
1Intelligent Systems Division
Manufacturing Engineering Laboratory

2

NML Features
• NML is a software library for communication, ported to

– Linux, Sun Solaris, SGI Irix
– VxWorks, LynxOS, QNX
– Microsoft Windows
– Mac OS X

• NML applications running on one platform can
communicate with ones running on any other platform

• Based on a message buffer model, with fixed maximum
size, variable message length
– Supports blocking and non-blocking reads
– Supports queued and non-queued writes
– Supports polled or publish/subscribe communication

3

NML Features (cont)
• Uniform application programming interface

– same user source code regardless of computing
platform

– targeting new platforms requires recompiling, not
recoding

• Protocol Independence
– support for different protocols, e.g., shared memory,

backplane global memory, TCP/IP sockets, UDP
datagrams

– new protocols can be added without affecting
application code

4

NML Features (cont)
• Platform neutrality

– conversion between chip data formats, e.g., big endian,
little endian

– independent of compiler structure padding
– handles mutual exclusion

• Communication protocols specified in
configuration file, not source code
– locations of buffers and processes, selection of

protocols and options are read by NML at run time
– a running application can be extended dynamically

5

NML Availability
• NML is freely available

– developed by U. S. Government employees as part of
their official duties, and not subject to copyright

– source code can be used for any purpose
• understanding and debug
• porting to new platforms
• modification for commercialization

– Links to all NML documentation at
http://www.isd.mel.nist.gov/projects/rcslib/

• See also The RCS Handbook, Veysel Gazi et al,
© 2001 John Wiley and Sons, ISBN 0-471-43565-1

6

NML Programming
• C++ is the native language

– messages are declared as C++ structures (classes)
– C++ language bindings exists for all of NML

• Java is also supported
– Java class code is automatically generated from C++ header files
– Java language bindings exist for all of NML

• C “cover functions” can be written to give C applications
access to NML

• Other languages can be supported using cover functions or
via ASCII socket interface

Chapter 5

7

Making Yours an NML Application
1. Define NML message vocabulary with C++ class

declarations in header file
2. Use tools provided with NML to generate corresponding

C++ or Java executable code
– usually done in makefile
– can be hand-written, if desired

3. Create NML configuration file specifying location of
buffers and how processes connect to them

4. Create connections to NML buffers in your programs
5. Call read and write methods in your programs to transfer

messages

8

NML Messages
• Messages are declared as C++ classes derived from base class

NMLmsg
• Programmers need to specify unique integer ID for each message

– only needs to be unique among messages that may share a particular
message buffer

– typically unique within entire application, to ease development and
debugging

• Programmers need to specify actual data fields in messages
• Message class also requires constructor and an update function

– constructor initializes message and NMLmsg base class
– update function is called by NML to read and write message
– automatically generated

• Underlying protocol-specific work handled by Communication
Management System CMS base class

9

NML Message Example
#include "nml.hh"

#define MY_MSG_TYPE 101

class MY_MSG: public NMLmsg
{
public:

 // constructor calls NMLmsg base class with type and size
 MY_MSG() : NMLmsg(MY_MSG_TYPE, sizeof(MY_MSG)) {};

 // update function is used by NML's communication management system
 // for reading and writing the message using builtin functions
 void update(CMS *);

 // user-defined data
 char c;
 double d;
};
/* Windows by default aligns doubles to 8-byte boundaries, Linux to
4-byte boundaries, so there are 7 bytes of padding after ‘c’ for
Windows, 3 for Linux. NML solves this ‘alignment problem’. */

10

Using the NML Code Generator
• The Code Generator is written in Java,

and reads and generates C++ code
• Saves tedium of writing required NML

access functions for your messages
• Typically invoked via

java -jar <path>/CodeGenCmdLine.jar \
-I<path-to-other-headers> <yourheader.h>

• More complicated code generation can be
accomplished by replacing yourheader.h with
script=<somescript.gen>

Chapter 10

11

NML Update Function Example

#include "rcs.hh"

void MY_MSG::update(CMS *cms)
{
 // call overloaded ‘update’ method for all your types
 cms->update(c); // CMS built-in update can handle chars
 cms->update(d); // CMS built-in update can handle floats, doubles
 // all other built-ins handled similarly
}

• Enumerations handled specially using
update_enumeration_with _name() method
– overcomes temporary copy problem
– preserves symbol-to-value association, useful for diagnostics

12

NML Format Function
• All NML buffers contain the NML type ID, which can be

read without any knowledge of the specific message
• NML uses the type ID to determine how to read or write

the following message-specific data
• NML uses a format function for this

– format function is provided to NML when processes create or
connect to an NML buffer

– the format function needs to be written by the programmer
– it can be automatically generated, is using the RCS tool suite

13

NML Format Function Example
#include "nml.hh"

int my_format(NMLTYPE type, void *buf, CMS *cms)
{
 switch(type) {
 case MY_MSG_TYPE:
 ((MY_MSG *) buf)->update(cms);
 break;

 /* others here */

 default:
 return -1;
 }

 return(0);
}

14

NML Message Vocabularies
• Message declarations and code declarations forms

application vocabulary
– Typically, all message declarations and format function

declarations placed in a single header file
– message definitions, format function placed in a single library
– programming team references these

• Example: Enhanced Machine Controller (EMC)
Vocabulary
– EMC contains 131 messages for machine tool control
– a single format function for all of these
– one header file, emc.hh
– one libary, libemc.a (or emc.lib for Microsoft platforms)
– compiled for Sun Solaris, PC Linux, Windows NT

15

NML Configuration Files
• NML uses text files to hold configuration

information, not a central server or database
– a single file may be stored on a central file server
– many copies may be distributed redundantly
– sections can be partitioned and distributed
– all the usual pros and cons: inconsistent files v. server not there, etc.

