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Next-generation sequencing: adjusting to data 
overload
Monya Baker

To keep pace with accelerating sequencing machines, genomics researchers clean house and move 
toward the cloud.
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Box 1: seeing results 497

In 2005, Michael Schatz, then at The 
Inst itute  for  Genomic Research in 
Maryland, USA, felt justifiably proud of 
a computer program he wrote to visu-
alize genomic data. ‘Hawkeye’ allowed 
researchers to survey a genome to weed 
out errors and confirm biological find-
ings. Researchers could zoom from an 
overview of all the chromosomes down to 
the individually sequenced DNA ‘reads’ 
from which the genome had been assem-
bled. Then Applied Biosystems (ABI) 
introduced its next-generation sequenc-
ing machine, which was quickly followed 
by instruments from Illumina and Roche 
454. Throughput per machine increased 
500,000-fold, says Schatz; papers from 
2007 and 2008 show the number of reads 
per genome increasing by ~100-fold.

Hawkeye got stuck. “It fell into this trap 
where it would try to load all this infor-
mation into memory before visualizing it,” 
Schatz says. The program is still used for 
small genomes, he says, “but for large data 
sets it’s not really feasible.”

Hawkeye is far from an isolated example. 
With sequencer data yield increasing faster 
than computers can keep up, next-gener-
ation sequencing has forced research-
ers to rethink more than their software. 
Everything from storage to processing 
power to data output is being retrofitted or 
redesigned to meet the demands of ever-
faster sequencing machines.

According to recent calculations from 
the Ontario Institute for Cancer Research, 
the advent of next-generation sequencing 
has literally changed the shape of the cost 

curves1. Since the 
advent of the ABI 
SOLiD, the cost of sequencing a base has 
fallen by half about every five months. 
The cost of storing each byte of data is 
dropping, too, but more slowly, halving 
roughly every 14 months.

But such statistics only begin to explain 
the problem, says Vivien Bonazzi, program 
director for informatics at the US National 
Human Genome Resource Institute 
(NHGRI), part of the National Institutes of 
Health. When a sequence includes infor-
mation about quality and alignments, the 
number of bytes needed to store a data for 
a single base expands quickly, she says. 
“We talk about megabases, but if you don’t 
look at the issues with megabytes, then 
you’re going to be out of sync.”

One difficulty comes from scientists’ 
reluctance to delete data files. In most 
analyses, data are converted from raw 
image files into series of called bases. These 
sequences or reads are then subjected to 
an assembly or alignment process that 
determines how they all line up with each 
other and, usually, a reference genome. 
Finally, these assembled reads are used in 
an analysis that determines, for example, 
what variants are present or what genes are 
expressed. Throughout the process, many 
intermediate files are created, copied and 
shared between researchers.
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Because of next-generation sequencing (NGS), the cost of sequencing a base is dropping faster than 
the cost of storing a byte. Scales are logarithmic and not corrected for inflation or costs of personnel, 
overheads and depreciation. Image is reprinted from ref. 1.

Michael Schatz, who 
writes software for the 
cloud, believes the 
genomics community 
needs to explore 
parallel computing 
more aggressively.
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is, it does not solve the universal problem 
among genomics researchers: the capacity 
of their sequencers is fast outstripping the 
capacity of their computers.

Researchers at the National Center for 
Genome Resources (NCGR) in Santa Fe, 
New Mexico, USA recently published a 
very complete genomic analysis of iden-
tical twins in which only one in each of 
three pairs had multiple sclerosis2. Reads 
for whole-genome shotgun sequencing 
numbered in the billions; reads for tran-
scriptomes and methylomes numbered in 
the tens of millions. The database had bil-
lions of rows, recalls Neil Miller, deputy 
director of software engineering at NCGR. 
“It was frightening even to me.”

Physicists routinely deal with petabytes 
of data for tasks such as calculating con-
ditions at the beginning of the universe 
or modeling climate change, but such 
computational approaches often do not 
work for genomics analysis, says John 
McPherson of the Ontario Institute for 
Cancer Research. Most physics number 
crunching relies on internal variables 
and calculations. In contrast, crunching 
through sequencing data requires comput-
ers to compare reads with an assembled 
or reference genome. This requires on-site 
storage, something that experts running 
supercomputers shun. “The clusters we’ve 
dealt with in the past usually wipe the disk 
clean every night,” says McPherson. “A lot 
of the supercomputers that are available 
aren’t designed for our kind of data.”

cloudy future
Even at big, well-resourced sequencing  
centers researchers are investigating an 
emerging technology known as cloud com-
puting as a solution to the onslaught of data. 
Cloud computing allows scientists to rent 
both storage and processing power virtually 
by accessing servers as they are needed. The 
technology is even more appealing to insti-
tutes without a vast computer infrastruc-
ture, says Bonazzi. An increasing number 
of grant applications coming into NHGRI 

For most human 
genomes, a com-
p l e t e  a n a l y s i s  
ident i f ies  about  
4 million variations from a reference 
genome, which could probably be repre-
sented in tens of megabytes of processed 
data, says David Craig of Translational 
Genomics Research Institute (TGen). 
“We’re using terabytes to describe this 
because we’re not throwing anything away,” 
he says. “It’s ridiculous. We really have to 
think about what data we are going to keep, 
what data we are going to throw out, and 
what we are going to back up.”

