
Addressing Reproducibility
Challenges through Software Design,
Benchmarking and Editorial Policies

Michael Heroux

Sandia National Laboratories

1

Outline

• Tasking: New control layer in apps.
• C++ Templates: Paired data types.
• Containers: Docker.
• Benchmarks: HPCG.
• Publications: ACM TOMS.

2

Dynamic Tasking:
Issues, no comprehensive solution

3

Classic HPC Application Architecture

¨  Logically Bulk-Synchronous,
SPMD

¨  Basic Attributes:
¤  Halo exchange.
¤  Local compute.
¤  Global collective.

¨  Strengths:
¤  Portable to many specific system

architectures.
¤  Separation of parallel model (SPMD) from

implementation (e.g., message passing).
¤  Domain scientists write sequential code

within a parallel SPMD framework.
¤  Supports traditional languages (Fortran, C).
¤  Many more, well known.

¨  Weaknesses:
¤  Not well suited (as-is) to emerging manycore

systems.
¤  Unable to exploit functional on-chip parallelism.
¤  Difficult to tolerate dynamic latencies.
¤  Difficult to support task/compute heterogeneity.

Subdomain
1 per MPI process

4

Task-centric/Dataflow Application
Architecture

¨  Patch: Logically connected portion of
global data. Ex: subdomain, subgraph.

¨  Task: Functionality defined on a patch.

¨  Many tasks on many patches.

¨  Strengths:
¤  Portable to many specific system

architectures.
¤  Separation of parallel model from

implementation.
¤  Domain scientists write sequential code

within a parallel framework.
¤  Supports traditional languages (Fortran, C).
¤  Similar to SPMD in many ways.

…

…

… Patch
Many per MPI process

Data Flow
Dependencies

¨  More strengths:
¤  Well suited to emerging manycore

systems.
¤  Can exploit functional on-chip

parallelism.
¤  Can tolerate dynamic latencies.
¤  Can support task/compute

heterogeneity.

5	

•  MPI+X based subdomain solvers
–  Decouple the notion of one MPI rank as one subdomain: Subdomains can span

multiple MPI ranks each with its own subdomain solver using X or MPI+X
–  Epetra based solver, Tpetra interface still being developed

•  Trilinos Solver Factory a big step forward to get this done (M. Hoemmen)
•  Subpackages of ShyLU: Multiple Kokkos-based options for on-node parallelism

–  Basker : LU or ILU (t) factorization (J. Booth)
–  Tacho: Incomplete Cholesky - IC (k) (K. Kim)
–  Fast-ILU: Fast-ILU factorization for GPUs (A. Patel)

•  KokkosKernels: Coloring based Gauss-Seidel (M. Deveci), Triangular Solves
•  Experimental code base under active development.

Trilinos/ShyLU and Subdomain Solvers : Overview
Led by Siva Rajamanickam, Sandia

TachoBasker FAST-
ILUKLU2

Amesos2 Ifpack2

ShyLU

KokkosKernels –
SGS, Tri-Solve (HTS)

A Little Templating

7

• Tpetra is a templated version of the Petra distributed
linear algebra model in Trilinos.
– Objects are templated on the underlying data types:

MultiVector<scalar=double, local_ordinal=int,
 global_ordinal=local_ordinal> …  

CrsMatrix<scalar=double, local_ordinal=int,
 global_ordinal=local_ordinal> …

–  Examples:

MultiVector<double, int, long int> V;  
CrsMatrix<float> A;

Utilizing Scalar Type Templates

Scalar float double double-
double

quad-
double

Solve time (s) 2.6 5.3 29.9 76.5

Accuracy 10-6 10-12 10-24 10-48

Arbitrary precision solves
using Tpetra and Belos
linear solver package

Speedup of float over double
in Belos linear solver.

float double speedup
18 s 26 s 1.42x

•  Audi crankshaft model
•  Dimension: 943,695
•  Nonzeros: 77,651,847
•  Belos, 10 RHS, Pseudo

Block PCG, 1e-5, 4 core,
MPI only

class FloatShadowDouble {

public:
 FloatShadowDouble() {
 f = 0.0f;
 d = 0.0; }
 FloatShadowDouble(const FloatShadowDouble & fd) {
 f = fd.f;
 d = fd.d; }
…
inline FloatShadowDouble operator+= (const FloatShadowDouble & fd) {
 f += fd.f;
 d += fd.d;
 return *this; }
…
inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) {
 os << fd.f << "f " << fd.d << "d”; return os;}

FP Accuracy Analysis:
FloatShadowDouble Datatype

•  Templates enable new
analysis capabilities

• Example: Float with
“shadow” double.