• “New style” configuration files allow variable substitution,
conditionals, file inclusion, default parameters, arbitrary
parameter ordering, group defaults and other features

• Old-style config files are required at run time, and are
generated from new style using nmlcfg (and vice-versa)

• more details follow

Chapter 7

16

NML Buffers
• An NML buffer is a storage location with a fixed

maximum size
• Messages of variable length can be written into

NML buffers
• NML configuration file defines buffer parameters

– ASCII text file
– buffer lines begin with character B
– comments begin with character #

17

Mandatory Buffer Parameters
• Name

– a string used to identify buffers to processes who wish to create or
connect to them

• Type
– operating system shared memory, keyword SHMEM

• for processes in a single operating system, mutual exclusion necessary
• typical for Unix, Microsoft OSes
• fast, with speeds typical of RAM access

– backplane global memory, keyword GLOBMEM
• for processes sharing common backplane, mutual exclusion necessary
• typical for VxWorks in a VME bus or bus sharing, e.g., BIT-3
• fast, with speeds typical of bus access

18

Mandatory Buffer Parameters (cont)
• Type (cont)

– local (heap) memory, keyword LOCMEM
• for a single process, no mutual exclusion necessary
• provides NML API, anticipates multiple processes later
• fast, with speeds typical of RAM access
• can provide remote access if the single process is a server

– becomes a database application

– file (disk) memory, keyword FILEMEM
• for processes sharing a file system, possibly networked
• buffer is a disk file, useful for logging or scripting
• slow, with speeds typical of file system latency

– type-specific buffer parameters may follow at end

19

Mandatory Buffer Parameters (cont)
• Host

– name of computer on which the buffer is located
– used by remote processes to determine where to look for server

• Size
– fixed maximum size, in bytes, to be allocated for the buffer
– large enough for:

• size of maximum message: your data plus 2 ints for type and size
• 3 in-buffer int flags
• 32 bytes for buffer name check
• for GLOBMEM or mutex=mao_split (described later), one byte for

each connecting process

20

Mandatory Buffer Parameters (cont)
• Neutral

– flag signifying if data is to be written in native format
or neutral format (e.g., XDR)

– can be native (0) even if remote processes will connect,
since NML converts to neutral for all network
connections

– may be neutral (1) to force data to be converted to
neutral format in the buffer, if two different processor
architectures share backplane global memory

21

Mandatory Buffer Parameters (cont)
• Buffer number

– integer, generally different for each buffer
– need only be different for buffers that share the same

server

• Maximum processes
– only relevant for GLOBMEM or mutex=mao_split
– maximum processes that will connect to buffer
– used to set aside in-buffer flags to enable mutual

exclusion
– not determined at compile time

22

Optional Buffer Parameters
• Remote access method

– requires a server, described later
– specifies which network protocol is to be used
– either TCP/IP or UDP, with user-specified port number
– simplified TCP/IP: conversion to text stream

• allows easy interface for other languages
• can interactively telnet into NML

– keywords: TCP=<port>, UDP=<port>, STCP=<port>

23

Optional Buffer Parameters (cont)
• Alternative encoding methods

– if neutral is selected, default is XDR
– can also be ASCII, or display ASCII (better formatting

for readability); keywords ascii, disp
– XML, with optimization for sending changes only

• Confirm remote writes
– for remote NML connections, specifies that write

requests won't return until server sends acknowledge
– keyword: confirm_write

24

Optional Buffer Parameters (cont)
• Queuing

– messages can be queued in any buffer
– size of buffer includes queue
– keyword: queue

• Blocking reads
– blocking reads block the calling process until a new message is

received
– requires an additional binary semaphore
– keyword: bsem=<key>

• UDP read broadcasting
– when server gets read request from anyone, or sends a

subscription, it broadcasts to everyone
– keyword: broadcast_port=<UDP port>

25

Type-Specific Buffer Parameters
• SHMEM operating system shared memory

– key, same for both memory and semaphore; first entry after mandatory
parameters

• GLOBMEM global (bus) memory
– keyword vme_addr=<bus address>, e.g., vme_addr=0x400000
– keyword vme_code=<which address space>, e.g., vme_code=0 (full

address space), 1 (short address space)
• No additional for LOCMEM
• FILEMEM disk file buffers

– key, for mutex semaphore required by some platforms; first entry after
mandatory parameters

– must specify neutral encoding, with disp keyword
– default input file is standard input, output file is standard output
– keywords: in=<script file>, out=<log file>
– keyword max_out=<integer> sets size of output file; file is a ring buffer

