
A Tutorial introduction to the ideas behind 
Normalized cross-entropy 

and the information-theoretic idea of Entropy 
 
Although the whole idea of entropy turns on Claude Shannon’s theoretical idea of “ information” , 
we need not get into the idea of “ information”  here. Instead, we will talk about an idea that is 
more intuitive: uncertainty. Suppose we have a sequence of symbols being produced by 
something or another (say letters appearing on a ticker-tape), or suppose we have a sequence of 
events that are occurring. Suppose we know what the possible events are (for letters appearing on 
a ticker tape there are 26 letters in English, 26 possibilities). And suppose we want to guess 
which of the possible symbols or events will be the next in the sequence. We can say that we 
have n possible symbols or events (for example, if the symbols or events are English letters, then 
n = 26). Because we are trying to guess the next letter, there is uncertainty for us. 
Correspondingly, whatever is generating the symbols or events has a choice to make (what to 
produce next). 

If each of the n possible symbols or events is equally likely, then the probability of each is 1/n 
(for our example of English letters, the probability that the next letter in a sequence will be an 
“A”  is 1/26 if the letters are equally probable, and so forth).  We can write this as pA = 1/26, 
pB = 1/26,  . . ., pZ = 1/26.  To generalize this, let i and j be two possible events in our sequence. 
Then just as we wrote pA = 1/26, we can likewise write pi = 1/n and pj = 1/n. Notice that as n 
becomes larger, we can say that “ the amount of choice”  or the uncertainty about what symbol or 
event will be next becomes larger. Intuitively (and mathematically), for any given value of n, the 
maximum amount of choice or uncertainty (about the next symbol) will occur in the situation we 
have been considering here, when the probabilities of all the symbols are equal. If we try to 
guess the next equally-probable symbol or event when n is large, our prediction will usually be 
wrong. But if some symbols are more likely than others, the amount of choice or uncertainty will 
be less—if one symbol occurs 99.99% of the time, and the other symbols almost never occur, 
then we would predict that the next symbol will be the symbol that occurs 99.99% of the time 
and we would rarely be surprised by the actual next symbol. 

Entropy: 
We can formalize this notion and give it a mathematical analysis. We call the amount of choice 
or uncertainty about the next symbol “entropy”  and (by historical convention) use the symbol H 
to refer to the entropy of the set of probabilities p1, p2, p3, . . ., pn 
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Formula 1.  Entropy. 



 2

In that formula, in the special case where all n symbols or events are equally likely, pi is always 
1/n and the formula reduces (via algebra) to H = log2 n, which is probably more intuitively 
obvious. 

To give some actual examples 
  for our example of 26 equally-probable letters, H is just barely over 4.7, 
  for heads vs. tails of a fair coin H = 1.0, and 
  where only one outcome is possible H = 0.0.  

We must note that H = 0.0 not just when there is only one choice but also when there are 
multiple choices of which only one ever occurs. For example, say we have two choices: the first 
is that in the morning the sun will come up in the east, and the other is that in the morning the 
sun will come up in the west. The sun always comes up in the east, so H is 0. 

Usually some of the actual choices are more likely than others, and in that case H will always be 
less than if the choices are all equally probable. For example, the letters in actual English text are 
not equally probably (E occurs often, but F, Z, Q, and P are less common.) So, the entropy of the 
set of probabilities of the letters in actual English text is considerably less than 4.7 (which is the 
maximum entropy possible). All 26 letters actually occur fairly frequently in English text, so 
there is considerable uncertainty about what letter will occur next in actual English text, and the 
entropy of the set of probabilities of the letters in actual English text is considerably greater than 
zero. So, we can see that the entropy H for the set of actual probabilities of the 26 letters in 
English is somewhat greater than 0.0 and somewhat less than 4.7 

In many cases we are concerned with n = 2, for example when our choices are “correct”  and 
“ incorrect” . The entropy, H, of the probability distribution of these two choices will be 

)1(log)1(log 22 correctcorrectcorrectcorrect ppppH −−−−= . 

Formula 2.  Entropy for just two choices. 

Finally, since H is over some probability distribution, we can indicate that fact in our notation. If 
r is one probability distribution (a random variable) and s is another, we can write H(r) and H(s). 
Think, here, of r and s as two probability distributions over the same set of choices (for example, 
our set of 26 English letters, or the set of words in a document, or correct vs. incorrect). 

Cross-entropy: 
For two probability distributions over the same set of choices, we can extend the idea of entropy 
to a measure of the difference between the two probability distributions. This amounts to a 
measure of the difference between the two distributions, with values closer to zero where the 
differences between the distributions are less:  
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  Formula 3.  Cross-entropy of two probability distributions. 

Think of si here as a known distribution—note that swapping the two distributions will not give 
the same result. The cross-entropy value will be zero if distributions r and s are identical. Note 
that the value is undefined if any of the si values are zero.  Note also that  log2(r i / si)  in that 
formula may be positive or negative, and hence the entire sum may be positive or negative. One 
useful application of cross-entropy is where si represents a known a-priori distribution and you 
have many candidate r i distributions from which you wish to pick the r i that most closely 
approximates si (you wish to find the minimum cross-entropy). 