FloatShadowDouble

Initial Residual = 455.194f 455.194d
Iteration = 15 Residual = 5.07328f 5.07618d
Iteration = 30 Residual = 0.00147022f 0.00138466d
Iteration = 45 Residual = 5.14891e-06f 2.09624e-06d
Iteration = 60 Residual = 4.03386e-09f 7.91927e-10d

Sample usage:
#include “FloatShadowDouble.hpp”
Tpetra::Vector<FloatShadowDouble> x, y;
Tpetra::CrsMatrix<FloatShadowDouble> A;
A.apply(x, y); // Single precision, but double results also computed, available

Containers: Reproducibility, and more!

11

Using Docker

http://docker.com

Typical Trilinos Cmake Script (edison)

cmake \
-D MPI_CXX_COMPILER="CC" \
-D MPI_C_COMPILER="cc" \
-D MPI_Fortran_COMPILER="ftn" \
-D Teuchos_ENABLE_STACKTRACE:BOOL=OFF \
-D Teuchos_ENABLE_LONG_LONG_INT:BOOL=ON \
-D Trilinos_ENABLE_Tpetra:BOOL=ON \
-D Tpetra_ENABLE_TESTS:BOOL=ON \
-D Tpetra_ENABLE_EXAMPLES:BOOL=ON \
-D Tpetra_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \
-D Teuchos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \
-D TPL_ENABLE_MPI:BOOL=ON \
-D CMAKE_INSTALL_PREFIX:PATH="$HOME/opt/Trilinos/tpetraEval" \
-D BLAS_LIBRARY_DIRS="$LIBSCI_BASE_DIR/gnu/lib" \
-D BLAS_LIBRARY_NAMES="sci" \
-D LAPACK_LIBRARY_DIRS="$LIBSCI_BASE_DIR/gnu/lib" \
-D LAPACK_LIBRARY_NAMES="sci" \
-D CMAKE_CXX_FLAGS="-O3 -ffast-math -funroll-loops" \
\
..

WebTrilinos

Trilinos usage via Docker

• WebTrilinos Tutorial
– https://hub.docker.com/r/sjdeal/webtrilinos

• http://johntfoster.github.io/posts/peridigm-without-
building-via-Docker.html
– docker pull johntfoster/trilinos
– docker pull johntfoster/peridigm
– docker run --name peridigm0 -d -v `pwd`:/output

johntfoster/peridigm \
 Peridigm fragmenting_cylinder.peridigm

– Etc…

15

Docker Features and Trends

• Initial motivator:
– Containers essential to bridge HPC-HPDA gap.

• Many attractions:
– MPI execution in Docker is scalable (evidence so far).
–  Improved reproducibility of results in several ways.
– Smaller base system image: Only what Docker needs.
– Lower barrier for complex SW.
– And more.

• Docker container: New “tarfile”.
• DOE NERSC Cori System: “Shifter” supports Docker.

Reproducibility and Benchmarking

17

HPCG Snapshot

• High Performance Conjugate Gradients (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential

computational and communication patterns that are prevalent in
a variety of methods for discretization and numerical solution of
PDEs

• Patterns:

– Dense and sparse computations.
– Dense and sparse collectives.
– Multi-scale execution of kernels via MG (truncated) V cycle.
– Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification (via spectral properties of PCG).

18

Model Problem Description

• Synthetic discretized 3D PDE (FEM, FVM, FDM).
• Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
• Local domain:
• Process layout:
• Global domain:
• Sparse matrix:

– 27 nonzeros/row interior.
– 8 – 18 on boundary.
– Symmetric positive definite.