26

NML Config File, Buffers (New Style)

buff.nml2

Shared memory, single operating system
b bufname=buff1 host=pc1 size=1024

Global memory, single backplane
b bufname=buff2 host=vx2 size=280 buftype=GLOBMEM \
 vme_addr=0x40E00600

Local memory, single process
b bufname=buff3 host=pc3 size=1024 buftype=LOCMEM

27

NML Config File, Buffers (Old Style)

buff.nml
NML file showing the four NML buffer types and sample
parameters

Shared memory, single operating system

Name Type Host Size Neut? (old) Buffer# MP Key
B buff1 SHMEM pc1 1024 0 0 1 4 1001

Global memory, single backplane

Name Type Host Size Neut? (old) Buffer# MP Bus Options
B buff2 GLOBMEM vx2 280 0 0 2 4 vme_addr=

0x40E00600 vme_code=0

28

NML Configuration File, Buffers (cont)

Local memory, single process

Name Type Host Size Neut? (old) Buffer# MP
B buff3 LOCMEM pc3 1024 0 0 1 4

File memory, for logging or scripting

Name Type Host Size Neut? (old) Buffer# MP file options
B buff4 FILEMEM pc4 1024 1 0 1 4 in=script

out=log max_out=1000

29

Mutual Exclusion for SHMEM
• Keyword: mutex=<type>
• os_sem, the default

– use operating system semaphores
– requires kernel call

• none
– don’t do anything
– fast, but will certainly cause problems unless

application provides its own mutex method

30

Mutual Exclusion for SHMEM (cont)
• no_interrupts

– disable interrupts to prevent multitasking
– fast, but can compromise system peripherals
– not all platforms support this; some require root privilege

• no_switching
– like no_interrupts, but just disables tasking interrupt
– peripheral interrupts are not affected

• mao_split (double buffering)
– buffer is doubled, one part for reading, the other for writing
– roles are interchanged after a write
– very fast, since no kernel calls required
– may lead to postponement, with occasional timeouts

31

Mutual Exclusion for GLOBMEM
• Via in-buffer process flags

– Each process has an associated byte in the buffer, from the max process
number from the buffer parameters

– When reading or writing, process writes a 1 or 2, respectively, in its byte
– Read operations poll for no other processes writing, then read and clear
– Write operations poll for no other processes reading or writing, then write

and clear
– Timeout or indefinite postponement is a possibility

• Via bus locking
– add keyword bus_lock to GLOBMEM buffer line
– also requires process line keyword bd_type=<board type>, with

MVME162 currently supported, MVME2700 a possible extension
– bus will be locked during reads and writes
– similar to mutex=no_interrupts for SHMEM

32

NML Processes
• An NML process creates or connects to one or

more NML buffers
• Processes read and write messages
• More than one process may connect to an NML

buffer, queued or non-queued
• NML configuration file defines process

parameters
– process lines begin with character P
– one process line for each process-buffer connection

33

Mandatory Process Parameters
• Name

– name of the process connecting to the buffer
– set to “default” and this process line will be used by any

process connecting to this buffer not specifically listed
earlier

• Buffer
– name of the buffer to connect to, matching a buffer line
– set to “default” and this process line will be used by this

process for any buffer for which no process line
appeared earlier

34

Mandatory Process Parameters (cont)
• Type, keywords LOCAL or REMOTE

– LOCAL means :
• same host (SHMEM, LOCMEM)
• same file system (FILEMEM)
• same backplane (GLOBMEM)

– REMOTE means not LOCAL
• requires an NML server running LOCAL to the buffer
• protocol for server specified at end of buffer line, e.g., TCP=5001
• Java applications must use REMOTE

• AUTO means to LOCAL if the host on the buffer line
matches the runtime hostname, REMOTE otherwise
– may result ins some unnecessary REMOTE determinations since

LOCAL access on the backplane may still be possible

35

Mandatory Process Parameters (cont)
• Host

– name of machine on which this process is running
– not currently necessary, but useful for documentation or possible

future features

• Operations, keywords R for read, W for write, RW for
read/write
– not currently enforced: only a single warning is output

• Server flag
– 0 if this process is not to be an NML server, 1 if it is, 2 if the

process is not a server but should spawn a server

• Timeout
– timeout, in seconds, for all NML operations

36

Mandatory Process Parameters (cont)
• Master

– 0 if this process is not to create the NML buffer, 1 if it is
– it's an error for a non-master process to connect to a non-existing

buffer
– it's not an error for a master process to connect to a non-existing

buffer
• multiple masters can be used to effect independent process start-up

order
• race conditions exist which must be addressed by application

• Connect number
– a unique number between 0 and the buffer's max processes - 1
– used as index into in-buffer process flags, for mutex

37

Optional Process Parameters
• bd_type=<board type>

– used in conjunction with buffer option bus_lock
– specifies the board type that will do the bus locking
– MVME162 supported (bd_type=MVME162); others may be added

(e.g., MVME2700)

• poll (detailed later)
– only affects REMOTE process reads
– reverses request for data from server with server send
– reduces time spent in read operations, but doubles data latency
– suitable for processes that read in synchronous bursts, e.g., GUIs

