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OFM Group - overview and motivations

Optical Frequency Measurements Group
~ 30 scientists (5 postdocs, 11 grad students, 3 visiting scientists)
Focuses on neutral atom optical frequency standards (Andrew Ludlow) +
fs-laser frequency combs (NIST Fellow Scott Diddams)

Core NIST metrology role
Time by far the most accurately realized SI unit (<1 x 10-19)
Other units depend on time (length, ampere, candela)
+ more?

Precision metrology and fundamental science
Tests of fundamental physics
Improved timing for high energy physics and astronomy
Search for new physics

Support for U.S. industry
Enhanced timing capabilities: femtoseconds vs. picoseconds
Optical communications systems
New methods for distribution of length standards
High sensitivity transducers for other quantities (e.g., geodesy)




Optical clock uncertainty through the years

Fractional Frequency Uncertainty
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Building blocks of an optical atomic clock
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Why use an optical lattice?

Confine atoms tightly in a 1-D or 3-D standing light wave

. Tight confinement Doppler & recoil-free
. Long interaction time high Q
. Large numbers (~10%)  high S/N G.(T) = AV] T

Lattice clocks based on Sr (~18), Yb (~9), and Hg (~3), and Mg



Controlling the lattice-induced shifts
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(1) Choose aJ=0 — J =0 transition to remove € dependence
(Kator1 2001)

(2) Tune 7\‘lattice to A — (11 =0 (Avclock / AVlat ~ 10-8)

magic

(3) Investigate higher order shifts (e.g., Aa,), M1, E2 effects
residual é dependence



Lattice clock measurement sequence

399 nm 556 nm Probe atoms Normalized
MOT MOT in lattice shelving
50 ms 50 ms ~ 360 ms detection

N ~ 109 ~ 106 ~ 104
T ~5mK T 50 uK T 2-15 uK
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Spectroscopy in an optical lattice

Temperature ~10 uK
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An optical clock with 10-18 instability
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Total Allan deviation (fractional freq.)
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First demonstration of atomic clocks averaging into 10-%s

Hinkley et al., Science 341, 1215 (2013)



Instability for different clock systems
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Cavities - present and future

Low atom projection noise limit for optical lattice clocks means clock laser
frequency noise (1. €., clock pre-stabilization) often limits lattice clock stability

Continual improvement of optical reference cavities and
locking techniques are a critical part of our program
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- Newly installed cavity has a Finesse of
700,000 and a linewidth of 590 Hz.

- Multi-layer shield yields residual drift =
35 mHz/s, compensated to 0.2 mHz/s.

Future plans include building cavities with lower fundamental thermal
noise limits, even at cryogenic temperatures

5K




Recent spectroscopic results
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Preliminary results indicate lowest clock stability to date worldwide



Frequency uncertainty for NIST Yb clock

Effect Shift (10'7) Uncertainty (1077)
Blackbody -250 25

Lattice polarizability 37 21

Cold Collisions -161 8
First-order Zeeman 4 4
Second-order Zeeman -17 1

Probe light 0.5 2

AOM phase chirp 0 1

Others 0 1

Total -38.7 3.4

Systematic Total: 3.4 x 10-1¢

Lemke et al, PRL 703, 063001 (2009)



Reducing the blackbody uncertainty

S 5 N =
Py =———ee.... —_—— g o
'Sy = g 1-08 E
1 2.._._ z 27 3
AVBBR = — 5 (clock <E >T [1 + 77clock] -g 12 °
; \ S , , , , . 1-16
2x 10 <1x 103 300 310 320 330 340 350 360
uncertainty uncertainty temperature, 7% i~ —)||1—— ‘ S
VL T 4 Lt 0.7 \
E*)p ~ (8319 V/em)? | —— S o6
(B (8319 V/en)? (5ot i\
S s \
~0.03 K effective temperature uncertainty & o, \\\\
]
£ 01
5 oV W

1

1 x 10-'® BBR clock uncertainty

Beloy et al. PRL 113, 260801 (2014).

Laser detuning (Hz)
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Zeroing in on the magic wavelength
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Yb clock: Present status/upcoming measurements

- Finish evaluation of systematic effects at the 10-18 level SR A

Doppler shifts, blackbody shifts, density effects |

- Frequency comparisons with other clock systems

B
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- Construction of a third, transportable system

- overcome time transfer limitations

- prototype for new, optically-based NIST Timescale | i

- Continued development of a compact, commercialized optical clock based on Ca



Ca thermal beam clock

Ramsey-Bordé Interferometer _

_A4s4p°3P,

657 nm
clock
OO Hz

5215

- Based on research first performed at NIST in 1979 by Barger, Bergquist, et al.

- Clock built for low instability, not small uncertainty — consistent with
requirements of many applications

- Possible applications include low noise microwave generation, compact
optical reference, ultra-stable reference oscillator for accurate clocks

- Working with two US companies to construct field-able prototypes



Compact Ca thermal beam clock - results
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7.4x10° @ 1s 3 x 101 @ 50s
~ 100x lower instability than any other thermal-atom based system

Competitive with more complicated systems (and cavities?) on short time scales?



Beam reversal to cancel 1st order Doppler

Reverse the laser beam direction:
1-D retro-reflector
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Or reverse the atoms!

Ca effusive Ramsey inferrpgation region Ca effusive
oven #1 detection 2 /4 detection 1 oven #2
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aperture - 0" "1
b bl-directional ¢ e troscopy detection laser

thermal beam laser