(nx × ny × nz)

(npx × npy × npz)

(nx *npx)× (ny *npy)× (nz *npz)

Merits of HPCG
• Includes major communication/computational patterns.

– Represents a minimal collection of the major patterns.
• Rewards investment in:

– High-performance collective ops.
– Local memory system performance.
– Low latency cooperative threading.

• Detects/measures variances from bitwise reproducibility.
• Executes kernels at several (tunable) granularities:

– nx = ny = nz = 104 gives
– nlocal = 1,124,864; 140,608; 17,576; 2,197
– ComputeSymGS with multicoloring adds one more level:

•  8 colors.
• Average size of color = 275.
• Size ratio (largest:smallest): 4096

– Provide a “natural” incentive to run a big problem.
20

20

HPL vs. HPCG: Bookends

• Some see HPL and HPCG as “bookends” of a
spectrum.
– Applications teams know where their codes lie on the

spectrum.
– Can gauge performance on a system using both HPL

and HPCG numbers.

21

HPCG 3.0 Release, Nov 11, 2015

• Available on GitHub.com
– Using GitHub issues, pull requests, Wiki.

• Intel, Nvidia optimized 3.0 version
available.

• IBM has 2.4 optimized version.
• For ISC’16, HPCG 3.0 any new results
should be obtained using 3.0 unless not
possible.

• Quick Path option will make this easier.

22

Other Items
• Reference version on GitHub:

– https://github.com/hpcg-benchmark/hpcg
– Website: hpcg-benchark.org.
– Mail list hpcg.benchmark@gmail.com

• HPCG used in SC15 Student Cluster Competition.
• HPCG-optimized kernels going into vendor
libraries.

• Next event: ISC’16:
– 63 entries so far (42 – ISC15, 25 – SC14, 15 – ISC14)
– Quick Path option should accelerate adoption.

23 hpcg-benchmark.org

Detecting FP Variations (Reproducibility)

Residual=4.25079640861055785883e-08 (0x1.6d240066fda73p-25)
Residual=4.25079640861032293954e-08 (0x1.6d240066fd910p-25)
Residual=4.25079640861079079289e-08 (0x1.6d240066fdbd3p-25)
Residual=4.25079640861054528568e-08 (0x1.6d240066fda60p-25)
Residual=4.25079640861068491377e-08 (0x1.6d240066fdb33p-25)
Residual=4.25079640861059094605e-08 (0x1.6d240066fdaa5p-25)

•  Nvidia version of HPCG:

–  Deterministic run optional, cost quantifiable.
•  HPCG runs can be arbitrarily long (--rt=#secs).

–  Stress test for reproducibility.
•  Nvidia, Intel versions: Heterogeneous.

–  Expose FP variability issues.

24 hpcg-benchmark.org

Creating Incentives to Improve
Reproducibility via Publication

Policies

25

Reproducibility & Independent Verification
Requirement

• In order to publish a paper: Someone other than the
authors must be able to reproduce the computational
results.

• Latitude in “reproduce”:
– Exactly the same numerical results?
– Exactly the same runtime?
– Close, in the opinion of an expert reviewer?

• What about:
– Access to the same computing environment?
– High end systems?

• Lots of challenges.
• But just the expectation [threat] can drive efforts…

26

Fruits of the Threat
•  Source management tools: In order to guarantee that results can be

reproduced, the software must be preserved so that the exact version
used to produce results is available at a later date.

•  Use of other standard tools and platforms: In order to reduce the
complexity of an environment, standard software libraries and
computing environments will be helpful.

•  Documentation: Independent verification requires that someone else
understand how to use your software.

•  Source code standards: Improves the ability of others to read your
source code.

•  Testing: Investment in greater testing makes sense because the
software will be used by others.

•  High-quality software engineering environment: If a research team
is serious about producing high-quality, reproducible and verifiable
results, it will want to invest in a high-quality SE environment to improve
team efficiency.

27

Evidence:
Cover letter excerpt from RCR candidate paper

Thank you for taking the time to consider our paper for
your journal.

XXX has agreed to undergo the RCR process should
the paper proceed far enough in the review process to
qualify. To make this easier we have preserved the
exact copy of the code used for the results
(including additional code for generating detailed
statistics that is not in the library version of the
code).