38

Optional Process Parameters (cont)
• sub=<secs> (detailed later)

– only affects REMOTE process reads
– server automatically sends to subscribing process at <secs>

intervals
– cuts out half of network traffic
– suitable for processes that continually read synchronously
– process must read as fast, or faster, than subscription rate, to

prevent filling up network data queue

• UDP write broadcasting
– keyword: broadcast_to_server=<net mask>
– remote writes go to UDP port for entire subnet

39

NML Config File, Processes (New Style)
proc.nml2

applies to all processes
process_default timeout=1.0

proc1 is the local master for buff1 and buff2, but must
access buff3 and buff4 remotely
p procname=proc1 bufname=buff1 proctype=local master=1
p procname=proc1 bufname=buff2 proctype=local master=1
p procname=proc1 bufname=buff3 proctype=remote
p procname=proc1 bufname=buff4 proctype=remote

serv1 is the server for any buffer it connects to
p procname=serv1 bufname=default proctype=local server=1

catch all in case we forgot anybody
p procname=default bufname=default proctype=auto

40

NML Config File, Processes (Old Style)
proc.nml
NML file showing NML process types and sample parameters

Name Buffer Type Host Ops Server? Timeout Master? Cnum

P proc1 buff1 LOCAL comp1 R 0 1.0 1 0
P proc1 buff2 LOCAL comp1 W 0 1.0 1 0
P proc1 buff3 REMOTE comp1 R 0 1.0 0 1
P proc1 buff4 REMOTE comp1 W 0 1.0 0 1

P proc2 buff1 REMOTE comp2 W 0 1.0 0 1
P proc2 buff2 REMOTE comp2 R 0 1.0 0 1
P proc2 buff3 LOCAL comp2 W 0 1.0 1 0
P proc2 buff4 LOCAL comp2 R 0 1.0 1 0

P serv1 buff1 LOCAL comp1 RW 1 1.0 0 1
P serv1 buff2 LOCAL comp1 RW 1 1.0 0 1
P serv2 buff3 LOCAL comp2 RW 1 1.0 0 1
P serv2 buff4 LOCAL comp2 RW 1 1.0 0 1

41

Opening NML Buffers
• A buffer is created by the master process(es)

– master flag set to non-zero in NML config file
– no error if already created (multiple masters possible)

• Other processes can connect to existing buffers
– master flag set to zero in NML config file
– error if not already created

• C++ example:

NML * buffer = new NML(formatFunction,
"buffer", "process", "config.nml");

42

Buffer Opening Details
• Buffer Verification

– creating process writes a checksum into the buffer
based on the buffer name

– connecting processes compare the checksum, return an
error if invalid

– detects problems with duplicate keys in configuration
file

• Copy-out allocation
– each process that reads is allocated local heap memory

into which read results are copied
– processes that are write-only do not incur this allocation

43

Checking NML Buffers
• The “valid” NML method can be used to check

result of buffer creation or connection
• NML error type contains reason for failure, if any
• C++ example:

if (! buffer->valid()) {

printf("NML error: %d",

buffer->error_type);

}

44

NML Error Types

NML_NO_ERROR No error

NML_INVALID_CONFIGURATION Format error in the configuration
file

NML_BUFFER_NOT_READ Write-if-read operation failed due
to no prior read

NML_TIMED_OUT The operation timed out

NML_FORMAT_ERROR The update or format function
failed, or the message is too large
for the buffer

NML_NO_MASTER_ERROR The process is not the master and
the buffer ddoes not exist

NML_INTERNAL_CMS_ERROR An operation failed in the low-
level protocol handling

45

NML Write Operations
• All write operations take an NML message argument

– either directly (as a reference), or via a pointer

• Overwrites any message in the buffer, unless the buffer is
queued

• Returns 0 if successful, -1 otherwise
• Non-blocking write: write(NMLmsg *msg),

write(NMLmsg &msg)
– writes the message immediately

• Non-destructive write: write_if_read(NMLmsg *msg),
write_if_read(NMLmsg &msg)
– only writes the message if the buffer is empty
– otherwise, does not write, and returns error

46

NML Write Example
#include "nml.hh"
#include "myvocab.hh" // user NML vocabulary declarations

// connect to NML buffer
NML * buffer = new NML(my_format, "command", "supervisor",
"myapp.nml");

// create an instance of the NML message to send
MY_MSG my_msg;

// fill it in
my_msg.f = 3.1416;
my_msg.c = 'P';
my_msg.i = 1;

// write it
if (0 != buffer->write(my_msg)) {
 printf("error writing: %d\n", buffer->error_type);
}

47

NML Read Operations
• All read operations return the NMLTYPE of the message in

the buffer
– 0 means no new message
– -1 is an error
– otherwise, it's a message

• The result of the read operation is pointed to by get_address()
• If a process reads a message from a non-queued buffer:

– the buffer is empty for that process
– other processes will still be able to read the message

• If a process reads a message from a queued buffer:
– that message is removed for all processes
– other processes will not be able to read the message

48

NML Read Operations (cont)
• Non-blocking read: read()

– returns immediately

• Blocking read: blocking_read(double timeout)
– blocks until a message has arrived, or until the timeout expires
– NML configuration file needs bsem=<key> for the buffer

