
Towards a quantum interface between light 
and microwave circuits 
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Quantum information network built from 
nodes linked by propagating modes
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Quantum transduction connects disparate 
physical systems 

optical light: 

long distance communication 

ambient temperature

microwave circuits: 

process quantum information

ultralow temperature T < 250 mK



Quantum state preserving convertor is a 
unitary device

quantum state preserving => 
bidirectional, lossless, reflectionless network 
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Mechanical oscillator creates coherent 
coupling between microwaves and light 
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Mechanical oscillator creates coherent 
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Suspended membrane in optical cavity 
forms optomechanical system

vibrating membrane

1 cm

cavity mirrors

detector

Harris group (YALE)

Si3N4 membrane (50 nm)



Suspended membrane in optical cavity 
forms optomechanical system

vibrating membrane
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cavity mirrors
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optical amplitude alters momentum
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laser



Superb coherent control creates 
optomechanical system in quantum regime
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Resonant circuit with compliant capacitor 
creates electromechanical system

15 m
superconducting LC circuit
quantum circuit for T < 250 mK

Electromechanical system
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Microwave fields control the quantum state 
of a mechanical oscillator

State transfer

Entanglement

Nature 495, 210 – 214 (2013)

Science 342, 710 – 713 (2013)
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mirrors: high-finesse optical cavity

Opto-electromechanical system formed 
from “flip-chips” in optical cavity

top chip: membrane and one plate of capacitor
bottom chip: remainder of electrical circuit

mirror



Image of assembled flip-chip structure



Diagram of optical cavity assembly



Image of optical cavity assembly
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4 K cryostat with optical access

4 K sufficiently cold to test electro-optic 
conversion in a classical regime 
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Conversion requires both optical and 
microwave pumps



Power absorbed at the microwave port is 
converted to optical light
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Bidirectional operation a prerequisite 
for quantum state transfer
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R. W. Andrews, C. A. Regal, KWL, et al., 
Nature Physics 10, 321–326 (2014).



The future of mechanical systems in the 
quantum regime

impact: create quantum networks

quantum operation of electro-optomechanical convertor



Reaching the regime of quantum state 
preservation: cooling the environment

optical access dilution refrigerator in low vibration environment

100 mKT 



Conclusions

transfer between microwave and optical fields

classical

bidirectional

cryogenic

poised for quantum operation

microelectromechanics: a new quantum technology
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