Future of Vector Network Analysis

Dylan Williams and Nate Orloff

Communications Technology Laboratory

Integrated Circuits Drive Wireless Communications

We Cannot Take the Integrated Circuit for Granted at mmWaves

Next 15 Years of Wireless Manufacturing by Country NGT

The United States still dominates mmWave manufacturing

*0						
China		United S	United States		Japan	
Gross output	\$984B	Gross output	\$719B	Gross output \$492E	3	
Employment	9.5M	Employment	3.4M	Employment 2.1M	Λ	
		Global tota	al, 2035			
Germany		Gross output	\$3.5T	South Korea		
Gross output	\$202B			Gross output \$120	в	
Employment	1.2M	Employment	22M	Employment 963	к	
Franc	e	United Kir	United Kingdom		Rest of the world	
Gross output	\$85B	Gross output	\$76B	Gross output \$800	В	
Employment	396K	Employment	605K	Employment 3.6M	Ν	

Notes: K = thousand, M = million, B = billion, T = trillion

Source: IHS

© 2017 IHS

Enables \$12.3T in Total Economic Growth (2020-2035)

Communication Providers Want Speed of Fiber on Your Phone NIST

Millimeter-Waves are the Next Wireless Frontier

Measurements and Calibrations Matter at mmWaves

mmWave Measurement Challenge of our Era NIST

Goals for Vector Network Analysis in CTL

Project Calibration Reference Planes On-Wafer and to OTA Test

On-Wafer Measurements

- Innovations in Calibration
- Support Device Models to System-Level Test
- State-Of-The-Art Instruments for US mmWave NR Manufacturers

Vector Network Analysis

- Platform for Traceable System-Level Tests Across CTL
- Close the Connector-Less Gap

mmWave Design Extremely Complex

Accurate measurements are a must

- Highly nonlinear operating states required for efficiency
- Characterize, capture, control and reuse harmonics
- Must maintain linearity

On-Wafer Measurement the Only Way to Test ICs NIST

Yesterday

Today

CTL On-Wafer Accomplishments

of effective dielectric constant Imaginary part

Frequency (GHz)

Vector Network Analysis Today

Same network analyzer

- S-parameter calibration
- Add Power and Electrical-Phase calibration

The Future of On-Wafer Vector Network Analysis NIST

CTL Innovating in S-Parameters, Power and Electrical Phase

Scattering-Parameter Calibration Kit

Power Meter

Electrical Phase Reference

Tomorrow

A Conduit for Traceability Inside and Outside CTL

Vector Network Analysis Brings Power, Electrical Phase, Impedance and Waveforms to Remote Reference Planes

OTA System-Level Measurements

Characterize Fields

VNA Traceability For:

- Channel Distortion, AoA and Polarization
- Flexible RF-RF and RF-IF Measurements
- Multiple Traceable Modulated Signals

Some Outcomes of CTL Vector Network Analysis

On-Wafer Measurements

- On-Wafer Device-Modeling Capability with Uncertainty
 - GaN manufacturer asks for models with uncertainty
- On-Wafer Impedance-Power-Phase Calibration Kits
 - Power Standard with 100 GHz BW
 - Fabricated experimental on-wafer phase reference
- On-Wafer Instruments in a Probe
 - Self-calibrating, connector-less, 1 THz BW

VNA Measurement Methods

- Improved VNA Synchronization for Accurate Modulated-Signal Measurement
 - Using similar technique Keysight announces accurate EVM measurements with VNA
- Traceable Characterization of any Signal AWG can Generate
 - Arbitrary frequency grid, dramatically improved sync/SNR
- Investing in Calibration Services
 - 4 New Staff Members
 - Waveform calibrations report both conventional and correlated uncertainties
 - Power and Scattering-Parameter Services migrating toward VNA transfers and correlated uncertainties

Impact on Instrument Makers

- Keysight adopts calibrated NIST Photodiodes for oscilloscope and electrical-phase traceability
- Instrument Maker adds electrical phase reference and asks for NIST traceability
- Instrument Maker announces 220 GHz VNA with no Coaxial Calibration Kit
 - Joint experiments to investigate direct NIST photodiode calibrations
 - Need 220 GHz calibration kits supporting on-wafer impedance-power-phase

The Future of Vector Network Analyzers

NIST

Everything in a Probe to Measure mmWave ICs Electro-optic sampling Output iagnost! \geq Voltage manifold Amplifiers Couplers Converter Time (ps) Electrical lock mm-wave

Vector Network Analyzer in-a-Probe

60 GHz – 270 GHz VNA-on-a-chip

CTL at Cutting Edge of On-Wafer-to-OTA Test

On-Wafer

System-Level Test

Free-Space