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How are mmWave Channels Different?

• Diffracted rays at mmWave frequencies 
are very weak/negligible

• Penetration loss at mmWave is so high 
that rays will not propagate far

• Even free-space pathloss will be 
significantly higher

ROUGH SURFACE

SPECULAR RAY
DIFFUSE RAY

DIRECT RAY AND 
SPECULAR RAYS

Sparse 
channel

• At mmWave, surface roughness can be on 
the order of a wavelength, generating diffuse 
rays in addition to specular rays

TX

RX
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Channel Measurements



Ideal Features of mmWave Channel Sounders

• High antenna gain 

• Antenna arrays 

• Omnidirectional field-of-view (FoV)

• Dual polarization 

• High dynamic range

• Ultra-wide bandwidth

• Fast channel sweep time 
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NIST Switched-Array Channel Sounders

83-GHz System (video) 28-GHz System60-GHz System

• 16-18 dBi antenna gain
• 2D arrays at both TX and RX
• Omni azimuth FoV at TX and RX
• 45-55 dB dynamic range
• 1-2 GHz bandwidth
• 65-262 us sweep time
• Automated collection system with robot
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NIST Virtual-Array Channel Sounder

Synthetic aperture samples across space Simulated array response Measured array response

• High angle resolution limited only by span of robotic arm
• Super ultra-wide bandwidth (26-40 GHz)
• No mutual coupling effects 
• High dynamic range at each measurement due to VNA
• Digitized signal available at each sample position
• Provides measurement uncertainties
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NIST Phased-Array Channel Sounders

60-GHz System:

• Similar properties as virtual array, but 
FAST!

• 4 ms sweep time
• 26 dBi  antenna gain
• 1D arrays 1 GHz bandwidth
• Automated collection system with robot

60-GHz System

28-GHz System also has:

• dual polarization
• 2D arrays
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Channel Modeling



Dispersion Models

• Dispersion models describe how channel rays are 
dispersed in delay and angle

• Before 5G, delay dispersion only was necessary 
because omni antennas would detect all rays

• For 5G, angle dispersion is also necessary to 
determine which rays the pencilbeams will detect 

TX beam

RX beam

widebeam
CIR

narrowbeam
CIR

Rays extracted from measurement in a lecture 
room with 60-GHz switched-array system
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Beamwidth-Dependent Pathloss Models

narrowbeam data

omni data

narrowbeam model

omni model

FS model

Pathloss data from measurement in lobby/hallway 
with 83-GHz switched-array system

Pathloss-model parameters for various indoor 
environments at 83 GHz

• Pathloss models can be beamwidth dependent by admitting more/less rays into the beam
• The pathloss exponent – especially in NLOS – can vary significantly between narrowband and widebeam systems
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Ray Tracking

• 5G systems will steer beams towards channel rays
- recover from blockage
- exploit multiple rays for spatial multiplexing

• Understand how ray properties (path gain, AoD, AoA) change in time and space
• Understand which ambient objects can serve as persistent reflectors

Measurements with 60-GHz switched-array system in lecture room



Our Systems Can Support Almost Any Channel Model

Human presence models
Fast-fading models

60-GHz switched-array system
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Collaborations with Industry:
Select Examples



IEEE: Contributions to 802.11ay

Contributed three new models to IEEE 802.11ay channel modeling document:
• A. Malstev,…, C. Gentile, P. Papazian, J.-K. Choi, J. Senic, J. Wang, D. Lai, N. Golmie, K. Remley, et al., 

“Channel Models for IEEE 802.11ay,” Document IEEE 802.11-15/1150r9, March 2017. 
o Quasi-Deterministic Model for Lecture Room
o Quasi-Deterministic Model for Data Center
o Quasi-Deterministic Model for Doppler Spread
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Mathworks: IEEE 802.11ay Channel Model

Integration of IEEE 802.11ay channel models in MATLAB release 2018b
- Collaborated with MATLAB engineers for over one year
- Provided prototype code to help them with implementation

IEEE 802.11ay documentation page in MATLAB
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Siradel*: Tuning of Raytracing Engine

Relative Rx
power (dB)

Tuning of Siradel’s Volcano raytracing engine against NIST measurements

*Siradel is an RF planning tool company with headquarters in North America, Europe, and Asia

