcc A Ol (TM gcc	2, Intel E5- , open64, 1 AMD pteron A) 6272 open64	-2687W, C MinGW, C C Cygwin	ore 2 Duo 7 ygwin) wer Core i7-480 MinGW	0MQ	AMD 62 l. cc lc64
VELL512, MLFG6 Opteron, C Generator MT19937	4) perfor Core i7-4 E5-26 gcc Yes	med on 800MQ 50v2 icc Yes	5 diffe)) with E5-2 gcc Yes	rent pro different 687W icc Yes	cessors t comp Cor 1 gcc Yes	i (Intel E5- ilers (gcc, i e 2 Duo 7100 open64 Yes	2650v/ icc, lcc A Ol (TM gcc Yes	2, Intel E5- , open64, 1 AMD pteron A) 6272 open64 Yes	-2687W, C MinGW, C Cygwin Yes	ore 2 Duo 7 ygwin) wer Core i7-480 MinGW Yes	C7100, e testec 0MQ lc Yes	AMD 62 l. cc lc64 Yes
VELL512, MLFG6 Opteron, C Generator MT19937 MT19937_64	4) perfor Core i7-4 E5-26 gcc Yes Yes	med on 800MQ 50v2 icc Yes Yes	5 diffe)) with E5-2 gcc Yes Yes	rent pro different 687W icc Yes Yes	Cor Cor Cor Cor Scc Yes Yes	i (Intel E5- ilers (gcc, i 7100 open64 Yes Yes	2650v/ icc, lcc A Ol (TM gcc Yes Yes	2, Intel E5: , open64, 1 AMD pteron A) 6272 open64 Yes Yes	-2687W, C MinGW, C Cygwin Yes Yes	ore 2 Duo 1 ygwin) wer Core i7-480 MinGW Yes Yes	0MQ la la Yes Yes Yes	AMD 62 1. cc lc64 Yes Yes
VELL512, MLFG6 Opteron, 6 Generator <u>MT19937</u> <u>MT19937 64</u> TinyMT_32	4) perfor. Core i7-4 E5-26 gcc Yes Yes Yes	med on 800MQ 50v2 icc Yes Yes Yes	5 diffe)) with E5-2 gcc Yes Yes Yes	rent pro different 687W icc Yes Yes Yes	Cor Cor Cor Cor Cor Cor Cor Cor Cor Ves Yes Yes Yes	i (Intel E5- ilers (gcc, i 7100 open64 Yes Yes NO	2650v2 icc, lcc A Ol (TM gcc Yes Yes Yes Yes	2, Intel E5: , open64, 1 AMD pteron A) 6272 open64 Yes Yes Yes Yes	-2687W, C MinGW, C Cygwin Yes Yes Yes	ore 2 Duo 1 ygwin) wer Core i7-480 MinGW Yes Yes Yes	0MQ la la Yes Yes Yes	AMD 62 I. I. Ic64 Yes Yes Yes
VELL512, MLFG6 Opteron, (Generator MT19937 MT19937 64 TinyMT_32 TinyMT_64	4) perfor Core i7-4 E5-26 gcc Yes Yes Yes Yes	med on 800MQ 50v2 icc Yes Yes Yes Yes	5 diffe)) with E5-2 gcc Yes Yes Yes Yes	rent pro different 687W icc Yes Yes Yes Yes	Cor Cor I gcc Yes Yes Yes Yes	ilers (gcc, i re 2 Duo 7100 open64 Yes Yes NO Yes	2650v/ ice, lee A Ol (TM gcc Yes Yes Yes Yes Yes	2, Intel E5- , open64, 1 AMD pteron A) 6272 open64 Yes Yes Yes Yes Yes	-2687W, C MinGW, C Cygwin Yes Yes Yes Yes Yes	ore 2 Duo 1 ygwin) wer Core i7-480 MinGW Yes Yes Yes NO Q	0MQ la la Yes Yes Yes NO	AMD 62 l. cc lc64 Yes Yes Yes Yes Yes

		erical Reprodu	cibility resul	ts 3/4
ΘE	rro	rs found :		
Pr	obl	ems Encountered With 32	2 And 64 Bits Architec	ture For
Tł	ne S	ame Compiler (Lcc comp	oiler 32 bits - ok for 64	4 bits)
				,
	Tak	ole 6: Results for TinyMT 64	PRNG on Core i7-4800N	10
	1 au	running Windows 7		,iQ
		running v nidows /		
		Expected results	Results obtained	
		CHECK64.OUT.TXT	with lc 32 bits	
			compiler	
		0.125567123229521	0.514472427354387	
		1.437679237017648	1.386730269781771	
		0.231189305675805	0.112526841009551	
		0.777528512172794	0.197121666699821	
			·	

