

Current and Future Critical Dimension Metrology Perspective for Sub-10nm Process

Mar/23/2017 Mari Nozoe Business Strategy Planning Division Electronic Device Systems Business Group

Hitachi High-Technologies Corporation FCMN 2017 Mari Nozoe

Copyright ©2017 Hitachi High-Technologies Corporation All Rights Reserved

Technology Trend of Advanced Devices

1

Evolution in Structure, Process and Material HITACHI Inspire the Next

Hitachi High-Tech

2

HITACHI **Evolution in Structure, Process and Material Inspire the Next**

CD Metrology Overview

4

Metrology method	Pros	Cons
CD-SEM (image-based)	 Measure any complex arbitrary feature Direct measurement from image (no modeling) Automated, stable, precise 	 Mid throughput for large area coverage Difficult to measure pattern height
Optical Scatterometry (OCD) (model-based) (in-line use)	 High throughput (for global monitoring) High sensitivity, CD/ 3D profile measurement Automated, stable, precise 	 Average measurement only (unavailable for complex pattern) Long time for modeling (recipe setup) (reference needs)
CD-AFM (image-based)	Measure 3D profile of arbitrary feature	 Measurable pattern is limited Low throughput
X-ray Scatterometry (CD-SAXS) (model-based) (off-line)	CD/ 2D X-section profile measurement	 Need large test pad Average measurement only (unavailable for complex pattern) Low throughput
Cross section TEM/ STEM (image-based) (off-line)	 Atomic resolution, CD/ 3D profile measurement 	 Destructive Low throughput

5

EPE Metrology & Pattern Fidelity Analysis

CD metrology \rightarrow EPE Metrology

HITACHI **Inspire the Next**

FCMN 2017 Mari Nozoe

HITACHI Inspire the Next

Measurement of Every Pattern in FOV

Extract contour from SEM image

Design matching

Hitachi High-Tech

2016 March, Hitachi Review Vol 65

Pattern Fidelity Analysis

HITACHI Inspire the Next

EPE Analysis of Metal 1 Block

Line/Space CD Variation Analysis of Metal 1 Trench HITACHI Inspire the Next

Pitch walking measurement require to identify each line and space

P32 spacers on TiN **Block litho on SoC** SoC etch **TiN** etch Low-k etch amanan ເກາຍc

Hitachi High-Tech

2016.Nov, <u>Greg McIntyre</u> Patterning and Lithography update

10

Overlay Metrology

Overlay Requirement

HITACHI Inspire the Next

High-precision, layer-to-layer overlay

With high voltage SEM (HV_SEM),

- 1) Actual device pattern, layer-tolayer overlay is available
- 2) Under layer (um order depth) becomes visible
- 3) SEM_OVL results at ADI show good correlation to OPT_OVL

Hitachi High-Tech

unec

SEM based overlay measurement between Via patterns and buried M1 patterns using high voltage SEM

LER / LWR Metrology

LER/ LWR and PSD analysis

HI IACHI Inspire the Next

measurement

 Various source in roughness, each having different spatial period range, need different index side-wall film thickness (white) resist stochastic (1/f) wiggling in etching (long period)

Precision in CD measurement

$$\sigma_{CD}^2 = \frac{LER_{real}^2 + \sigma_{measurement}^2}{N}$$

LER measurement

observed
$$LER^2 = LER^2_{real} + \sigma^2_{measurement}$$

FCMN 2017 Mari Nozoe Copyright ©2017 Hitachi High-Technologies Corporation All Rights Reserved.

N~ -10^{3~4}

HAR Pattern Measurement

Bottom CD Measurement of HAR pattern

FCMN 2017 Mari Nozoe

17

Copyright ©2017 Hitachi High-Technologies Corporation All Rights Reserved.