Normalized Cross-entropy: 
Suppose we want to look at the cross-entropy of the distribution of correct vs. incorrect words in 
the output of a speech-to-text (STT) system compared to the distribution of confidence factors 
that the STT system assigns to those output words (a function â(w) of the output word w). The 
values of â(w) are assigned by the STT system. These values are in the range 0.0 < â(w) < 1.0 
(0.0 would mean that the system is sure the word is incorrect, and 1.0 would mean the system is 
sure the word is correct—and note well, the system cannot be sure that either of these is the 
case). Values around 0.5 indicate a 50-50 chance that the word is correct or not (alternatively, 0.5 
means the system has no idea whether the word is correct or not). So, we want to look at whether 
there is some connection between the STT system actually getting a word correct and the 
system’s opinion about whether it got the word correct. Although one of these (correct vs. 
incorrect) has just two values and the other (confidence) is a floating-point value, you will note 
that the formula for normalized cross-entropy (NCE) that is coming up will take that into 
account. 

 

You will note that the formulas below involve the log of the confidence factors. In practice 
(because log(0.0) = – ���������
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*
 -entropy (i.e., SCLite) will 
replace any confidence factor of 0.0 with 0.0000001 and will replace any confidence factor of 
1.0 with 0.9999999 — but systems should not generate values of 0.0 or of 1.0 for â(w). 

 

 Let M be the total number of words in the STT output, and let m be the number of those M 
words that are correct. Then the average probability that a word in the STT output will actually 
be correct is pc = m/M. As suggested by the earlier discussions, given pc there is a maximum 
value for the entropy for STT actually getting the words correct vs. incorrect, and we multiply 

that entropy by M giving a value that we will call Hmax : 

 Hmax =  + m log2 (pc) ,.- M / m) log2 (1 0 pc) 
  Formula 4.  Hmax for NCE 
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Hmax is equivalent to Formula 2 above, using pc, and multiplied by M. This value will be 
positive, and pertains to the two choices (correct vs. incorrect), not to the â(w) confidence 
factors. Our formula for normalized cross-entropy is: 
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  Formula 5.  NCE 

Looking at Formula 5, we see that the numerator consists of three terms: the first is Hmax as 
given in formula 4, the second deals with the confidence factors for the words that STT got 
correct, and the third deals with the confidence factors for the words that STT got incorrect. Note 

that Hmax will always be positive and that the two terms dealing with the confidence factors will 
always be negative if the confidence factors are less than 1.0 

 

As the confidence factors for the correct words become much larger than the confidence factors 
for the incorrect words, the numerator will tend to become positive. If the confidence factors for 
the correct words approach 1.0 and the confidence factors for the incorrect words approach 0.0, 

then NCE will be dominated by Hmax (which can approach 1.0 in the limit—and because we 

divide by Hmax, NCE too will approach 1.0 in the limit). If the confidence factors were reversed 
(high confidence factors for the incorrect words, and vice-versa), then NCE would be quite 
negative, dominated by the log of the incorrectly small confidence factors for the correct words 
and the incorrectly large confidence factors for the incorrect words. 

 

There is nothing “magic”  about getting a value for NCE greater than zero. In practice, if the 
confidence factors correspond with whether the words are actually correct but have considerable 
random scatter (with the random scatter having a large magnitude compared with the average 
difference between the confidence factors for the correct words vs. for the incorrect words), the 
numerator (and thus NCE) may still be negative. It may interesting to note that if the system 
could somehow know pc then assigning a confidence factor of pc to every word would give 
exactly NCE = 0.0 (thus, assigning a confidence factor greater than pc to every correct word, and 
less than pc to every incorrect word will give a positive value for NCE). But of course, the 
system will not know, in advance, the value of pc for a particular run. 

 

How to get the best possible score on NCE: 

If the random scatter of the system’s system-internal confidence scores is large (so that the 
confidence scores are not informative), the system’s NCE score will likely be better if the 
confidence scores that it puts out are around the range of the system’s likely pc values (avoiding 
low confidence scores on correct words and high confidence scores on incorrect words, since 
both these kinds of errors will hurt the NCE score). 
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On the other hand, if your system-internal confidence factors are really good at predicting 
whether the word is accurate or not, then your system will get the best possible score on the NCE 
metric if the confidence factors that it puts out for the correct words are almost 1.0, and the 
confidence factors that it puts out for the incorrect words are close to 0.0—so you would want 
your system to generate confidence factors that cover the full range (0.0, 1.0). In practice, we do 
the NCE calculations in double-precision, so it is generally safe to assume that there are at least 
nine (base-10) digits of precision, and thus the full range that systems could generate would be 
0.000000001 to 0.999999999. 

 

If your system-internal confidence scores are informative, it is also important that the distribution 
of the confidence factor values that your system puts out correspond as closely as possible to the 
actual probability that the words are correct (for example, if some value of your system-internal 
confidence factor corresponds to a 92% probability that the word is correct, put out a value of 
0.92 rather than some other value). If there is an informative but not precise correspondence 
between your system-internal confidence factor and the actual probability that the word is 
correct, then it would probably be best to “bin”  your system-internal confidence values—for 
example, if some range of your system-internal confidence factors corresponds to about a 95% to 
100% probability that the word is correct, then you could put out a value of 0.975 when your 
system-internal confidence factors are in that bin (although it can be shown that you will score 
best on NCE if you put out a value that is equal to the actual pc for that bin, any value reasonably 
close to the actual pc will get you a good NCE score).  

 