Quick survey of random streams parallelization (1) Using the same generator

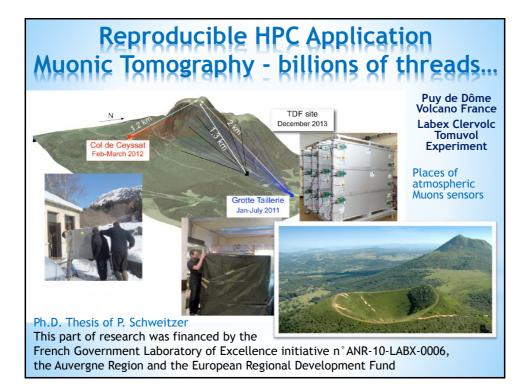
*The **Central Server** (CS) technique (avoid for flexible reproducibility)

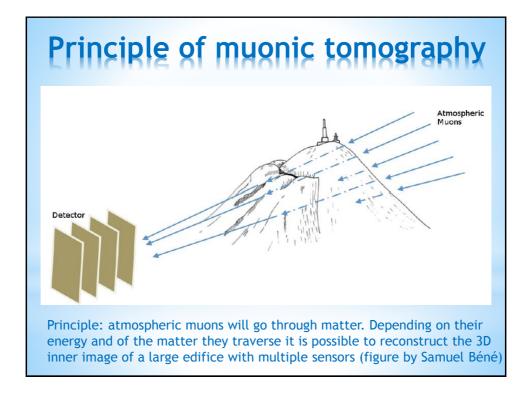
*The Leap Frog (LF) technique. Means partitioning a sequence $\{x_i, i=0, 1, ...\}$ into 'n' sub-sequences, the jth sub-sequence is $\{x_{kn+j-1}, k=0, 1, ...\}$ - like a deck of cards dealt to card players.

*The Sequence Splitting (SS) – or blocking or regular/fixed spacing technique. Means partitioning a sequence $\{x_i, i=0, 1, ...,\}$ into 'n' subsequences, the jth sub-sequence is $\{x_{k+(j-1)m}, k=0, ..., m1\}$ where m is the length of each sub-sequence

*Jump Ahead technique (can be used for both Leap Frog or Sequence splitting)

*The **Cycle Division** or **Jump ahead** approach. Analytical computing of the generator state in advance after a huge number of cycles (generations)


*The Indexed Sequences (IS) - or random spacing. Means that the generator is initialized with 'n' different seeds/statuses


Quick survey of random streams parallelization (2) Using different generators:

Parameterization:

The same type of generator is used with different parameters for each processor meaning that we produce different generators

- In the case of linear congruential generators (LCG), this can rapidly lead to poor results even when the parameters are very carefully checked. (Ex: Mascagni and Chi proposed that the modulus be Mersenne or Sophie Germain prime numbers)
- Explicit Inversive Congruential generator (EICG) with prime modulus has some very compelling properties for parallelizing via parameterizing. A recent paper describes an implementation of parallel random number sequences by varying a set of different parameters instead of splitting a single random sequence (Chi and Cao 2010).
- In 2000 Matsumoto et al proposed a dynamic creation technique

Optimization for a single « hybrid » node (Intel E52650 & Xeon Phi 7120P)

Parallel stochastic simulation of muonic tomography

- Parallel programming model using p-threads
- On stochastic object for each Muon
- Multiple streams using MRG32k3a¹
- A billion threads handled by a single node
- Compiling flags set to maximum reproducibility

Table 3: Performance of a billion event simulation when parallelized on 1 Phi, 1 CPU, 2 CPUs

	Intel Xeon Phi 7120P	Intel Xeon E5-2650v2	2x Intel Xeon E5-2650v2
Time	48 h 49 min	36 h 32 min	18 h 17 min
Speedup	1	1.34	2.67

(1) P. L'Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton, ``An Objected-Oriented Random-Number Package with Many Long Streams and Substreams", Operations Research, Vol. 50, no. 6 (2002), pp. 1073-1075.