Improvements in and experience with 
next-generation sequencing have already 
convinced some researchers to keep less 
data. When the 1000 Genomes Project 
launched in 2008 with plans to sequence 
genomes from people all over the world, 
participating researchers had to submit raw 
and processed intensity files, plus the string 
of sequence reads or ‘base calls’ derived from 
them as well as other related files. The data 
required worked out to around 50 bytes per 
base, estimates David Dooling, head of infor-
matics at The Genome Center at Washington 
University in St. Louis. This May, he says, 
researchers participating in the project 
decided that the original requirements were 
overkill and agreed to submit only base calls 
along with estimates of their quality, thus 
slashing storage requirements to close to one 
byte per base. (They also decided to boost 
the number of people whose genomes would 
be sequenced to 2,500.)

analysis paralysis
But even if researchers start throwing out 
some files, they are still faced with copi-
ous amounts of data to process (Box 1). 
New software resources are being devel-
oped to deal with these kinds of data. A 
collaboration of developers at Penn State, 
Emory University and other institutions 
has created Galaxy, which integrates mul-
tiple genomics software tools, kits them 
out with similar interfaces and links tools 
to data warehouses. The goal is for devel-
opers to write software that biologists can 
use and for biologists to easily share results 
of analyses. But as valuable as this effort 

David Craig at the 
Translational Genomic 
Research Institute 
worries the thousand-
dollar genome could 
be a thousand dollars 
of reagents and ten 
thousand of computer 
storage.

Vivien Bonazzi at 
the NHGRI is helping 
molecular biologists 
coordinate bases and 
bytes.
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accommodates other software packages 
and has incorporated several assemblers, 
including the de novo assembler Newbler, 
into its platform.

cloud hopping
But even when software works in the 
cloud, moving data between the cloud and 
researchers’ own infrastructure remains a 
challenge. “You can put gobs of stuff up 
there,” says Bonazzi, “but the problem is 
bandwidth.” Sometimes the quickest way 
for researchers to move large amounts 
of data to the Amazon cloud is to physi-
cally mail a hard drive to Amazon. For 
Crossbow, Schatz electronically trans-
ferred 100 gigabytes of compressed 
short-read data from the European 
Bioinformatics Institute to Amazon’s 
cloud in northern Virginia, USA. Even 
though he used 40 computers to transfer 
data simultaneously and has an internet 
connection about 1,000 times faster than 
a standard home connection, the transfer 
still took an hour and fifteen minutes.

of the programs genomics researchers use 
are open source and so available for tinker-
ing, these programs are often so idiosyn-
cratic and poorly documented that the only 
person who could adapt them is the person 
who wrote them, and often those individu-
als have moved on to other projects.

Commercial players like GenomeQuest 
and DNAnexus hope that these issues 
will bring them business. DNAnexus 
formally rolled out its first cloud offer-
ing this year, a product that cofounder 
Andreas Sundquist recently described as 
“a genome browser crossed with Google 
Maps”(ref. 3). GenomeQuest offers ser-
vices that align reads on its own cloud 
server, allowing genome-wide analy-
sis and comparisons of thousands of 
genomes. “It’s an application that runs in 
a web browser that manages all the enor-
mous volume data coming from a next-
generation sequencing machine,” says 
Richard Resnick, vice president of soft-
ware and services. Though GenomeQuest 
does have proprietary software, it also  

include plans to 
make use of the 
cloud, she says.

Genome databases from Ensembl, 
GenBank and preliminary data from the 
1000 Genomes Project are already acces-
sible via clouds. The earliest cloud offering, 
Elastic Cloud Computing from Amazon, 
was introduced the same year ABI com-
mercialized next-generation sequenc-
ing. Since then, Amazon has been joined 
by other commercial providers such as 
Microsoft Azure as well as by academic 
projects, such as the industry-university 
collaborations Open Cloud Consortium 
and Cloud Computing University.

A few academics like Schatz, currently 
at Cold Spring Harbor Laboratory, have 
turned their attention to writing soft-
ware that can analyze genomic data in the 
cloud. In less than four hours, Crossbow, 
a program cowritten by Schatz and Ben 
Langmead, can take billions of reads, align 
them to a reference genome and evaluate 
the newly assembled genome for single-
nucleotide variations, or SNPs, the sim-
plest type of human genetic variation.