HITACHI **Inspire the Next**

Bottom CD Measurement of HAR pattern

K Takamasu, Y Iwaki; Satoru Takahashi; Hiroki Kawada; M Ikota; G F Lorusso; N Horiguchi "3D-profile measurement of advanced semiconductor features by reference metrology" SPIE 2016

Bottom CD Measurement of HAR pattern

HITACHI Inspire the Next

New approach: Oblique FIB + Top-down CD-SEM

FCMN 2017 Mari Nozoe

CD-SEM and FIB enable full 3D reconstruction

SPIE 2017, <u>Gian Lorusso</u> Enabling CD SEM Metrology for 5nm Technology Node and Beyond

Hitachi High-Tech

IMEC HITACHI

Metrology for Next Generation Device

Nanowire metrology

HITACHI Inspire the Next

CD measurement of Si and III – V lateral nanowires is feasible

SPIE 2017, <u>Gian Lorusso</u> Enabling CD SEM Metrology for 5nm Technology Node and Beyond

Emerging Memory metrology

HITACHI **Inspire the Next**

Emerging Memory metrology

ZϽ

Metrology for HVM

Requirement for HVM metrology tool

Requirement for HVM metrology tool

Gap & Potentials of Hybrid Tool

Gap from the requirement

		SiFn Fin-Shape sio			າກກາກ
Requirement	CD-SEM	OCD	CD-AFM	CD-SAXS	SEM/STEM
Sensitivity (sub-1nm)			Probe effect at lateral direction		
Where to measure					
Measure any pattern	In-die, Complex pattern	grating	In-die, Complex pattern	grating	In-die, Complex pattern
What to measure					
СП					

EPE	CD				
	LER/LWR				
	OVL	High Voltage	DBO		
3D	Profile	Top view			
	HAR bottom	High Voltage			

In-line useage

Throughput			
Recipe setup	modeling	modeling	Preparation
Non-destructive			

Potential of Hybrid Tool

HITACHI Inspire the Next

Smart sampling for precise measurement
Smart recipe for OCD measurement
Fusion map of height and EPE

Hitachi High-Tech

Precise 3D measurement for any complex pattern

Further ideas of Hybrid Tool

HITACHI **Inspire the Next**

- Evolution in structure, process and material brings new requirement to CD-metrology, such as EPE metrology (including pattern fidelity check, overlay, LER/ LWR analysis), HAR pattern measurement (including bottom/underlayer measurement, 3D-profile).
- ➢ In-line CD-SEM had changed its HW/ SW to suit every use application.
- Though metrology technologies improve, there are many challenges to reach the requirements.
- Collaboration needed

We would like to thank Gian Lorusso, Greg McIntyre, Daisuke Bizen, Takeyoshi Ohashi and all the people in imec and Hitachi team to provide the data and discussion.

umec HITACHI

Abbreviation

ADI	After development inspection	LCDU	Local CDU
AFM	Atomic force microscopy	LELE	Litho etch litho etch
BSE	Back scattered electron	LER	Line edge roughness
CD	Critical dimension	LWR	Line width roughness
CDU	Critical dimension uniformity	MB	Multi beam
DBO	Diffraction based overlay	MP	Multi patterning
EB	Electron beam	MRAM	Magnetoresistive random access memory
EBI	Electron beam inspection	OCD	Optical CD measurement
EF	Energy filter	OVL	overlay
EPE	Edge placement error	PFC	Pattern fidelity check
EUV	Extreme ultra violet	PSD	Power spectrum density
FEM	Focus exposure matrix	SAQP	Self aligned quadruple patterning
FET	Field effect transistor	SAXS	Small angle X-ray spectroscopy
FIB	Focused ion beam	SE	Secondary electron
GAA	Gate all around	SEM	Scanning electron microscope
HAR	High aspect ratio	STEM	Scanning transmission electron
HS	Hot spot	OTEM	microscope
HVM	High volume manufacturing		

Thank you

Current and Future Critical Dimension Metrology Perspective for Sub-10nm Process

Mar/23/2017 Mari Nozoe Business Strategy Planning Division Electronic Device Systems Business Group

FCMN 2017 Mari Nozoe