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Biometric Atuthenticatibn: The ——
Access Control Scenario
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Motivations

~ How well can a multimodal biometric system cope with missing

information?

- How well can automatically derived quality measures improve
the fusion system performance?

- How well can a multimodal system perform given restricted
computation and in the presence of hardware/software failures?

# Failure to enrol and failure to match

- What if the device used during authentication is different from
that used during enroliment? [device mismatch]

- Principally interested in performance improvement due to the
use of quaulity measures in fusion

s w.r.t the baseline system

» w.r.t. a fusion system without given any quality measure
~ Not particularly concerned with state-of-the-art performance
» Simulate failures by masking the data!
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Conventional Fusion Algorithms
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" Quality-dependent Fusion Algorithms
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Score/Quality Measures
Generation Principles

- Use baseline systems

s standard algorithms

» LDA for face, NIST’s fingerprint matcher, Daugman’s algo.
for iris

- Fully automatic segmentation and matching

» If a system cannot process a query, e.d., due to failure to
segment or failure to match, output a dummy match score ‘-
999’

- Automatically computed quality measures
¢ |If a quality detector fails, output a dummy ‘-999’ instead

- Consequence: Algorithms have to deal with missing
observations/values

‘-
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Capturing Devices-

CAPTORING DEVICE
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Face Quality Measures

Face

» Frontal quality
lllumination
Rotation
Reflection

Spatial resolution
(between eyes)

Color bit per pixel
Focus

Brightness
Background informity
Glasses

L
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LS

Well Side
Hluminated | illuminated

Glass=89% | Glass=15%
Hlum.=100% | llum=56%

Quality measures for iris

Quality measures for fingerprint
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webcam

Digital camera

Note: quality (e.g., image resolution), dependents on

the device and its operational settings (e.g., white
balance adjustment).

Intra-site diversity

Cross-site diversity
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Examples of Segmented Face
Images

£ 85008
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Face detection may fail, but the
matching will proceed anyway!

Examples of bad iris
segmentation

- e
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752 Experimental Protocol  — —

Two non-overlapping partition of users

/\

Development set Evaluation set (sequested)
/ P

\ 2N N ),

Y
For fusion algorithm development —tuning  Uniquely for assessing the performance
arameters and decisi Sequested data; independently tested
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EER (%)
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HE sessjon 1 test data
HE session 2 test data

falfnfl fo1 fo2 fo3 fod fob fo6 ft1 ft2 ft3 fid fi5 6 fwfl ir1 ir2 xfalxfi1 xfi2 xft3 xftd xfts xfté
_ VAN J
N R
Same device Device mismatch

(17 channels of data)

(7 channels of data)

Preliminary Performance Analysis

Fa: face (webcam)

Fnf: face (digital; no flash)
Fwrf: face (digital; with falsh)
Fo: fingerprint (optical)

Ft: fingerprint (thermal)

xFa: mismatch (query is Fa;
template is Fnf)

XFt: mismatch (query is Ft;
template is Fo)

Intra session performance
IS consistantly
optimisitically biased
compared to the inter-
session one

Device mismatch can
degrade the performance
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Evaluation Résults

7 teams, 22 fusion algorithms, 2 evaluation protocols, 6 months

Examples of algorithms submitted:

Naive bayes, Bayes classifier with GMM density estimator and mixture of
factor alayzers, logsitic regression, fixed rule, device-specific fusion, linear
classifier (with error-dependen weights), SVM, bayesian network,

Dempster fusion rule

Tobias Scheidat (AMSL-BIO, U. of Magdeburg)

Short name

Lorene Allano, Institut National des Téléecommunications (GET-INT), France.

Fernando Alonso, Universidad Autonoma de Madrid, (UPM), Spain
O Fatukasi and N. Poh, U. of Surrey (UniS), UK.
Harald Ganster, Joanneum Research (JR), Austria

Albert Salah and Onkar Ambekar, Centrum voor Wiskunde en Informatica

(CWI), the Netherlands

John Baker, Johns Hopkins University Applied Physics Laboratory (JHUAPL), USA
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Cost-sensitive evaluation
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= More systems->more costly but also higher robustness to hardware/software failure =
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Q&A
Thank you!

e ——————— e ————————————————
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Minimally:Optimized Eye-lid
and Eyelashes Segmentation

Iris code

1
20
30
40
500
il

Eye-lid
Included In

. / matching

10
20
aa
40
ad
L]

Iris mask

Ideally, two thresholds are needed for the mask:
to remove eye-lids and eyelashes
The threshold for eyelashes are not optimal too (not shown here)
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Each row represents data collected at a site

w
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Fingerprint Quality Measure

Thermal sensor (sliding)

—

Optical sensor (impression)
o

-

image  Quality map
Low quality region (low contrast)

The global quality is the average of local quality measures
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Iris Quality Measures

Pupil diameter,d,

Q, = Average texture gradient
(similar to fingerprint quality
map)

Q,=d,-dp

Q5 = Proportion of
masked use for
matching

& _"i
=

lris diameter,d,
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Good
segmentation Bad segmentation
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Devices and Modalities

Label | template ID {n} | Modality | Sensor Remarks

fa 1 Still Face | web cam Frontal face images (low resolution)

fnf 1 Still Face | CANON Frontal face images without flash (high resolution)
fwt 1 Still Face | CANON Frontal face images with flash (high resolution)

ir 1-2 Iris image | LG 1 1s left eve: 2 is right eye

to 1-6 Fingerprint | Optical 1/4 1s right/left thumb: 2/5 1s right/left index: 3/6 is

right/left middle finger
ft 1-6 Fingerprint | Thermal 1/4 1s right/left thumb: 2/5 1s right/left index: 3/6 is

right/left middle finger
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Reference Systems and
Quality Measures

Modality | Reference systems Quality measures
Still Face | Ommniperception’s face detection reliability. brightness. contrast, focus,
Affinity SDK  face | bits per pixel. spatial resolution (between eyes). illu-
detector: LDA-based | munation. degree of umiform background. background
face verifier brightness, reflection, glasses. rotation in plane, rota-
tion in depth and degree of frontal face (from Om-
niperception’s Affinity SDK)
Fingerprint | NIST Fingerprint sys- | texture richness [5] (based on local gradient)
tem
Iris A wariant of Libor | texture richness [6], difference between iris and pupil

Masek’s iris system

diameters and proportion of iris used for matching
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Example of Quality Measures
to Distinguish Two Devices

100

Q0
BOF
fOF
60
A0
401

unifarm background

A0

20F

1[]_ referer-“:e IjE'n"IEE' -. ................ .. ........ .-I-_+. ............... I .i_
. : : : + + ¥y
+ glternative device| 4 L+ ¢ :

5.6 5.3 6 6.2 6.4 6.6
hits per pixel

0
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Ability of Quality Measures to
Distinguish Devices (fingerprint)

Decide the device after
| 7 observing three
fingerprints

Face quality measures
used are 5,6,8
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Some Observations

~ Quality measures can be used to
estimate the identity of the device

~ Quality measures are device-dependent
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Note: If all the data in a channel is used, the
average cost per access is simply 1.

—
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