
i

NIST Internal Report
NIST IR 8462

Static Analysis Tool Exposition
(SATE) VI: Mobile Track Report

Michael Ogata
Applied Cybersecurity Division

Information Technology Laboratory

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8462

https://doi.org/10.6028/NIST.IR.8462

ii

NIST Internal Report
NIST IR 8462

Static Analysis Tool Exposition
(SATE) VI: Mobile Track Report

Michael Ogata
Applied Cybersecurity Division

Information Technology Laboratory

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8462

March 2023

U.S. Department of Commerce

Gina M. Raimondo, Secretary

National Institute of Standards and Technology

Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.IR.8462

iii

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an

experimental procedure or concept adequately. Such identification is not intended to imply recommendation or

endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities,

materials, or equipment are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Fair Use, and Licensing Statements

NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2023-01-04

How to Cite this NIST Technical Series Publication
Ogata (2022) Static Analysis Tool Exposition (SATE) VI: Mobile Track Report. (National Institute of Standards and

Technology, Gaithersburg, MD), NIST Series (IR) Publication ID. https://doi.org/10.6028/NIST.XXX.XXXX

NIST Author ORCID iDs
Michael Ogata: 0000-0002-8457-2430

Contact Information
michael.ogata@nist.gov

Abstract

Mobile applications are pervasive in the public and private sectors. Enterprises in these sectors

should evaluate the mobile applications used within their infrastructures for vulnerabilities to

minimize potential risk. The SATE VI Mobile track seeks to improve the tools and services used

in these evaluations by extending the Static Analysis Tool Exposition (SATE) to include mobile

application tool evaluations. This document describes NIST’s first attempt to carry out that goal

and the results that stemmed from the first Mobile SATE track.

Keywords

cybersecurity, software quality, mobile applications, apps, vetting.

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:michael.ogata@nist.gov

iv

Table of Contents

 Introduction .. 1

 Background .. 1

 Project Goals .. 1

 Document Structure .. 1

 Methodology ... 2

 Mobile Security Application Platform (MSAP) Orchestration Platform: 3

 Exercise Structure .. 3

2.2.1. Vendor Analysis Phase ... 4

2.2.2. Meta-Analysis Phase .. 4

 Vulnerability Sources .. 5

2.3.1. NIAP Requirements for Vetting Mobile Apps from the Protection Profile for
Application Software .. 5

2.3.1.1. Cryptographic Support (FCS) .. 6

2.3.1.2. User Data Protection (FDP) .. 7

2.3.1.3. Identification and Identification (FIA) ... 7

2.3.1.4. Security Management (FMT) .. 7

2.3.1.5. Protection of the TSF (FPT) .. 7

2.3.1.6. Trusted Paths/Channels (FTP) .. 8

2.3.2. Common Weakness Enumeration .. 8

 Test Cases .. 9

 Test Case 1 – VLC Multimedia Player ...11

 Test Case 2 – Forced Path Test ..11

 Test Case 3 – Native API Test ...12

 Test Case 4 – Reflection Test ..12

 Test Case 5 – Code Execution Demo App ...13

 Test Case 6 – Upload Data App ..14

 Test Case 7 – Device Admin Sample ..17

 Meta-Analysis and Results ...17

 Meta-Analysis by Test Case ..18

4.1.1. Test Case 1 ...18

4.1.2. Test Case 2 ...19

4.1.3. Test Case 3 ...20

4.1.4. Test Case 4 ...21

4.1.5. Test Case 5 ...22

4.1.6. Test Case 6 ...23

v

4.1.7. Test Case 7 ...24

 Results ..25

4.2.1. Round Trip Time Per Test Case ..25

4.2.2. Overall Identification Performance ...27

 Conclusions ...28

 Overall Performance ..28

 Lessons Learned ...28

5.2.1. Formalized Report Submission Format ..28

5.2.2. Mixing Vulnerability Sources ..29

5.2.3. Expanding Test Case Resource Pool ..29

References ..30

Appendix A. List of Acronyms ..31

Appendix B. Glossary ...32

List of Tables

Table 1. Result Set Alias and #Tools per Result Set .. 3
Table 2. Meta-Analysis Methods .. 5
Table 3. Master Test Key ..10
Table 4. Test Case 1 NIAP Vulnerabilities ..11
Table 5. Test Case 1 CWE Vulnerabilities ..11
Table 6. Test Case 2 NIAP Vulnerabilities ..11
Table 7. Test Case 2 CWE Vulnerabilities ..12
Table 8. Test Case 3 NIAP Vulnerabilities ..12
Table 9. Test Case 3 CWE Vulnerabilities ..12
Table 10. Test Case 4 NIAP Vulnerabilities ..13
Table 11. Test Case 4 CWE Vulnerabilities ..13
Table 12. Test Case 5 NIAP Vulnerabilities ..14
Table 13. Test Case 5 CWE Vulnerabilities ..14
Table 14. Test Case 6 NIAP Vulnerabilities ..16
Table 15. Test Case 6 CWE Vulnerabilities ..16
Table 16. Test Case 7 NIAP Vulnerabilities ..17
Table 17. Test Case 7 CWE Vulnerabilities ..17
Table 18. Test Case 1 Positive Tool Identifications ...18
Table 19. Test Case 2 Positive Tool Identifications ...19
Table 20. Test Case 3 Positive Tool Identifications ...20
Table 21. Test Case 4 Positive Tool Identifications ...21
Table 22. Test Case 5 Positive Tool Identifications ...22
Table 23. Test Case 6 Positive Tool Identifications ...23
Table 24. Test Case 7 Positive Tool Identifications ...25
Table 25. Average Positive Identification by Test Type ...28

List of Figures

Fig. 1. SATE Phases ... 4

vi

Fig. 2. CWE Hierarchy ... 8
Fig. 3. Vulnerability Identification Test Case 1 ..18
Fig. 4. Vulnerability Identification Test Case 2 ..19
Fig. 5. Vulnerability Identification Test Case 5 ..20
Fig. 6. Vulnerability Identification Test Case 4 ..21
Fig. 7. Vulnerability Identification Test Case 5 ..22
Fig. 8. Vulnerability Identification Test Case 6 ..23
Fig. 9. Vulnerability Identification Test Case 7 ..24
Fig. 10. Round Trip Time ..25
Fig. 11. Analysis Time by Test Case ...26
Fig. 12. Misses and Successes Grouped by Vulnerability Name ..27

vii

Acknowledgments

The author of this document thanks the following collaborators:

• The Department of Homeland Security Science and Technology Directorate

• The MITRE Corporation

• Apcerto

1

 Introduction

 Background

Mobile apps are ubiquitous and have inexorably changed the way the federal government does

business. Both federal organizations and their industry partners recommend mobile application

vetting as a crucial component of an organization’s cybersecurity stance to ensure mobile apps

are free from software vulnerabilities [1].