NIST 28-GHz measurements in downtown Boulder
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Qualcomm: Indoor Penetration Loss 
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Measurements of indoor penetration loss with NIST 60-GHz switched-array channel sounder 
- Collected over 100 measurements in minutes
- Penetrations through multiple wall materials in hallway
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5G mmWave Channel Model Alliance
• Book: “Millimeter-Wave Channel 

Modeling and Measurement 
Approaches”, Prentice-Hall, 2020

• Data repository:
₋ Over 80 registered
₋ Over 20 data sets across multiple 

mmWave bands from 5 different 
organizations

• Practical methodology to 
benchmark RF channel sounders:

-Participation from five worldwide 
research organizations (NIST, U. British 
Columbia, U. of Southern California, U. 
of Ilmenau, North Carolina State U.)

₋ Mathematical model to represent 
channel sounder whose parameters are 
characterized through in situ 
measurements

₋ Benchmark performance of channel 
sounders against identical channel

Channel sounder model

Simulated measurement for 
NIST 28-GHz switched-array channel sounder 19



5G mmWave Channel Model Alliance (cont)

• Channel-Sounder Hardware Verification:
• NIST artifacts provide repeatable channels:

• Multipath channel (conducted)

• Spatial channel (over the air)

• NIST provides reference measurement

• Users’ hardware, processing code checked

Multipath verification artifact 
(conducted channel)

User’s processing code improved using NIST artifact

40 GHz: AoA resolvable 31 GHz: AoA not resolvable

Angle-of-arrival verification artifact 
(wireless channel)

340 mm: AoA resolvable 320 mm: AoA not resolvable



Facebook: 802.11ad-Based Sounder

1https://telecominfraproject.com/
2https://www.telefarco.com/

• Facebook in collaboration with TIP1 (Telecom Infra Project) 
and Telefar Co2 is distributing an 802.11ad-based phased-
array sounder at 60-GHz 

• Intention is to amass lots of measurement data collected 
from organizations across the globe to understand 
mmWave propagation better

• NIST is participating in study
• Data will be disseminated through 5G Alliance website

Testing with sounder at NIST Gaithersburg
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High Fidelity mmWave System-Level 
Modeling & Simulation



High Fidelity System-Level Modeling
Channel Propagation MeasurementsChannel Propagation Measurements

Channel ModelChannel Model

Channel Sounders

Multi-path Components

Matlab

MatlabQuasi-Deterministic Realization software* (60 GHz)Quasi-Deterministic Realization software* (60 GHz)

IEEE 802.11ay PHY layer abstraction

Link level simulation
PHY layer model for IEEE 802.11ay

ns-3 802.11ad/ay implementation with Q-D channel model*ns-3 802.11ad/ay implementation with Q-D channel model*

Channel Model 
parameters (MPC, 
Angles, Delay, etc.)

System-Level Protocol EvaluationSystem-Level Protocol Evaluation

* Publicly Available: https://github.com/wigig-tools

https://github.com/wigig-tools


System-Level Protocol Evaluation

Beamforming Training

SLS (Sector Level Sweep) BRP (Beam Refinement Protocol)

Design/evaluate beam management algorithms:
- Antenna array geometry
- Mobility models
- Environment specifics

Design/evaluate beam management algorithms:
- Antenna array geometry
- Mobility models
- Environment specifics

Beamforming Tracking

CBAP SP

Design/evaluate schedulers for specific 
applications/environments

Design/evaluate schedulers for specific 
applications/environments

Beam management Data Transmission

Hybrid MAC

ns-3 802.11ad/ay implementation with Q-D channel model
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Appendix



Q-D Realization Software

INPUTS
- Environment CAD file (STL or AMF w/material 
properties)
- Nodes locations and mobility
- Order of reflections

GEOMETRICAL RAYTRACING 
(Deterministic-ray generator based on 

Method of Images)

QUASI-DETERMINISTIC MODEL
(Stochastic-ray generator*)

DETERMINISTIC RAYS, 𝒊 = 𝟏…𝑵

- Delay (𝜏𝑖) AoD ( 𝑖
𝑇𝑋, 𝜙𝑖

𝑇𝑋) AoA ( 𝑖
 𝑋, 𝜙𝑖

 𝑋)

