Yb Optical Lattice Clocks

Optical Frequency Measurements Group - Chris Oates

National Institute of Standards and Technology, Boulder, CO USA

OFM Group – overview and motivations

Optical Frequency Measurements Group

 \sim 30 scientists (5 postdocs, 11 grad students, 3 visiting scientists) Focuses on neutral atom optical frequency standards (Andrew Ludlow) + fs-laser frequency combs (NIST Fellow Scott Diddams)

Core NIST metrology role

Time by far the most accurately realized SI unit ($<1 \times 10^{-15}$) Other units depend on time (length, ampere, candela) + more?

Precision metrology and fundamental science

Tests of fundamental physics Improved timing for high energy physics and astronomy Search for new physics

Support for U.S. industry

Enhanced timing capabilities: femtoseconds vs. picoseconds **Optical communications systems** New methods for distribution of length standards High sensitivity transducers for other quantities (e.g., geodesy)

Optical clock uncertainty through the years

Building blocks of an optical atomic clock

Frequency Comb

Why use an optical lattice?

Confine atoms tightly in a 1-D or 3-D standing light wave

- Tight confinement Doppler & recoil-free
- Long interaction time high Q
- Large numbers (~10⁴) high S/N $\sigma_y(\tau) = \frac{\Delta v}{v_0} \left| \frac{T}{N \tau} \right|$

Lattice clocks based on Sr (~18), Yb (~9), and Hg (~3), and Mg

Controlling the lattice-induced shifts

(1) Choose a $J = 0 \rightarrow J = 0$ transition to remove \hat{e} dependence (Katori 2001)

(2) Tune λ_{lattice} to $\lambda_{\text{magic}} \rightarrow \alpha_1 = 0 \quad (\Delta \nu_{\text{clock}} / \Delta \nu_{\text{lat}} \sim 10^{-8})$

(3) Investigate higher order shifts (e.g., $\Delta \alpha_2$), M1, E2 effects residual ê dependence

Lattice clock measurement sequence

399 nm MOT 50 ms	556 nm MOT 50 ms	Probe atoms in lattice ~ 360 ms	Normalized shelving detection
$N \sim 10^{6}$	$N \sim 10^6$	$N \sim 10^4$	
$T \sim 5 mK$	$T\sim 50~\mu K$	$T\sim 215~\mu K$	
	λ _{lattice}		
λ_{prob}	e	-	

Spectroscopy in an optical lattice

An optical clock with 10⁻¹⁸ instability

First demonstration of atomic clocks averaging into 10⁻¹⁸ s

Hinkley et al., Science 341, 1215 (2013)

Instability for different clock systems

Low atom projection noise limit for optical lattice clocks means clock laser frequency noise (i. e., clock pre-stabilization) often limits lattice clock stability

Continual improvement of optical reference cavities and locking techniques are a critical part of our program

- Newly installed cavity has a Finesse of 700,000 and a linewidth of 590 Hz.

Multi-layer shield yields residual drift = 35 mHz/s, compensated to 0.2 mHz/s.

Future plans include building cavities with lower fundamental thermal noise limits, even at cryogenic temperatures

5 K

Recent spectroscopic results

Frequency uncertainty for NIST Yb clock

Effect	Shift (10 ⁻¹⁷)	Uncertai	nty (10 ⁻¹⁷)
Blackbody	-250	25	
Lattice polarizability	37	21	
Cold Collisions	-161	8	
First-order Zeeman	4	4	
Second-order Zeeman	n -17	1	
Probe light	0.5	2	
AOM phase chirp	0	1	
Others	0	1	
Total	-38.7	7 3.4	

Systematic Total: 3.4 x 10⁻¹⁶

Lemke et al, PRL 103, 063001 (2009)

Reducing the blackbody uncertainty

Beloy et al. PRL **113**, 260801 (2014).

Zeroing in on the magic wavelength

Trap Depth/E_r

Yb clock: Present status/upcoming measurements

- Finish evaluation of systematic effects at the 10⁻¹⁸ level

Doppler shifts, blackbody shifts, density effects

- Frequency comparisons with other clock systems

NIST Cs fountains

NIST Al⁺, Hg⁺ ion clocks

JILA Sr lattice clock

- Construction of a third, transportable system
 - overcome time transfer limitations
 - prototype for new, optically-based NIST Timescale

- Continued development of a compact, commercialized optical clock based on Ca

Ca thermal beam clock

- Based on research first performed at NIST in 1979 by Barger, Bergquist, et al.

- Clock built for low instability, **not** small uncertainty – consistent with requirements of many applications

- Possible applications include low noise microwave generation, compact optical reference, ultra-stable reference oscillator for accurate clocks

- Working with two US companies to construct field-able prototypes

Compact Ca thermal beam clock - results

~ 100x lower instability than any other thermal-atom based systemCompetitive with more complicated systems (and cavities?) on short time scales?

Beam reversal to cancel 1st order Doppler

Reverse the laser beam direction:

Or reverse the atoms!