There are many commercial solutions that seek to provide application security analysis as a

service or a tool; however, tools vary greatly in their capabilities and domain knowledge. The

Software Assurance Metrics and Tool Evaluation (SAMATE) project is a NIST project based in

the Information Technology Laboratory [2]. The project’s primary goal is to aide in the

improvement of the state of the art in software assurance testing tools. To facilitate this,

SAMATE team hosts the Static Analysis Tool Exposition (SATE) [3]. The core of the SATE

activity is to invite static analysis tool vendors to participate in analyzing software with known

vulnerabilities. The end goal of the activity is to measure the accuracy of those tools in

successfully identifying the vulnerabilities. The SATE is currently on its 6th iteration.

 Project Goals

In previous expositions, the SATE focused only on the performance of static analysis tools as

they pertained to desktop and server software. This year's exposition seeks to expand the purview

of the activity to include tools that evaluate mobile applications by hosting a Mobile Track

targeting the Android mobile app ecosystem. To remain as open ended as possible, the mobile

track expands scope of permitted software analysis tools by not restricting eligible tools to just

those that carry out static analysis. This allowed for tools that implemented dynamic analysis

techniques to participate. Furthermore, no restriction was made on the level of automation

required in the app analysis, as various solutions implement varying levels of human interaction.

For the purposes of the exercise, we treated the analysis methods implemented by the

participants as a black box. The goal of the SATE mobile track, however, remains unchanged; to

measure the performance of tools and services that assess mobile applications for security

vulnerabilities in order to improve users’ knowledge about tool capability in general and to help

tool makers identify areas for improvement.

 Document Structure

The remainder of this document is structured as follows:

• Section 2 - Describes how the mobile track was structured and executed

• Section 3 - Describes each of the test cases used as the basis for the mobile track

• Section 4 - Summarizes the results of each test case

2

• Section 5 - Discusses lessons learned and recommendations for the next iteration of

the mobile track

 Methodology

The goal of the SATE VI Mobile Track is to evaluate the effectiveness of tools to identify

vulnerabilities in mobile apps. To accomplish this, we designed an activity to determine how

many known vulnerabilities a tool could successfully identify from a series of mobile apps that

intentionally included known vulnerabilities. More specifically:

• We selected a corpus of mobile apps that had known vulnerabilities. Collectively, the

set of mobile apps is referred to as the test corpus from here on.

• Participants ran their tools against this corpus.

• The SATE team evaluated the results and presented them in this report.

Mobile app analysis tools vary in their capabilities and strategies [4]. A key distinguishing factor

for how an analysis tool functions concerns what exactly the tool is actually examining. Some

focus on just an application binary. That is, they interrogate the files that will end up resident on

the mobile device itself. Others examine the source code of an application. Each of these

strategies has its own merits and weaknesses, a deep dive into which is out of scope for this

document. However, NIST SP 800-163 [1] goes into a detailed description into the variety of

strategies employed by mobile app analysis tools.

To remain as solution-agnostic as possible, mobile apps were distributed to participants as units

of both application binaries and source code. Together, these units are collectively referred to as

a test case. Each test case was designed to express a known set of vulnerabilities. Section 2.2

goes into depth describing how we sourced vulnerabilities for inclusion in the activity. Section 3

details which vulnerabilities were included in each test case.

In the same way there is variability in the subject of analysis for mobile app analysis tools, there

is also variability in the strategies employed by tools in how they conduct their analysis. Some

solutions are completely autonomous, while others are human driven. Some tools can change the

depth, time, and resources requirements for their evaluations depending on the parameters

established by their customers.

The goal of the SATE mobile track is to measure the effectiveness of participant offerings. Each

vendor was allowed to include as many of their supported solutions and/or solution

configurations as desired. This allowed for participants to maximize their representation based

on the full range of their capabilities Each unique instance of a solution is referred to as an

analysis tool, or simply tool.

To participate, each tool was required to submit a report containing the vulnerability analysis for

each test case. Again, to be as solution agnostic as possible, the only constraints placed on report

format were:

• Each report must be submitted digitally

• Each report must be readable by the SATE team

3

The union of each set of reports associated with a single participant is referred to as a result set

(see Fig. 1).

Seven participants participated in the SATE mobile track exercise. To preserve their anonymity,

their results sets were given alphabetic aliases. Table 1 summarizes this information:

Table 1. Result Set Alias and #Tools per Result Set

Result Set Alias # Tools

A 1

B 1

C 1

D 1

E 1

F 1

G 2

 Mobile Security Application Platform (MSAP) Orchestration Platform:

To facilitate the distribution of the test cases and the collection of test case analysis, the SATE

team employed the Mobile Security Application Platform (MSAP). The MSAP is a version of

the NIST open-source tool: AppVet1. The AppVet tool acts as a central hub to monitor the status

of mobile apps being tracked by the system. It can integrate with several existing mobile app

security scanning tools and has a documented Application Programing Interface (API) for new

tools to be incorporated. For the purposes of the SATE, the MSAP tool was used to measure how

long it took to analyze a given app, specifically the duration between test case download, and

analysis upload (see Section 4.2.1).

 Exercise Structure

The SATE VI Mobile Track was divided into two phases: the vendor analysis phase and the

meta-analysis phase. Figure 1 captures the overall workflow for the exercise, and each phase is

described in the next two sub-sections.