• Monitoring read: peek()
– with respect to other processes, does not affect the buffer in any

way, queued or non-queued
• subsequently, other process write_if_read operations will fail

– with respect to this process:
• for a non-queued buffer, behaves just like a read
• for a queued buffer, subsequent peeks will return no message until

another read operation by any process

49

NML Read Example
#include "nml.hh"
#include "myvocab.hh" // user NML vocabulary

// ptr to MY_MSG class, which is to be read
MY_MSG *my_msg;

// connect to NML buffer
NML * buffer = new NML(my_format, "status", "supervisor", "myapp.nml");

// read it
switch (buffer->read()) {
 case 0: // no new message
 break;
 case -1: // NML error
 printf("error reading: %d\n", buffer->error_type);
 break;
 case MY_MSG_TYPE:
 my_msg_ptr = (MY_MSG *) buffer->get_address();
 printf("%f %c %d\n", my_msg->f, my_msg->c, my_msg->i);
 break;
}

50

Miscellaneous NML Operations
• Checking for an empty buffer: check_if_read()

– peek operations do not affect this at all
– for non-queued buffers:

• returns 0 if the buffer contains a message that has not been read by
any process

• returns 1 if the buffer contains a message that has been read by at
least one process

– for queued buffers:
• returns 0 if the queue has at least one message
• returns 1 if the queue is empty

– returns -1 if there's an error

• Clearing a buffer: clear()
– clears all messages out of the buffer

51

Remote Access to NML Buffers
• Processes that can't connect locally to a buffer need help

from a server
– server runs local to buffer
– server awaits requests from remote processes to read or write

• Server is a process, with server flag set in NML
configuration file

• Server first creates or connects to buffers just like a normal
process

• Server then calls special NML functions to initiate network
services for opened buffers

52

NML Server Functions
• run_nml_servers()

– starts a server for each group of opened NML buffers that share a
common network parameter

• uses platform-specific tasking (e.g., fork/exec, taskSpawn) to initiate
server task(s)

• calling process made pending until wakeup signal
– no return value

• nml_start()
– like run_nml_servers(), except that it returns to calling process

• nml_cleanup()
– stops the NML servers started by a call to nml_start, and closes the

associated NML buffer connections

53

#include "nml.hh"
#include "myvocab.hh" // user NML vocabulary

// this is it-- the whole program
int main()
{
 // connect to NML buffers
 NML * command_buffer = new NML(my_format, "command",

"server", "myapp.nml");
 NML * status_buffer = new NML(my_format, "status",

"server", "myapp.nml");

 // run NML server(s) for both buffers; doesn't return
 run_nml_servers();

 return 0;
}

NML Server Example

54

NML Server Example (cont)
#include "nml.hh"
#include "myvocab.hh" // user NML vocabulary

int main()
{
 // connect to NML buffers
 NML * command_buffer = new NML(my_format, "command",
"server", "myapp.nml");
 NML * status_buffer = new NML(my_format, "status",
"server", "myapp.nml");

 // start NML server(s) for both buffers
 nml_start();
 // run rest of application here
 // now stop NML servers(s)
 nml_cleanup();
 return 0;
}

55

Server

Computer 1

Command buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Write Operation

The remote writer (supervisor)
sends a write request, with the
message and the target buffer
(command buffer), to the server.
This is done by NML
automatically. The application
code is the same as for a local
write; the NML configuration file
is different.

NML

56

Server

Computer 1

Command buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Write Operation

The server writes the message
into the target buffer (command
buffer), locally.

If the buffer parameters did not
include confirm_write, the
supervisor's write operation will
return immediately.

NML

57

Server

Computer 1

Command buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Write Operation

If the buffer parameters included
confirm_write, the supervisor's
write operation will wait until an
acknowledge from the server.

NML

58

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation

The remote reader (supervisor)
sends a read request for the target
buffer (status buffer) to the
server.

This is done by NML
automatically. The application
code is the same as for a local
write; the NML configuration file
is different.

NML

59

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation

The server reads the contents of
the target buffer (status buffer),
locally.

NML

60

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation

Finally, the server sends the
result over the network to the
supervisor, whose read operation
returns.

NML

61

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation, Polling

The remote reader (supervisor)
sends a read request for the target
buffer (status buffer) to the
server.

NML

62

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation, Polling

Immediately afterward, the read
operation returns the message
last sent from the server, which it
has saved. Initially, this is the
empty message.

NML

63

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation, Polling

Meanwhile, the server reads the
contents of the status buffer,
locally.

NML

64

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation, Polling

Finally, the server sends the
contents of the status buffer
across the network to the
supervisor. The NML code in the
supervisor saves this to be
returned immediately to the
supervisor upon its next read.

The polling effect reduces the
time spent in the read operation,
at the expense of increased
latency of data (roughly
doubled).

Processes should read regularly,
since the returned data is the
result of previous read requests.

NML

65

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation, Subscribing

The remote reader (supervisor)
sends a request to establish a
subscription for the target buffer
(status buffer) to the server, at a
specified time interval.