FRESNEL EQUATIONS
(Polarization raytracing)

INPUTS 
-TX/RX antenna orientations (and polarizations)
- Center frequency

DETERMINISTIC RAYS, 𝒊 = 𝟏…𝑵

- Delay (𝜏𝑖) AoD ( 𝑖
𝑇𝑋, 𝜙𝑖

𝑇𝑋) AoA ( 𝑖
 𝑋, 𝜙𝑖

 𝑋)

- Path loss (𝑃𝐿𝑖) Phase 𝑒𝑗𝜑𝑖  Doppler (𝜈𝑖)

OUTPUTS
DETERMINISTIC RAYS, 𝒊 = 𝟏…𝑵

- Delay (𝜏𝑖) AoD ( 𝑖
𝑇𝑋, 𝜙𝑖

𝑇𝑋) AoA ( 𝑖
 𝑋, 𝜙𝑖

 𝑋)

- Path loss (𝑃𝐿𝑖) Phase 𝑒𝑗𝜑𝑖  Doppler (𝜈𝑖)
STOCHASTIC RAYS, 𝐣 = 𝟏…𝑴𝒊

- Delay (𝜏𝑖𝑗) AoD ( 𝑖𝑗
𝑇𝑋, 𝜙𝑖𝑗

𝑇𝑋) AoA ( 𝑖𝑗
 𝑋, 𝜙𝑖𝑗

 𝑋)

- Path loss (𝑃𝐿𝑖𝑗) Phase 𝑒𝑗𝜑𝑖𝑗  Doppler (𝜈𝑖𝑗)

* The stochastic ray-generator is based on the lecture-room 
measurement campaign in IEEE P802.11 Group for Wireless 
Local Area Networks (LANs). 2017 Channel Models for IEEE 
802.11ay.

Publicly available at: https://github.com/wigig-tools
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ns-3 802.11ad/ay implementation 
with Q-D channel model

INPUTS
- Phased array antenna geometry
- Antenna elements type 

ns-3 802.11ad/ay implementation with 
Q-D channel model

ns-3 802.11ad/ay implementation with 
Q-D channel model

802.11ad ns-3 module has been modified to:
• Implement the Q-D channel model
• Be able to use any kind of phased array antenna

Codebook Generator*Codebook Generator*

OUTPUTS
- Codebook file for APs and STAs (steering 
vector and complex AWV per sector)

Q-D Realization softwareQ-D Realization software

INPUTS
- Environment CAD file
- Nodes locations and mobility
- Order of reflections

OUTPUTS
- Q-D files representing the channel, i.e, 
MPCs parameters

* Matlab code provided by IMDEA

𝒉𝑩𝑭 = ෍

𝒊=𝟎

𝑵−𝟏

𝑨(𝒊) 𝒀𝑹𝒙
(𝒊)
𝒀𝑻𝒙
(𝒊)

𝒆−𝒋𝟐π𝒇𝒕𝒊

• 𝑵: number of MPCs
• 𝑨(𝒊) : Complex amplitude of the ith MPC

• 𝒀𝑹𝒙
(𝒊)
 𝑛𝑑 𝒀𝑻𝒙

(𝒊)
∶ radiation pattern of the receiver and transmitter array at the ith MPC respectively

• 𝒇 : operational frequency
• 𝒕𝒊: delay for the ith MPC



802.11ay PHY layer abstraction (error curves)

NIST Error Model
(BER/SNR curves)

NIST IEEE 802.11ay 
PHY Layer*

- Transmission modes (Control, SC, OFDM) 
- SISO/MIMO configurations 
- System parameters (channel bandwidth,  
packet length, etc.)

Q-D Realization software

Analog Beamforming

Beamform multi-path components (MPCs) 
along the directions of  7  dominant paths 
(direct,  4 walls, ceiling and ground)

System Requirements

Mapping methods
- Exponential Effective SNR Mapping
- Mean Mutual Information per Bit
- Q-Mapping

ns-3 802.11ad/ay 
implementation with 
Q-D channel model

ns-3 802.11ad/ay 
implementation with 
Q-D channel model

*based on Matlab DMG IEEE 802.111ad WLAN System Toolbox 31