1https://csrc.nist.gov/projects/appvet/

https://csrc.nist.gov/projects/appvet/

4

Fig. 1. SATE Phases

2.2.1. Vendor Analysis Phase

During the vendor analysis phase, each of the participating tools retrieved each of the test cases,

analyzing them for vulnerabilities and submitting the results. Test case retrieval and result set

submission was facilitated through the orchestration platform.

2.2.2. Meta-Analysis Phase

During the meta-analysis phase, the SATE team attempted to evaluate how many vulnerabilities

were successfully identified in each result set. That is, we asked the following question. For a

given test case, and a vulnerability known to be expressed in that test case, was a tool able to

successfully indicate the vulnerability’s existence. If the tool indicated existence, we defined it as

a success.

Participating tools were required to submit an analysis report for each of the test cases. The

minimal restrictions on the submission format lead to a lot of variability in these reports both in

format (human vs machine readable) and in content (vocabulary, depth of detail, and supporting

evidence). As such, the SATE Team used three strategies for identifying tool successes.

1. Manual Evaluation - A SATE team member read and extracted relevant statements from

the result set, using a combination of keyword searching and context clue to establish

success. Manual evaluation was utilized when the submitted reports were human

readable.

5

2. Automated Evaluation - A keyword search was applied to a result set. Automated

Evaluation was used to examine machine readable reports and to augment manual

evaluation where it was deemed beneficial.

3. Self-Evaluation - After result set submission, vendors were provided with an answer key

with the expected results. Vendors were allowed to self-attest to tool successes by

mapping portions of their results to known vulnerabilities. This allowed vendors to make

the case for their tool’s performance and to account for any discrepancies/inconsistencies

made by SATE team members during manual/automated evaluations. Note, not all

vendors opted to participate in self-evaluation.

Table 2. Meta-Analysis Methods

Result Set Alias Manual Automated Self-Evaluation

A ●

B ● ●

C ●

D ●

E ●

F ● ●

G ● ● ●

To arrive at the final performance for each tool, a union was taken of each meta-analysis method

available for that tool.

 Vulnerability Sources

Measuring the effectiveness of identifying vulnerabilities is predicated on having a common

vocabulary with which to describe them. NIST 800-163 Vetting the Security of Mobile

Applications identifies multiple vocabularies for describing vulnerabilities [1]. The SATE team

settled on two vocabularies for vulnerability identification:

• Requirements for Vetting Mobile Apps from the Protection Profile for Application

Software [5]

• Common Weakness Enumeration (CWE) [6]

The remainder of this section provides a high-level description of each of these vocabularies.

2.3.1. NIAP Requirements for Vetting Mobile Apps from the Protection Profile for
Application Software

The National Information Assurance Partnership (NIAP) is tasked with evaluating information

technology products for conformance to the international Common Criteria [7]. To achieve this,

the NIAP publishes Protection Profiles (PP) [8]. A PP defines a discrete list of attestations

concerning the construction and behavior befitting an Information Technology (IT) production

6

that can be said to be compliant with the Common Criteria. IT products that are considered to be

part of a National Security System are required by policy2 to pass Common Criteria evaluation.

The NIAP defines a profile for general application software [9]. The PP describes not only how

an application should be designed to be considered compliant but also the activities an evaluator

can use to establish compliance.

Mobile apps often fall outside of the purview of what is part of a National Security System.

Despite this, the NIAP recognizes the usefulness of evaluating mobile apps in terms the

Application PP. To satisfy this need, the NIAP publishes a subset of the greater Application PP

known as the Requirements for Vetting Mobile Apps from the Protection Profile for Application

Software. For brevity, this document will refer to this subset as the NIAP Vetting Requirements.

The NIAP Vetting Requirements divide their security requirements into two sub-domains:

1. Security Functional Requirements – mobile app design, configuration, and behavior

requirements

2. Security Assurance Requirements – describes methodology requirements placed on the

actors evaluating the mobile app

For the SATE mobile track test cases, we utilized functional requirements. NIAP functional

requirements are labeled using the following nomenclature:

𝐹𝐶𝑆⏟

𝐶𝑙𝑎𝑠𝑠

_ 𝑅𝐺𝐵_𝐸𝑋𝑇⏟

𝑆ℎ𝑜𝑟𝑡 𝑁𝑎𝑚𝑒

.

1.1(1)⏟

𝑉𝑎𝑟𝑖𝑎𝑛𝑡

The remainder of this subsection lists the functional requirements utilized in the SATE VI

Mobile Track. For many of the functional requirements, compliance is determined situationally

based on the behavior of the app. For example, FCS_RBG_EXT.1.1 describes how an app

obtains a random number from a random number generator. If an app does not utilize random

numbers, an evaluator can show compliance by establishing this. For more detailed descriptions

of each of the requirements please see [5] and [8]. Sections 2.3.1.1 - 2.3.1.6 list each of the

functional requirements included in the test cases.

2.3.1.1. Cryptographic Support (FCS)

• FCS RBG EXT.1.1: the application shall complete one of the following options for its

cryptographic operations:

o use no Deterministic Random Bit Generator (DRBG) functionality

o invoke platform-provided DRBG functionality

o implement DRBG functionality

• FCS STO EXT.1.1: When handling credentials, the application shall do one of the

following:

o not store any credentials

o invoke the functionality provided by the platform to securely store credentials

o implement functionality to securely store credentials to non-volatile memory

• FCS TLSC EXT.1.1: The application shall invoke platform-provided Transport Layer

Security (TLS) 1.2 and implement TLS 1.2

2 https://www.cnss.gov/CNSS/issuances/Policies.cfm

https://www.cnss.gov/CNSS/issuances/Policies.cfm

7

• FCS TLSC EXT.1.2: The application shall verify that the presented identifier matches the

reference identifier according to RFC 6125 [10]

• FCS TLSC EXT.1.3: The application shall establish a trusted channel only if the peer

certificate is valid

2.3.1.2. User Data Protection (FDP)

• FDP DAR EXT.1.1: When storing sensitive data, the application shall:

o leverage platform-provided functionality to encrypt sensitive data

o implement functionality to encrypt sensitive data

o not store any sensitive data in non-volatile memory

• FDP DEC EXT.1.1: The application shall restrict its access to the following resources:

network connectivity, camera, microphone, location services, near-field communication

(NFC), Universal Serial Bus (USB), Bluetooth, etc. That is, the app does not access

resources it does not explicitly require to function as intended.