This is done automatically when
the supervisor connects to the
buffer, by the code in the NML
constructor.

NML

66

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation, Subscribing

The server reads the status buffer
locally, at the specified time
interval, and sends the buffer
contents to the supervisor across
the network.

The NML code in the supervisor
saves the most recent message
from the server.NML

67

Server

Computer 1

Status buffer

Subordinate

NML

Supervisor

NML

Computer 2

NML

Remote Read Operation, Subscribing

Read operations by the
supervisor return the most recent
saved value from the
subscription.

The effect is to reduce the time
spent in the read operation, since
no network request is made.

Network traffic is halved, for the
same reason.

The remote process should read
at least as often as the subscribed
data arrives, to prevent any
network data queue from
overflowing.

NML

68

Computer 1

Command buffer Status buffer

Subordinate

Supervisor

NML

NML

Example Configuration:
Single Reader/Writer
with Local Access

There are two NML buffers, each
with a single reader and a single
write. The supervisor writes the
command buffer, and the
subordinate reads it. The
supervisor reads the status buffer,
and the subordinate writes it.
NML ensures mutual exclusion
for data consistency.

69

single.nml
NML file for single reader, single writer, local access

Buffers

Name Type Host Size Neut? (old) Buffer# MP Key
B command SHMEM comp1 256 0 0 1 2 1001
B status SHMEM comp1 1024 0 0 2 2 1002

Processes

Name Buffer Type Host Ops Server? Timeout Master? Cnum

P subr command LOCAL comp1 R 0 1.0 1 0
P subr status LOCAL comp1 W 0 1.0 1 0

P supv command LOCAL comp1 W 0 1.0 0 1
P supv status LOCAL comp1 R 0 1.0 0 1

70

GUI

Computer 1

Command buffer Status buffer

Subordinate

Supervisor

NMLNML

NML

Example Configuration:
Multiple Readers/Writers
with Local Access

A graphic user interface (GUI)
has been added. Now, the
command buffer has two writers,
and the status buffer has two
readers. NML ensures mutual
exclusion, as before.

Note that multiple writers need to
coordinate their writing to avoid
overwrites. Multiple readers of
queued NML buffers need to
coordinate their reading, to avoid
stolen messages.

71

multi.nml
NML file for multiple readers-writers, local access

Buffers

Name Type Host Size Neut? (old) Buffer# MP Key
B command SHMEM comp1 256 0 0 1 3 1001
B status SHMEM comp1 1024 0 0 2 3 1002

Processes

Name Buffer Type Host Ops Server? Timeout Master? Cnum

P subr command LOCAL comp1 R 0 1.0 1 0
P subr status LOCAL comp1 W 0 1.0 1 0

P supv command LOCAL comp1 W 0 1.0 0 1
P supv status LOCAL comp1 R 0 1.0 0 1

P gui command LOCAL comp1 W 0 1.0 0 2
P gui status LOCAL comp1 R 0 1.0 0 2

72

Server

Computer 1

Command buffer Status buffer

Subordinate

Supervisor

NMLNML

NML

GUI

NML

Computer 2

NML

Example Configuration:
Multiple Readers/Writers
with Remote Access

GUI has moved to Computer 2.
System now requires an NML
server on Computer 1, which
mediates read and write requests
from the GUI. Communication
between the GUI and the server
is accomplished using TCP/IP
sockets. The server accesses the
target command and status
buffers locally, as the GUI did
before.

73

remote.nml
NML file for multiple readers-writers, remote access

Buffers

Name Type Host Size Neut? (old) Buffer# MP Key
B command SHMEM comp1 256 0 0 1 4 1001 TCP=5001
B status SHMEM comp1 1024 0 0 2 4 1002 TCP=5001

Processes

Name Buffer Type Host Ops Server? Timeout Master? Cnum

P subr command LOCAL comp1 R 0 1.0 1 0
P subr status LOCAL comp1 W 0 1.0 1 0

P supv command LOCAL comp1 W 0 1.0 0 1
P supv status LOCAL comp1 R 0 1.0 0 1

P gui command REMOTE comp2 W 0 1.0 0 2
P gui status REMOTE comp2 R 0 1.0 0 2

P serv command LOCAL comp1 W 1 1.0 0 3
P serv status LOCAL comp1 R 1 1.0 0 3

74

RCS Derived Messages
• NMLmsg is the base message class
• rcs.hh defines two derived message

classes
– RCS_CMD_MSG, includes

• serial_number

– RCS_STAT_MSG, includes
• echo_serial_number
• status (RCS_DONE, RCS_EXEC,

RCS_ERROR)

Chapter 6

75

RCS Command Example

#include "rcs.hh" // declarations for RCS_CMD_MSG, etc.

#define MY_MOVE_TYPE 201

class MY_MOVE: public RCS_CMD_MSG
{
public:

 // constructor calls RCS_CMD_MSG base class with type and size
 MY_MOVE() : RCS_CMD_MSG(MY_MOVE_TYPE, sizeof(MY_MOVE)) {};

 // update function, which calls CMS's builtins
 void update(CMS *);

 // user-defined data
 // serial_number inherited from RCS_CMS_MSG
 float x, y, z; // commanded position
 float r, p, w; // command orientation
 float v; // commanded speed
};

76

RCS Status Example

#include "rcs.hh" // declarations for RCS_STAT_MSG, etc.