28

•  ACM Algorithms
•  Algorithm Section of CACM established Feb 1961

•  First Editor: J.H. Wegstein, NBS

•  Submissions refereed

•  Program text printed in pages of CACM
•  Algorithm 1: QuadI (R.J. Herbold, NBS), Feb, 1961

•  Continued until 1975 when programs became too
large to print

ACM’s First “Artifact Evaluation”

Slide courtesy Ron Boisvert

•  Transactions on Mathematical Software (TOMS)
•  First in ACM’s Transactions series (est. 1975)

•  Focus on numerical software engineering
•  Theoretical foundations of numeric, symbolic, algebraic, and geometric

computing applications, as well as practical aspects of analysis and
construction of mathematical software, and the interaction of programs
and architecture.

•  Assumed ownership of ACM Algorithms.

ACM TOMS

1

http://toms.acm.org/ Slide courtesy Ron Boisvert

•  1/3 of published papers are “Algorithm” papers with code
•  Software focused on solving a generic mathematical problem
•  First: Algorithm 493: Zeros of a Real Polynomial
•  > 450 published since 1975

•  Refereed
•  For: completeness, portability, usability/extensibility, documentation

•  Distribution
•  Originally: Algorithms Distribution Service (magnetic tape)
•  Late 1980s: netlib (first email, then ftp, then web)
•  Today: ACM Digital Library

TOMS “Algorithms”

Slide courtesy Ron Boisvert

•  Numerical software community has always had a strong
focus on sharing and reuse
–  Sharing artifacts has not been a hard sell.

•  Software is typically a reusable component
–  Packaging for reuse/replay has not been difficult
–  Zip/tar file with code, makefile, sample drivers, data

•  Emphasis on portability has made code long-lasting
–  In 2002 Tim Hopkins replicated results of all 300 published

algorithms
–  Many were straightforward, some required extensive work
–  Many code improvements implemented to extend lifetimes

TOMS “Algorithms”: Context

Slide courtesy Ron Boisvert

Reproducibility
Terminology

•  Reviewable Research. The descriptions of the research methods can be independently
assessed and the results judged credible. (This includes both traditional peer review and
community review, and does not necessarily imply reproducibility.)

•  Replicable Research. Tools are made available that would allow one to duplicate the
results of the research, for example by running the authors’ code to produce the plots
shown in the publication. (Here tools might be limited in scope, e.g., only essential data or
executables, and might only be made available to referees or only upon request.)

•  Confirmable Research. The main conclusions of the research can be attained
independently without the use of software provided by the author. (But using the complete
description of algorithms and methodology provided in the publication and any
supplementary materials.)

•  Auditable Research. Sufficient records (including data and software) have been archived
so that the research can be defended later if necessary or differences between
independent confirmations resolved. The archive might be private, as with traditional
laboratory notebooks.

•  Open or Reproducible Research. Auditable research made openly available. This
comprised well-documented and fully open code and data that are publicly available that
would allow one to (a) fully audit the computational procedure, (b) replicate and also
independently reproduce the results of the research, and (c) extend the results or apply the
method to new problems.

V. Stodden, D. H. Bailey, J. Borwein, R. J. LeVeque, W. Rider, and W.
Stein. 2013. Setting the Default to Reproducible: Reproducibility in
Computational and Experimental Mathematics. (2013). http://
icerm.brown.edu/html/programs/topical/tw12 5 rcem/icerm report.pdf

• TOMS RCR Initiative: Referee Data.
• Why TOMS? Tradition of real software that others use.
• Two categories: Algorithms, Research.
• TOMS Algorithms Category:

– Software Submitted with manuscript.
– Both are thoroughly reviewed.

• TOMS Research Category:
– Stronger: Previous implicit “real software” requirement is explicit.
– New: Special designation for replicated results.

ACM TOMS

34

RCR Process: Step by step

1.  RCR review request:
–  When authors submit a manuscript for review,
–  optional request for RCR review
–  Conducted independently from the standard process.

2.  Standard reviewer assignment: No change.
3.  RCR suitability review:

–  Concurrent with assigning standard reviewers
–  EiC/AE briefly review for RCR suitability.
–  RCR suitability decision may be delayed until the first

round of standard reviews is complete.