• FDP DEC EXT.1.2: The application shall restrict its access to sensitive information

repositories, address book, calendar, call lists, system logs, etc.

• FDP NET EXT.1.1: The application shall restrict network communication in the

following ways:

o permit no network communication

o restrict user-initiated communication

o restrict network communication the application can respond to

2.3.1.3. Identification and Identification (FIA)

• FIA X509 EXT.1.1: The application shall either invoke platform-provided functionality

to handle X.509 certificates or, if not available, implement said functionality

2.3.1.4. Security Management (FMT)

• FMT CFG EXT.1.1: The application shall provide only enough functionality to set new

credentials when configured with default credentials or no credentials

• FMT CFG EXT.1.2: The application shall be configured by default with file permissions

that protect it and its data from unauthorized access

2.3.1.5. Protection of the TSF (FPT)

• FPT AEX EXT.1.1: The application shall not request to map memory at an explicit

address except for explicitly defined purposes

• FPT AEX EXT.1.2: The application shall not allocate any memory region with both write

and execute permissions unless the functionality is explicitly documented and accounted

for

• FPT AEX EXT.1.3: The application shall be compatible with security features provided

by the platform vendor

8

• FPT AEX EXT.1.4: The application shall not write user-modifiable files to directories

that contain executable files unless explicitly directed by the user to do so

• FPT AEX EXT.1.5: The application shall be compiled with stack-based buffer overflow

protection enabled. For applications using Java Native Interface (JNI), the evaluator shall

ensure that the -fstack-protector-strong or fstackprotector-all flags are used. The -fstack-

protector-all flag is preferred, but fstackprotector-strong is acceptable.

• FPT API EXT.1.1: The application shall use only documented platform API

• FPT TUD EXT.1.4: The application shall not download, modify, replace or update its

own binary code

2.3.1.6. Trusted Paths/Channels (FTP)

• FTP DIT EXT.1.1: The application shall either not transmit any data, not transmit any

sensitive data, or encrypt all transmitted sensitive data

2.3.2. Common Weakness Enumeration

The Common Weakness Enumeration is a list of recognized, real-world, software weakness.

Maintained by the MITRE Corporation [6], CWE aims to provide a common language for

describing software vulnerabilities. The CWE database groups CWEs into various layers,

views, and subgroups. Furthermore, each CWE is assigned an abstraction level that describes

how specific it is.

Fig. 2. CWE Hierarchy

The remainder of this section contains a list of the CWEs included in SATE VI Mobile track as

well as high-level descriptions of each. Additionally, a Uniform Resource Locator (URL) leading

to the detailed description maintained by MITRE is included along with each CWE.

• CWE-20 (Class): Improper Input Validation. The product does not validate or

incorrectly validates input that can affect the control flow or data flow of a program.

• A weakness that is described in a
very abstract fashion, typically
independent of any specific
language or technology. More
general than a base weakness.

Class Weakness

• A weakness that is described in an abstraction
fashion, but with details to infer specific
methods for detection and prevention. More
general than a Variant weakness but more
specific than a Class weakness.

Base Weakness

• A weakness that is described at a very low level of
detail, typically limited to a specific language or
technology. More specific than a Base weaknessVariant Weakness

https://cwe.mitre.org/data/definitions/20.html

9

• CWE-77 (Class): Improper Neutralization of Special Elements used in a Command

('Command Injection').

• CWE-111 (Base): Direct Use of Unsafe JNI

• CWE-117 (Base): Improper Output Neutralization for Logs. The software does not

neutralize or incorrectly neutralizes output that is written to logs.

• CWE-284 (Class): Improper Access Control. The software does not restrict or

incorrectly restricts access to a resource from an unauthorized actor.

• CWE-285 (Class): Improper Authorization

• CWE-287 (Class): Improper Authentication. When an actor claims to have a given

identity, the software does not prove or insufficiently proves that the claim is correct.

• CWE-295 (Base): Improper Certificate Validation

• CWE-296 (Base): Improper Following of a Certificate's Chain of Trust

• CWE-312 (Variant): Cleartext Storage of Sensitive Information

• CWE-319 (Variant): Cleartext Transmission of Sensitive Information

• CWE-349 (Base): Acceptance of Extraneous Untrusted Data with Trusted Data

• CWE-395 (Base): Use of NullPointerException Catch to Detect NULL Pointer

• CWE-494 (Base): Download of Code Without Integrity Check

• CWE-502 (Variant): Deserialization of Untrusted Data. The application deserializes

untrusted data without sufficiently verifying that the resulting data will be valid.

• CWE-532 (Variant): Information Exposure Through Log Files

• CWE-552 (Base): Files or Directories Accessible to External Parties

• CWE-572 (Variant): Call to Thread run() instead of start(). The program calls a thread's

run() method instead of calling start(), which causes the code to run in the thread of the

caller instead of the callee

• CWE-732 (Class): Incorrect Permission Assignment for Critical Resource

• CWE-922 (Class): Insecure Storage of Sensitive Information

• CWE-925 (Variant): Improper Verification of Intent by Broadcast Receiver. The

Android application uses a Broadcast Receiver that receives an Intent but does not

properly verify that the Intent came from an authorized source. Another application can

impersonate the operating system and cause the software to perform an unintended

action.

 Test Cases

We provided seven test cases for analysis in the SATE VI mobile track. Test Case 1 was

developed by the SATE Team. Test Cases 2, 3, and 4 were donated to the project from the

Department of Homeland Security. Test cases 5, 6, and 7 were sourced from a mobile app

evaluation conducted by the MITRE corporation [11]. Table 3, below, contains the master key

https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/111.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/296.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/319.html
https://cwe.mitre.org/data/definitions/349.html
https://cwe.mitre.org/data/definitions/395.html
https://cwe.mitre.org/data/definitions/494.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/552.html
https://cwe.mitre.org/data/definitions/572.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/922.html
https://cwe.mitre.org/data/definitions/925.html

10

for each of the vulnerabilities contained in each of the test cases. For each test case (numbered

columns), a vulnerability (named rows) appears if an “x” is noted in the corresponding table cell.