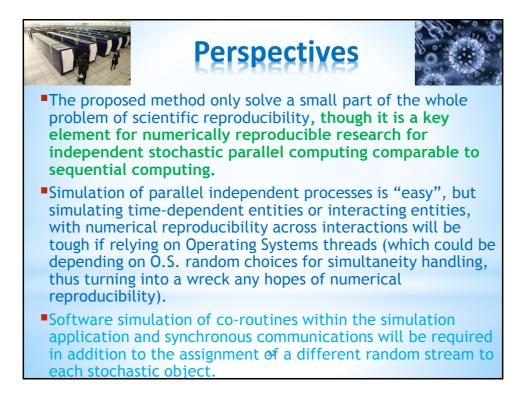
Bit for	bit r	eproc	lucibi	lity	
Do not expect bit for b vs. regular Intel proces		ducibility	y when wo	orking on	Intel Phi
•We observed bit for b in double precision (a					
The relative different precision were analyzed				vs Phi) in	double
Table 1: Relative CPU-Phi differences bet	ween the resul	ts and number	of altered bits		
	ween the resul	ts and number Position Z	of altered bits	Direction Y	Direction Z
Difference \checkmark Result \rightarrow 0 bit: bit for bit reproducibility				Direction Y 4975	Direction Z 4913
$\underline{\text{Difference}} \downarrow \land \underline{\text{Result}} \rightarrow$	Position X	Position Z	Direction X		
Difference ↓ \ Result → 0 bit: bit for bit reproducibility	Position X 4922	Position Z 4934	Direction X 4896	4975	4913
Difference \downarrow \ Result → 0 bit: bit for bit reproducibility 1 bit: 1.11E-16 ≤ Δ < 2.22E-16	Position X 4922 25	Position Z 4934 21	Direction X 4896 14	4975 5	4913 18
Difference \checkmark Result \rightarrow 0 bit: bit for bit reproducibility1 bit: 1.11E-16 $\leq \Delta < 2.22E$ -162 bits: 2.22E-16 $\leq \Delta < 4.44E$ -16	Position X 4922 25 21	Position Z 4934 21 18	Direction X 4896 14 52	4975 5 4	4913 18 31
Difference \checkmark Result \rightarrow 0 bit: bit for bit reproducibility1 bit: 1.11E-16 $\leq \Delta \leq 2.22E-16$ 2 bits: 2.22E-16 $\leq \Delta \leq 4.44E-16$ 3 bits: 4.44E-16 $\leq \Delta \leq 8.88E-16$	Position X 4922 25 21 15	Position Z 4934 21 18 12	Direction X 4896 14 52 23	4975 5 4 6	4913 18 31 12

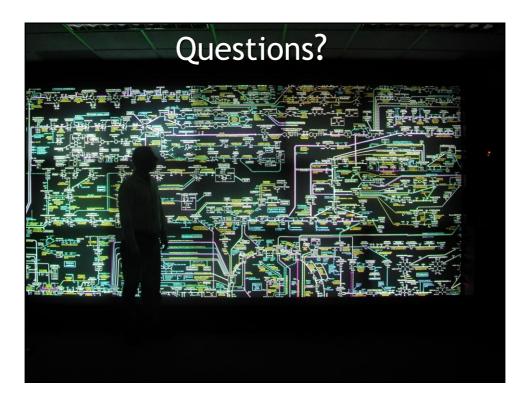
Relative difference (Phi vs E5)

The results on the two architectures are of the same order,

oint-calculations-for-applications-on-intel-xeon

Both of them have the same sign and the same exponent (even if some exceptions would be theoretically possible, they would be very rare).


The only bits that can differ between these results are the least significant bits of the significand.


For a given exponent e, and a result $r1 = m \times 2e$, the closest value greater than r1 is r2 = $(m + \epsilon d) \times 2e$, where ϵd is the value of the least significant bit of the significand: $\epsilon d = 2^{-52} \approx 2.22 \ 10^{-16}$.

Intel Compiler flags:

✓ "-fp-model precise -fp-model source -fimf-precision=high" for the compilation on the Xeon CPU.