Programs that work in the cloud must 
be written so that they can fragment tasks 
and perform them in parallel, explains 
Schatz. “Each computer does a little bit of 
work, and then there’s a round of aggrega-
tion, and then each computer does a little 
bit more work; it’s an iterative approach 
where work gets distributed, aggregated 
and redistributed.”

That is not how many of the existing 
programs run. By some accounts, NCGR 
provided the first cloud for genomics stud-
ies. Back in 2007, it introduced a program 
called Alpheus, which allowed research-
ers without vast computational resources 
to upload their data to NCGR and ana-
lyze datasets over a web-based interface. 
Even though Alpheus was already written 
to take advantage of parallel processing, 
rewriting it to run in a typical third-party 
cloud cluster is expected to take several 
solid weeks of effort, says Miller.

Other programs may not be salvageable 
at all, says McPherson. Even though many 

BOX 1 SeeiNg reSultS
Just as important as storing and analyzing genomics data is displaying data to make it 
more comprehensible, a task known as visualization. Too often, though, visualization 
means having a computer put data on a screen without any regard for the human being 
trying to understand it, says Vivien Bonazzi, program director for informatics at the 
NHGRI. “Sometimes it looks like a Picasso gone wrong.”

A variety of software programs have been written to visualize genomics data5, 
but not all deal well with the volume produced by next-generation sequencing. 
One of the most popular includes the Integrated Genomics Viewer from the Broad 
Institute, which was designed from the start to work with large, integrated 
datasets and is regularly updated with new functionalities and genomes. Additions 
of rice, opossum and zebrafish genomes were announced in May 2010. Another 
oft-used program is EagleView from Gabor Marth’s laboratory at Boston College, 
which was released in 2008. It offers an easy way to see the quality of a genome 
assembly and can display base qualities, machine-specific signals, genome feature 
annotations and other types of information.

One challenge of creating good visualization tools is that not all informaticians 
think about end users, but another reason is more profound: current representations 
of genomes are not ideal. A reference genome is generally shown as a continuous 
segment with a variety of annotations, but a continuous segment has trouble 
accommodating many types of variants, such as large rearrangements or insertions. 
Repetitive sequences are also a problem. “Imagine a string of Ts,” says TGen’s Craig. 
“You know one is deleted, but you don’t know which one. How do you describe that? 
If you describe something in terms of the base that comes before or after, what about 
inversion?” To make matters more complicated, different communities have different 
needs depending on whether they are interested in SNPs, insertions and deletions, 
larger structural variation, epigenetic modifications or gene expression.

Bonazzi is one of several researchers who think the one-dimensional string of letters 
could be better represented as something multidimensional, such as a graph that can 
accommodate several variables. “We need to think about how we visualize the data 
differently now that the type of data has changed,” she says.

David Dooling at The 
Genome Center at 
Washington University 
in St. Louis has 
created a software 
pipeline to compare 
genomes of cancerous 
and normal cells.
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the sequencing data, but other platforms 
are poised to gain in popularity. Pacific 
Biosciences just announced that it can detect 
methylation simultaneously with base iden-
tity4; Helicos and Complete Genomics con-
tinue to attract fans, and Ion Torrent plans to 
roll out its platform later this year.

Because the scientific community has 
not yet settled on a standard format, mul-
tiple sequencing platforms mean resources 
are spent converting raw files and mak-
ing these files compatible. “Multiplying 
the number of platforms will make this 
an exponentially larger headache” as 
more sequencing platforms emerge, says 
Bonazzi. “You’ll need 25 converters, and it 
will drive everyone to distraction.”

But as more platforms come on board, 
researchers will also be able to combine 
them to find the best intersection of gain-
ing information and minimizing costs. “If 
you have a new organism to sequence, you 
won’t do it all on PacBio [Pacific Biosciences 
machines], you’ll layer them,” says Dooling. 
“You’ll use those reads to inform a huge 
bolus of reads from the SOLiD or Illumina 
[machines].” Just as combining computa-
tional strategies will be essential to dealing 
with sequencing data, layering the advan-
tages of second- and third-generation plat-
forms will be part of the innovation that 
takes genomics to the next level.
1. Stein, L.D. Genome Biol. 11, 207 (2010).
2. Baranzini, S.E. et al. Nature 464, 1351–1356 

(2010).
3. Davies, K. Bio-IT World D4 (May–June 2010).
4. Flusberg, B.A. et al. Nat. Methods 7, 461–465 

(2010). 
5. Nielsen, C.B., Cantor, M., Dubchak, I., Gordon, 

D. & Wang, T. Nat. Methods 7, S5–S15 (2010).

Monya Baker is technology editor for 
Nature and Nature Methods  
(m.baker@us.nature.com).

mix-and-match assembly
In addition to finding the right mix of com-
putational infrastructure, researchers are 
looking to find the right combination of 
data types. With the advent of next-gener-
ation sequencers, reads became shorter and 
more numerous. Not only are reads from 
these machines now getting longer, but an 
onslaught of third-generation sequencers are 
hitting the market and promising to produce 
even longer reads.