Table 3. Master Test Key

 Test Case # Test Case #

Vulnerability Name 1 2 3 4 5 6 7 Vulnerability Name 1 2 3 4 5 6 7

FCS_RBG_EXT.1.1 x CWE-20 x x

FCS_STO_EXT.1.1 x CWE-77 x

FCS_TLSC_EXT.1.1 x CWE-111 x

FCS_TLSC_EXT.1.2 x x CWE-117 x

FCS_TLSC_EXT.1.3 x x x CWE-284 x x x x

FDP_DAR_EXT.1.1 x x CWE-285 x x

FDP_DEC_EXT.1.1 x CWE-287 x

FDP_DEC_EXT.1.2 x x CWE-295 x x x

FDP_NET_EXT.1.1 x x CWE-296 x x x

FIA_X509_EXT.1.1 x x x CWE-312 x x x

FMT_CFG_EXT.1.1 x CWE-319 x x

FMT_CFG_EXT.1.2 x x CWE-349 x

FPT_AEX_EXT.1.1 x CWE-395 x

FPT_AEX_EXT.1.2 x CWE-494 x

FPT_AEX_EXT.1.4 x CWE-502 x

FPT_AEX_EXT.1.5 x CWE-532 x x

FPT_API_EXT.1.1 x CWE-552 x

FPT_TUD_EXT.1.4 x x CWE-572 x

FTP_DIT_EXT.1.1 x CWE-732 x x

 CWE-922 x

 CWE-925 x

The remainder of this section describes each of these test cases. Each subsection contains a short

description of the test case’s mobile app, a table containing which NIAP vulnerabilities are

represented in the test case, and a table containing which CWE vulnerabilities are represented in

the test case. The CWE table also lists the specific source file and line number(s) on which the

associated weaknesses occur. Where available, hyperlinks are included that can be used to

retrieve the mobile app’s source code.

11

 Test Case 1 – VLC Multimedia Player

Available from: https://www.nist.gov/document/satemobiletestcase20170001targz

VLC is an open-source media player developed by the VideoLAN Organization [12]. The SATE

team used the VLC app as a target for manual vulnerability injection. That is to say, the team

modified the source code to contain code flaws. VLC was chosen for the following reasons:

• It is a very popular application on the Google Play Store with more than 100 million

installs [13].

• It has reasonably large code base (thousands of files)

• It represents reasonably complex behavior: network operations (streaming media),

video/audio decoding file manipulation, etc.

Table 4. Test Case 1 NIAP Vulnerabilities

NIAP Vulnerabilities

FCS_TLSC_EXT.1.3

FIA_X509_EXT.1.1

FMT_CFG_EXT.1.2

FPT_TUD_EXT.1.4

Table 5. Test Case 1 CWE Vulnerabilities

CWE SOURCE FILE PATH LINE #

77
vlc-test-suite-test-suite/vlc-android/src/org/videolan/vlc/gui/video/benchmark/

 BenchActivity.java
393

117
vlc-test-suite-test-suite/vlc-android/src/org/videolan/vlc/gui/network/

 MRLPanelFragment.java
110

287 vlc-test-suite-test-suite/vlc-android/AndroidManifest.xml 53

395
vlc-test-suite-test-suite/vlc-android/src/org/videolan/vlc/gui/browser/

 BaseBrowserFragment.java
141

502 vlc-test-suite-test-suite/vlc-android/src/org/videolan/vlc/gui/video/VideoPlayerActivity.java 3296

572
vlc-test-suite-test-suite/vlc-android/src/org/videolan/vlc/gui/tv/browser/

 MediaSortedFragment.java
73, 83

925 vlc-test-suite-test-suite/vlc-android/src/org/videolan/vlc/BootupReceiver.java 41

 Test Case 2 – Forced Path Test

Available from: https://www.nist.gov/document/satemobiletestcase20170002targz

This test attempts to stop analysis by tools that utilize forced path execution techniques. The

application also implements a trivial textbox that must have the text 'yes' inserted in it, this

detects automated tools that just run the application and blindly click all buttons to simulate user

input.

Table 6. Test Case 2 NIAP Vulnerabilities

https://www.nist.gov/document/satemobiletestcase20170001targz
https://www.nist.gov/document/satemobiletestcase20170002targz

12

NIAP Vulnerabilities

None Identified

Table 7. Test Case 2 CWE Vulnerabilities

CWE SOURCE FILEPATH LINE #

295
SATE_Mobile_TestCase_2017_0002/source/app/src/main/java/com/ais/forcedpathtest/

 MainActivity.java
78, 96, 108

296
SATE_Mobile_TestCase_2017_0002/source/app/src/main/java/com/ais/forcedpathtest/

 MainActivity.java
97, 109

312
SATE_Mobile_TestCase_2017_0002/source/app/src/main/java/com/ais/forcedpathtest/

 MainActivity.java

80, 81, 82,

83, 85, 86

732
SATE_Mobile_TestCase_2017_0002/source/app/src/main/java/com/ais/forcedpathtest/

 MainActivity.java
40

 Test Case 3 – Native API Test

Available from: https://www.nist.gov/document/satemobiletestcase20170003targz

This app performs Android API calls from native C++ code. As most android analysis tools don't

have the functionality to analyze native code, this is a method for obscuring access to the certain

API calls.

This application accesses the device’s IMEI number by calling internal android APIs from the

native C code. Due to the way permissions work, this still requires the

android.permission.READ_PHONE_STATE permission. This permission, while deemed

'dangerous' by the android SDK, is not always flagged in analysis tools.