#define MY_STAT_TYPE 301

class MY_STAT: public RCS_STAT_MSG
{
public:

 // constructor calls RCS_STAT_MSG base class with type and size
 MY_STAT() : RCS_STAT_MSG(MY_STAT_TYPE, sizeof(MY_STAT)) {};

 // update function, which calls CMS's builtins
 void update(CMS *);

 // user-defined data
 // status, echo_serial_number inherited from RCS_STAT_MSG
 float x, y, z; // actual position
 float r, p, w; // actual orientation
 float v; // actual speed
};

77

RCS Derived Buffers
• NML is the base buffer class
• rcs.hh defines two derived buffer classes

– RCS_CMD_CHANNEL, for RCS_CMD_MSG types
– RCS_STAT_CHANNEL, for RCS_STAT_MSG types

• C++ example:

RCS_CMD_CHANNEL * buffer = new

RCS_CMD_CHANNEL(formatFunction,

"command", "supv", "config.nml");

78

Cloning Code
• Goal: replicating a complete NML application many times
• Example:

– two vehicles, each with same NML-based control software
– remote operator station

• One solution:
– each vehicle has identical code

• same executables
• same NML configuration files

– remote operator station has additional NML file
• lists all buffers for all vehicles
• buffer names modified to reflect different vehicle names

79

vehicle.nml
NML file for replicated vehicle controller, same for all

Buffers

Name Type Host Size Neut? (old) Buffer# MP Key
B command SHMEM dummy 256 0 0 1 4 1001 TCP=5001
B status SHMEM dummy 1024 0 0 2 4 1002 TCP=5001

Processes

Name Buffer Type Host Ops Server? Timeout Master? Cnum

P supv command LOCAL dummy W 0 1.0 1 0
P supv status LOCAL dummy R 0 1.0 1 0

P serv command LOCAL dummy W 1 1.0 0 1
P serv status LOCAL dummy R 1 1.0 0 1

other local processes (subordinates) follow similarly

80

remote.nml
NML file for remote operator station for many vehicles

Buffers-- one pair for each vehicle

Name Type Host Size Neut? (old) Buffer# MP Key
B cmd1 SHMEM real1 256 0 0 1 4 1001 TCP=5001
B stat1 SHMEM real1 1024 0 0 2 4 1002 TCP=5001
B cmd2 SHMEM real2 256 0 0 1 4 1001 TCP=5001
B stat2 SHMEM real2 1024 0 0 2 4 1002 TCP=5001

Processes-- one process, many buffers

Name Buffer Type Host Ops Server? Timeout Master? Cnum

P oper cmd1 REMOTE dummy W 0 1.0 0 3
P oper stat1 REMOTE dummy R 0 1.0 0 3

P oper cmd2 REMOTE dummy W 0 1.0 0 3
P oper stat2 REMOTE dummy R 0 1.0 0 3

81

Cloning Code (cont)
• Example:

– two payload arms, each with same NML-based control software,
on same platform

– single task coordination controller on same platform

• Problem:
– payload controllers need different configuration file entries to

resolve resource conflicts, e.g., SHMEM keys

• One solution:
– single configuration file, with multiple buffer names, process

names
– each controller is written to accept buffer names and process name

as run-time arguments

82

twoarm.nml
NML file for dual payload arms and local task controller

Buffers-- one pair for each arm

Name Type Host Size Neut? (old) Buffer# MP Key
B cmd1 SHMEM comp1 256 0 0 1 2 1001
B stat1 SHMEM comp1 1024 0 0 2 2 1002
B cmd2 SHMEM comp1 256 0 0 1 2 1003
B stat2 SHMEM comp1 1024 0 0 2 2 1004

Processes-- arm (two styles), and task controller

Name Buffer Type Host Ops Server? Timeout Master? Cnum

P arm cmd1 LOCAL comp1 R 0 1.0 1 0
P arm stat1 LOCAL comp1 W 0 1.0 1 0
P arm cmd2 LOCAL comp1 R 0 1.0 1 0
P arm stat2 LOCAL comp1 W 0 1.0 1 0

P task cmd1 LOCAL comp1 W 0 1.0 0 1
P task stat1 LOCAL comp1 R 0 1.0 0 1
P task cmd2 LOCAL comp1 W 0 1.0 0 1
P task stat2 LOCAL comp1 R 0 1.0 0 1

83

Payload NML Initialization

#include "nml.hh"
#include "myvocab.hh" // user NML vocabulary

// provide names of cmd, stat buffer as args
int main(int argc, char *argv[])
{
 // connect to NML buffers
 NML * command_buffer = new NML(my_format, argv[1],

"arm", "myapp.nml");
 NML * status_buffer = new NML(my_format, argv[2],

"arm", "myapp.nml");

 // rest of control
}

84

Alternatives to NML Initialization
• Other NML constructor parameters can be passed as

arguments
– process name

• usually done in conjunction with variable buffer name
• often done to reflect changing between local and remote execution