RCR Process

4.  RCR reviewer assignment (assuming suitable):
–  RCR review concurrent with standard peer review.
–  EiC/AE assigns RCR reviewer.
–  RCR reviewer sole responsibility replicate manuscript

computational results.
–  Open review.

5.  RCR review process:
–  RCR review requires multi-faceted approach.
–  Editors advise RCR reviewer on acceptable approaches.
–  BUT: Ultimately the RCR reviewer has the responsibility to

declare whether or not computational results in the
manuscript are replicated.

–  RCR reviewers document replication details.

RCR Process

6.  RCR Determination:
–  We anticipate (in this intro phase) that RCR manuscripts will

almost surely receive RCR designation.
–  Important: Reduce authors' risk as volunteers.

7.  RCR Review Failure:
–  Some risk now and in the future that RCR efforts will fail.
–  If so, must acknowledge manuscript is not ready.
–  Intro phase: EiC/AE personally manages this situation, work

with authors to avoid rejecting manuscript outright.
–  Later: No special treatment.

RCR Process

8.  Publication:
–  Published with a special RCR designation.
–  RCR referee will be acknowledged in published paper.
–  RCR referee's report will be published as a TOMS article.

•  Incentive for RCR reviewers.
•  Written record of process for understanding/improving.

Replication Methods

1.  Independent replication: The authors provide the
RCR reviewer access to, or sufficient description
of, the computational platform used to produce the
manuscript results. Access could be:

–  A direct transfer of software to the reviewer or a
pointer to an archive of the software, and a
description of a commonly available computer
system the reviewer can access.

–  A guest account and access to the software on the
system used to produce the results.

–  Detailed observation of the authors replicating the
results.

Replication Methods

2.  Review of computational results artifacts:
–  In some situations, authors may not be able to readily

replicate computational results.
–  Results may be from a system that is no longer available, or

may be on a leadership class computing system to which
access is very limited.

–  In these situations, careful documentation of the process
used to produce results could be sufficient for an RCR
designation.

–  In this case, the software should have its own substantial
verification process to give the reviewer confidence that
computations were performed correctly.

–  If timing results are reported, the authors' artifacts should
include validation testing of the timers used to report results.

Announcement

DL	 includes	 data	
from	 replication	
experiment	

Status

• First RCR paper available: TOMS 41:3
– Editorial introduction.
– van Zee & van de Geijn, BLIS paper.
– Referee report.

• Goal: 1 RCR paper per TOMS issue.
– Hogg & Scott next.

43

Big Picture of TOMS RCR

• Improve science.
– Quality of prose in publications: Good.
– Quality of data: (Very!) poor.

• So bad now:
– Trust comes from seeing a “cloud” of similar papers with

similar results.
– Which could still be wrong (built on a common bad piece).
– Replicability: First step toward improvement.

• Engage a “dark portion” of the R&D community.
– Reviewers not among typical reviewer pool.
– Practitioners, users. Expert at use of Math SW.

Remaining Issues

•  Replication initiative
•  “Replicated” branding in the PDF and in the DL

•  Would like uniformity across ACM

•  Can the process be sustained?

•  Will replicability reports have an (artificial) negative
impact
•  on journal impact factor?

•  Archiving of TOMS software/data in the DL
•  Separate DOIs?
•  Additional metadata?

Summary

• Containerization: New (for HPC) tool for
reproducibility (and much more).

• HPCG can be a reproducibility tester.
• Journal, funding agency policies can provide
productivity incentives.

• Replicability expectations:
– Better productivity practices are a natural reaction.

• Funding Proposals:
– We expect data management plans.
– Can we start expecting a SW quality management plan?

46

Final Thought: Commitment to Quality

Canadian engineers' oath (taken from Rudyard Kipling):

My Time I will not refuse;
my Thought I will not grudge;

my Care I will not deny
 toward the honour, use,
stability and perfection of

any works to which I may be

called to set my hand.

47

http://commons.bcit.ca/update/2010/11/bcit-engineering-graduates-earn-their-iron-rings