Table 8. Test Case 3 NIAP Vulnerabilities

NIAP Vulnerabilities

FDP_DEC_EXT.1.2

Table 9. Test Case 3 CWE Vulnerabilities

CWE SOURCE FILEPATH LINE #

20
SATE_Mobile_TestCase_2017_0003/source/app/src/main/java/com/ais/nativeapitest/

 MainActivity.java
17

284
SATE_Mobile_TestCase_2017_0003/source/app/src/main/java/com/ais/nativeapitest/

 MainActivity.java
31

 Test Case 4 – Reflection Test

Available from: https://www.nist.gov/document/satemobiletestcase20170004targz

This test case demonstrates how to perform Android API calls by accessing the internal/private

android API. These internal API calls are often not monitored. This application sends a test Short

Messaging Service (SMS)/text message using the internal API. Due to how permissions work in

the Android Operating System (OS), the android.permission.SEND_SMS is still required. While

this permission is flagged by many analysis tools, this technique can be used to hide functionality

in applications that already require this permission.

https://www.nist.gov/document/satemobiletestcase20170003targz
https://www.nist.gov/document/satemobiletestcase20170004targz

13

Table 10. Test Case 4 NIAP Vulnerabilities

NIAP Vulnerabilities

FDP_NET_EXT.1.1

Table 11. Test Case 4 CWE Vulnerabilities

CWE SOURCE FILEPATH LINE #

284
SATE_Mobile_TestCase_2017_0004/source/app/src/main/java/com/ais/reflectiontest/

 MainActivity.java
30

295
SATE_Mobile_TestCase_2017_0004/source/app/src/main/java/com/ais/reflectiontest/

 MainActivity.java

36,37,42,47,51,

54,55,57,48,52,

58

319
SATE_Mobile_TestCase_2017_0004/source/app/src/main/java/com/ais/reflectiontest/

 MainActivity.java
48,52,58

 Test Case 5 – Code Execution Demo App3

Available from: https://github.com/mpeck12/custom-class-loader

This app would allow a malicious app to potentially bypass app vetting by downloading and

executing new code after installation time (FPT_AEX_EXT.1.4 and FPT_TUD_EXT.1.4).

Because the new code is not included in the distributed application package, it will not be found

through static analysis, but could potentially be found through dynamic analysis. An analysis

solution might not identify the specifics of the malicious behavior in this case, since an adversary

could dynamically adapt and target the downloaded code, causing different payloads to be

delivered to different endpoints. An analysis solution should at least be able to detect that the app

executes dynamic code downloaded after installation time and report the potential for abuse.

At app start time, this app connects to a remote server, downloads code, and then dynamically

executes the downloaded code, both Dalvik (e.g., compiled Java) code and native code.

Malicious behavior can be downloaded from a remote server at runtime and not actually be in the

app package itself, making it far more difficult for an analysis solution to detect the actual

malicious behavior. The app can be configured to download the code over either Hypertext

Transfer Protocol (HTTP) or Hypertext Transfer Protocol Secure (HTTPS). When HTTPS is

used, checking of the server’s certificate and hostname is disabled by default

(FIA_X509_EXT.1.1, FCS_TLSC_EXT.1.2, FCS_TLSC_EXT.1.3 and FDC_DEC_EXT.1.4).

The downloaded code is stored insecurely with world readable and writable file permissions by

default, enabling malicious apps to overwrite the code (FDP_DAR_EXT.1.1) and also allowing

the code to be overwritten via other vectors such as the Android Debug Bridge.

The app also includes native code in a library (liblocal_jni.so) bundled in the Android Package

Kit (APK). The native code maps memory at an explicit address (FPT_AEX_EXT.1.1) with both

write and execute permissions (FPT_AEX_EXT.1.2) to demonstrate violation of those two NIAP

App PP requirements. The native code is compiled with stack protections deliberately disabled

using the –fno-stack-protector compiler flag (NIAP FPT_AEX_EXT.1.5).

3 The prose in this section was borrowed directly from Section 4.1.2 of Analyzing the Effectiveness of App Vetting Tools in the Enterprise [11].

It is included here as a convenience to the reader, with minor edits to remove superfluous cross references and background information.

https://github.com/mpeck12/custom-class-loader

14

Table 12. Test Case 5 NIAP Vulnerabilities

NIAP Vulnerabilities

FCS_TLSC_EXT.1.2

FCS_TLSC_EXT.1.3

FDP_DAR_EXT.1.1

FIA_X509_EXT.1.1

FPT_AEX_EXT.1.1

FPT_AEX_EXT.1.2

FPT_AEX_EXT.1.4

FPT_AEX_EXT.1.5

FPT_TUD_EXT.1.4

Table 13. Test Case 5 CWE Vulnerabilities

CWE SOURCE FILEPATH LINE #

111
custom-class-loader/app/src/main/java/com/example/dex/

 MainActivity.java
304

285
custom-class-loader/app/src/main/java/com/example/dex/

 MainActivity.java

177, 316,

387, 155

296
custom-class-loader/app/src/main/java/com/example/dex/

 MainActivity.java
225

494
custom-class-loader/app/src/main/java/com/example/dex/

 MainActivity.java
303, 311

532
custom-class-loader/app/src/main/java/com/example/dex/

 MainActivity.java
159

732
custom-class-loader/app/src/main/java/com/example/dex/

MainActivity.java

368, 533,

297, 298,

302, 378,

536

 Test Case 6 – Upload Data App4

Available from: https://github.com/mitre/uploaddataapp

This app demonstrates the following vulnerabilities:

• Access to device hardware resources (FDP_DEC_EXT.1.1) and to sensitive information

repositories on the device (NIAP FDP_DEC_EXT.1.2)

• Insecure writing of sensitive app data to device storage (NIAP FDP_DAR_EXT.1.1 and

FMT_CFG_EXT.1.2), and insecure network communication (FDP_DIT_EXT.1.1,

FIA_X509_EXT.1.1, FCS_TLSC_EXT.1.2, FCS_TLSC_EXT.1.3, FDP_NET_EXT.1.1)

• Inclusion of default credentials (FMT_CFG_EXT.1.1) and insecure storage of credentials

(FCS_STO_EXT.1.1)

• Failure to invoke an appropriate random number generator where needed

(FCS_RBG_EXT.1.1) and other inappropriate cryptographic practices

• Use of an unsupported platform API (FPT_API_EXT.1.1)

4 The prose in this section was borrowed directly from Section 4.1.2 of Analyzing the Effectiveness of App Vetting Tools in the Enterprise [11] .