– configuration file
• often done to reflect application moving between demonstration

platforms, with different host names, network ports

• Scripts can vary these arguments, resulting in flexible
configuration without recoding or recompiling

• Applications can also be run in different directories, each
with configuration file of same name but different contents

85

C Access to NML
• Currently no C interface to NML exists

– inheritance was important to original design
• e.g., class NML is parent of RCS_CMD_MSG,

RCS_STAT_MSG
• C interface needs to explicitly include base class members

– function overloading was also important
• e.g., CMS update functions update(float f), update(int i)
• C interface needs one function per data type, e.g.,

update_float(float f), update_int(int i)

• C interface is more cumbersome, but can be added
– code generation tool will help

86

C Linkage
• C applications can use NML through C linkage

– NML portion of application is written in C++
– link points are given C linkage
– remaining application calls NML through C link points

• Not a C interface to NML, but a C interface to a
particular NML application
– need C functions for creating, reading, writing, and

removing NML buffers
– technique also applicable to any language, e.g.,

FORTRAN, Pascal

87

// C++ link point code-- compile this with C++ compiler

#include "nml.hh"
#include "myvocab.hh" // user NML vocabulary

static NML * command_buffer;
static NML * status_buffer;
static MY_STAT_MSG * my_stat_msg;

// call this to initialize NML from C
extern "C" int init_app()
{
 // connect to NML buffers
 command_buffer = new NML(my_format, "command",

"supv", "myapp.nml");
 status_buffer = new NML(my_format, "status",

"supv", "myapp.nml");

 // set pointer to status data from read, for short
 my_stat_msg = (MY_STAT_MSG *) status_buffer->get_address();

 return (command_buffer->valid() ||
 status_buffer->valid()) ? -1 : 0;
}

88

// more C++ link point code

// call this to send a move command
extern "C" int send_move_cmd(float x, float y, float z)
{
 MY_MOVE move_cmd;

 move_cmd.x = x;
 move_cmd.y = y;
 move_cmd.z = z;

 return command_buffer->write(move_cmd);
}

// call this to read current position
extern "C" int get_position(float *x, float *y, float *z)
{
 if (MY_STAT_TYPE == status_buffer->read()) {
 *x = my_stat_ptr->x;
 *y = my_stat_ptr->y;
 *z = my_stat_ptr->z;

 return 0; // means new data
 }

 return -1; // means no new data, or error
}

89

/* C application code-- compile this with C compiler, link with C++
 library containing functions with extern "C" linkage */

/* declarations for C linkage to C++ functions; should put in header */
extern int init_app();
extern int send_move_cmd(float x, float y, float z);
extern int get_position(float *x, float *y, float *z);

int main()
{
 float x, y, z;

 /* connect to NML application */
 if (0 != init_app()) {
 return -1;
 }

 /* control loop here */
 for (;;) {
 /* read position from NML application */
 get_position(&x, &y, &z);

 /* do control */

 /* write command to NML application */
 send_move(x, y, z);
 }
}

90

Summary
• NML provides a uniform application programming

interface to communication, with C++ and Java bindings.
Features:
– multiple reading, writing, queued or mailbox, network access
– protocol independence, platform neutrality
– source code portability
– real-time performance

• Programmer’s jobs:
– define NML vocabulary
– run code generation tool
– populate application code with NML functions (open, read, write)
– partition application and write NML config file

	NML
	NML Features
	NML Features (cont)
	NML Features (cont)
	NML Availability
	NML Programming
	Making Yours an NML Application
	NML Messages
	NML Message Example
	Using the NML Code Generator
	NML Update Function Example
	NML Format Function
	NML Format Function Example
	NML Message Vocabularies
	NML Configuration Files
	NML Buffers
	Mandatory Buffer Parameters
	Mandatory Buffer Parameters (cont)
	Mandatory Buffer Parameters (cont)
	Mandatory Buffer Parameters (cont)
	Mandatory Buffer Parameters (cont)
	Optional Buffer Parameters
	Optional Buffer Parameters (cont)
	Optional Buffer Parameters (cont)
	Type-Specific Buffer Parameters
	NML Config File, Buffers (New Style)
	NML Config File, Buffers (Old Style)
	NML Configuration File, Buffers (cont)
	Mutual Exclusion for SHMEM
	Mutual Exclusion for SHMEM (cont)
	Mutual Exclusion for GLOBMEM
	NML Processes
	Mandatory Process Parameters
	Mandatory Process Parameters (cont)
	Mandatory Process Parameters (cont)
	Mandatory Process Parameters (cont)
	Optional Process Parameters
	Optional Process Parameters (cont)
	Opening NML Buffers
	Buffer Opening Details
	Checking NML Buffers
	NML Error Types
	NML Write Operations
	NML Write Example
	NML Read Operations
	NML Read Operations (cont)
	NML Read Example
	Miscellaneous NML Operations
	Remote Access to NML Buffers
	NML Server Functions
	NML Server Example
	NML Server Example (cont)
	RCS Derived Messages
	RCS Command Example
	RCS Status Example
	RCS Derived Buffers
	Cloning Code
	Cloning Code (cont)
	Payload NML Initialization
	Alternatives to NML Initialization
	C Access to NML
	C Linkage
	Summary