Longer reads are easier to assemble cor-
rectly. They will be particularly useful for 
assembling genomes for unsequenced 
organisms as well as for tracking unrep-
resented human variation and detangling 
genomic abnormalities that crop up in can-
cer cells, but they will not solve the data over-
load problem brought on by next-generation 
sequencing. “Third-generation sequencing 
makes everything even more challenging,” 
says Lincoln Stein, director of the Informatics 
and Biocomputing Platform at the Ontario 
Institute for Cancer Research. “Longer reads 
improve data quality and make sequence 
assembly easier but don’t solve the funda-
mental problem that the data [are] growing 
too fast for conventional solutions.”

In fact, researchers are likely to require 
more bytes per base as they begin to work 
out the potential and limitations of the tech-
nology, says Dooling. “Third generation is in 
its infancy,” he says, “so people are going to 
revert back to wanting to keep all the data.”

Every new sequencing platform relies on a 
different technology and stores its sequence 
data in a different file type, a situation that 
has contributed to a plethora of programs 
to align reads to a reference genome or 
even assemble a genome based on overlap. 
Right now, Illumina, ABI and Roche 454 
instruments are used to produce most of 

Neil Miller at the 
National Center for 
Genome Resources 
believes storing data 
on the cloud will 
require a “mental 
shift” that researchers 
will have to get 
comfortable with.

The problem gets worse once a dataset 
is put to work: every analysis of a data-
set generates yet more data, so research 
groups who work on data in the cloud 
could get stuck keeping their data there 
unless they expand their own storage 
capacity, says TGen’s Craig. And research-
ers are not only concerned about their abil-
ities to access their own data; they worry 
about unauthorized access: researchers 
need to be convinced that they can ethi-
cally and legally fulfill their obligations to 
protect the privacy of human subjects if 
data are housed by a third party.

One solution researchers are explor-
ing is university-owned clouds. These 
can reduce security concerns and data-
transfer costs, but they also require the 
university to purchase excess storage and 
processing capacity, and so eliminate one 
of the main benefits of cloud computing.

R e s e a r c h e r s  l i k e  Wa s h i n g t o n 
University’s Dooling think the solution 
will be hodgepodge, a mixture of public 
and private clouds and other forms of 
distributed computing. Ideally, he says, 
informaticians will write middleware that 
allows research groups to submit data-
processing jobs along with a few speci-
fications, and computing jobs would be 
automatically routed to the most appro-
priate place.
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suPPlIers guIde: comPanIes offerIng neXt-generatIon seQuencIng 
serVIces or related Products

company Web address
454 Sequencing (a Roche company) http://www.genome-sequencing.com/ 

Accelrys http://accelrys.com/ 

Amazon Elastic Compute Cloud http://aws.amazon.com/ec2/ 

Applied Biosystems http://www.appliedbiosystems.com/

BC Platforms http://www.biocomputing.fi/

CLC Bio http://www.clcbio.com/

CycleComputing http://www.cyclecomputing.com/ 

DataDirect Networks http://www.ddn.com/ 

DNAnexus http://www.DNAnexus.com/ 

Eureka Genomics http://www.eurekagenomics.com/ 

GATC Biotech http://www.gatc-biotech.com/ 

Gene Codes http://www.genecodes.com/

Genedata duplicate of Sage Bio http://www.genedata.com/

GenomeQuest http://www.genomequest.com/ 

Geospiza http://www.geospiza.com/ 

Helicos http://www.helicosbio.com/ 

Hexagrid http://www.hexagrid.com/ 

Illumina http://www.illumina.com/

JMP (part of SAS) http://www.jmp.com/software/
genomics/ 

Laragen http://www.laragen.com/ 

Microsoft Cloud Services http://www.microsoft.com/cloud/ 

MITRE Corporation http://www.mitre.org/ 

Nucleics http://www.nucleics.com/

Oxford Nanopore Technologies http://www.nanoporetech.com/ 

Pacific Biosciences http://www.pacificbiosciences.com/ 

Partek http://www.partek.com/

PREMIER Biosoft http://www.premierbiosoft.com/

Sage Bionetworks http://www.sagebase.org/ 

SAS/Genetics http://www.sas.com/industry/
pharma/genetics/ 

SeqWright http://www.seqwright.com/

SoftGenetics http://www.softgenetics.com/

Striking Development http://www.paracel.com/ 
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