It is included here as a convenience to the reader, with minor edits to remove superfluous cross references and background information.

https://github.com/mitre/uploaddataapp

15

At app start time, the app demonstrates it has established access to device hardware resources by

attempting to access both the device microphone and global positioning system (GPS) with the

intent of transmitting information gathered from these to a remote server. The app also attempts

to intercept Short Message Service (SMS) messages received by the device and send them to a

remote server. Furthermore, when the app starts, it uses Android APIs to attempt to gather

information from the device’s sensitive information repositories and send the gathered

information via HTTPS (it can also be configured to use HTTP) to a remote location. This

information includes:

• Whether the Android Debug Bridge (USB debugging) is on or off

• Whether installation of non-Google Play Store apps is allowed or disallowed

• The device’s Android Identifier (Android ID), international mobile subscriber identity

(IMSI), International Mobile Equipment Identity (IMEI), phone number, and Internet

Protocol (IP) addresses

• Names of all apps installed on the device

• Contact list entries

• Call logs

• Names of all files stored in external storage

When HTTPS is used, the app deliberately disables checking of the server’s certificate and

hostname, thus enabling an attacker to easily perform a man-in-the-middle attack to intercept or

manipulate communication. The app also sends some data to the same server using HTTP. HTTP

provides no cryptographic protection over the network, so interception or manipulation of

communication is even simpler.

Various gathered data are written to internal storage with deliberately insecure file permissions

(deliberately set to world readable and writable) or written to external storage (where it can be

read or written by other apps through USB debugging, or potentially through physical access to

the device Secure Digital (SD) card if applicable).

The app contains a broadcast receiver called SMSReceiver used to gather SMS messages

received by the device. The Android OS broadcasts received SMS messages to all broadcast

receivers with an intent-filter for “android.provider.Telephony.SMS_RECEIVED”. To test the

ability of app vetting tools to detect this commonly found vulnerability, SMSReceiver

deliberately fails to verify the permission of the sender and fails to check that the received

intent’s action string actually matches “android.provider.Telephony.SMS_RECEIVED”.

Therefore, a malicious app could inject fake SMS messages into UploadDataApp that were not

actually received by the device.

Starting in Android 6.0, checking the intent’s action string is sufficient, as

“android.provider.Telephony.SMS_RECEIVED” was added to the list of protected broadcast

action strings that can only be sent by the Android OS, not by third-party apps. Prior to Android

6.0, the app must ensure that the sender holds “android.permission.BROADCAST_SMS”.

Because apps are generally designed to run on a diverse array of Android versions, as a best

practice any broadcast receiver for the SMS_RECEIVED action string should ensure the sender

holds the BROADCAST_SMS permission.

16

The app contains a broadcast receiver called BootReceiver containing an intent-filter for the

“android.intent.action.BOOT_COMPLETED” action string. A broadcast intent containing this

action string is sent at device startup time. In order to test the ability of app vetting tools to detect

a commonly found vulnerability, BootReceiver deliberately fails to check that the received

intent’s action string actually matches “android.intent.action.BOOT_COMPLETED”. Therefore,

a malicious app could inject an intent and trigger the BootReceiver service’s functionality.

The app additionally deliberately exports services (SendIntentService, LocationService, and

RecordIntentService) that are meant for internal use only to test the ability of app vetting tools to

detect this issue. Exporting these services introduces a security vulnerability by enabling other

apps resident on the device to invoke the services directly.

The app embeds in its code a default username and password used for HTTP Basic

Authentication to a remote server. The app also writes the username and password value in the

clear to a file in the app’s internal data directory and to a file in the device’s external storage

directory (/sdcard). Storing cleartext passwords on the device, even in the app’s internal data

directory, is generally considered poor security practice.

The app embeds in its code a default Advanced Encryption Standard (AES) key used to encrypt

gathered data (the data are stored locally and transmitted to the remote server both in

unencrypted and encrypted form). The app does not follow cryptographic best practices for AES-

CBC [Cipher Block Chaining] encryption: it uses a static initialization vector (also embedded in

the code) instead of a randomly generated initialization vector, and the ciphertext is not

authenticated (no Message Authentication Code (MAC) operation is applied to it).

The app demonstrates use of an unsupported platform API by using reflection to invoke the

internal method com.android.internal.telephony.GsmAlphabet.stringToGsm7BitPacked.

The app’s behavior is triggered automatically at app start time. For future work, as a more

sophisticated test of the ability of vetting solutions to analyze app behavior, the app could be

modified to delay its behavior for a set period of time or until triggered by a specific user

interaction.

Table 14. Test Case 6 NIAP Vulnerabilities

NIAP Vulnerabilities

FCS_RBG_EXT.1.1

FCS_STO_EXT.1.1

FCS_TLSC_EXT.1.1

FCS_TLSC_EXT.1.2

FCS_TLSC_EXT.1.3

FDP_DAR_EXT.1.1

FDP_DEC_EXT.1.1

FDP_DEC_EXT.1.2

FDP_NET_EXT.1.1

FIA_X509_EXT.1.1

FMT_CFG_EXT.1.1

FMT_CFG_EXT.1.2

FPT_API_EXT.1.1

FTP_DIT_EXT.1.1

Table 15. Test Case 6 CWE Vulnerabilities

17

CWE SOURCE FILEPATH LINE #

20 uploaddataapp/app/src/main/java/com/example/uploaddataapp/InjectSMSService.java 59, 133

284 uploaddataapp/app/src/main/java/com/example/uploaddataapp/RecordIntentService.java
51, 57, 66, 67,

73, 74, 75

284 uploaddataapp/app/src/main/java/com/example/uploaddataapp/LocationService.java
139, 140, 141,

142

285 uploaddataapp/app/src/main/java/com/example/uploaddataapp/RecordIntentService.java 63

295 uploaddataapp/app/src/main/java/com/example/uploaddataapp/InjectSMSService.java 83

296 uploaddataapp/app/src/main/java/com/example/uploaddataapp/InjectSMSService.java 100

312 uploaddataapp/app/src/main/java/com/example/uploaddataapp/LocationService.java 145

312 uploaddataapp/app/src/main/java/com/example/uploaddataapp/ListFiles.java 41, 47

319 uploaddataapp/app/src/main/java/com/example/uploaddataapp/RecordIntentService.java 80

319 uploaddataapp/app/src/main/java/com/example/uploaddataapp/LocationService.java 146, 159

349 uploaddataapp/app/src/main/java/com/example/uploaddataapp/InjectSMSService.java 115

532 uploaddataapp/app/src/main/java/com/example/uploaddataapp/RecordIntentService.java 58

552 uploaddataapp/app/src/main/java/com/example/uploaddataapp/ListFiles.java 28, 38, 46

922 uploaddataapp/app/src/main/java/com/example/uploaddataapp/RecordIntentService.java 71

 Test Case 7 – Device Admin Sample5

Available from: https://github.com/mitre/device-admin-sample

This sample app, extracted from the ApiDemos sample code in the Android Software

Development Kit (SDK), demonstrates the use of Android’s device administrator.

Table 16. Test Case 7 NIAP Vulnerabilities

NIAP Vulnerabilities

None Identified

Table 17. Test Case 7 CWE Vulnerabilities

CWE SOURCE FILEPATH LINE #

284 device-admin-sample/app/src/main/java/com/example/deviceadminsample/DeviceAdminSample.java

118, 169, 170, 171, 172,
326, 385, 395, 397, 401,

405, 466, 467, 468, 469,

470, 471, 472, 473, 629,
870, 900, 1018, 1057,

1103

312 device-admin-sample/app/src/main/java/com/example/deviceadminsample/DeviceAdminSample.java 562, 956

 Meta-Analysis and Results

This section contains the results to the SATE VI mobile track. Section 4.1 shows the results for

each of the seven tests cases. Section 4.2 contains an analysis of the overall performance of tools

in the exercises.

5 The prose in this section was borrowed directly from Section 4.1.2 of Analyzing the Effectiveness of App Vetting Tools in the Enterprise [11].

It is included here as a convenience to the reader, with minor edits to remove superfluous cross references and background information.

https://github.com/mitre/device-admin-sample

18

 Meta-Analysis by Test Case

The following subsections detail the findings for each of the included test cases. For each test

case, we show how many tools were able to positively identify each of the test case’s included

vulnerabilities. As there were seven participating tools in the exercise, the maximum number of

expected positive identifications for each vulnerability is also seven depicted in each sub-

section’s figure as a solid vertical line).

4.1.1. Test Case 1

Fig. 3. Vulnerability Identification Test Case 1

Table 18. Test Case 1 Positive Tool Identifications

Vulnerability Name # Positive Identifications

FCS_TLSC_EXT.1.3 4

FIA_X509_EXT.1.1 3

FMT_CFG_EXT.1.2 4

FPT_TUD_EXT.1.4 1

CWE-77 0

CWE-117 2

CWE-287 1

CWE-395 1

CWE-502 0

CWE-572 1

CWE-925 2

4

3

4

1

0

2

1

1

0

1

2

0 1 2 3 4 5 6 7 8

FCS_TLSC_EXT.1.3

FIA_X509_EXT.1.1

FMT_CFG_EXT.1.2

FPT_TUD_EXT.1.4

CWE-77

CWE-117

CWE-287

CWE-395

CWE-502

CWE-572

CWE-925

V
u

ln
e

ra
b

ili
ty

 N
am

e

Vulnerability Identification: Test Case 1

Positive Identifications Maximum Expected

19

4.1.2. Test Case 2

Fig. 4. Vulnerability Identification Test Case 2

Table 19. Test Case 2 Positive Tool Identifications

Vulnerability Name # Positive Identifications

CWE-295 3

CWE-296 1

CWE-312 0

CWE-732 1

3

1

0

1

0 1 2 3 4 5 6 7 8

CWE-295

CWE-296

CWE-312

CWE-732

V
u

ln
e

ra
b

ili
ty

 N
am

e

Vulnerability Identification: Test Case 2

Positive Identifications Maximum Expected

20

4.1.3. Test Case 3

Fig. 5. Vulnerability Identification Test Case 5

Table 20. Test Case 3 Positive Tool Identifications

Vulnerability Name # Positive Identifications

FDP_DEC_EXT.1.2 5

CWE-20 0

CWE-284 1

5

0

1

0 1 2 3 4 5 6 7 8

FDP_DEC_EXT.1.2

CWE-20

CWE-284

V
u

ln
e

ra
b

ili
ty

 N
am

e

Vulnerability Identification: Test Case 3

Positive Identifications Maximum Expected

21

4.1.4. Test Case 4

Fig. 6. Vulnerability Identification Test Case 4

Table 21. Test Case 4 Positive Tool Identifications

Vulnerability Name # Positive Identifications

FDP_NET_EXT.1.1 2

CWE-284 1

CWE-295 1

CWE-319 1

2

1

1

1

0 1 2 3 4 5 6 7 8

FDP_NET_EXT.1.1

CWE-284

CWE-295

CWE-319

V
u

ln
e

ra
b

ili
ty

 N
am

e
Vulnerability Identification: Test Case 4

Positive Identifications Maximum Expected

22

4.1.5. Test Case 5

Fig. 7. Vulnerability Identification Test Case 5

Table 22. Test Case 5 Positive Tool Identifications

Vulnerability Name # Positive Identifications

FCS_TLSC_EXT.1.2 4

FCS_TLSC_EXT.1.3 4

FDP_DAR_EXT.1.1 1

FIA_X509_EXT.1.1 3

FPT_AEX_EXT.1.1 0

FPT_AEX_EXT.1.2 1

FPT_AEX_EXT.1.4 3

FPT_AEX_EXT.1.5 0

FPT_TUD_EXT.1.4 3

CWE-111 2

CWE-285 0

CWE-296 2

CWE-494 2

CWE-532 1

CWE-732 2

4

4

1

3

0

1

3

0

3

2

0

2

2

1

2

0 1 2 3 4 5 6 7 8

FCS_TLSC_EXT.1.2

FCS_TLSC_EXT.1.3

FDP_DAR_EXT.1.1

FIA_X509_EXT.1.1

FPT_AEX_EXT.1.1

FPT_AEX_EXT.1.2

FPT_AEX_EXT.1.4

FPT_AEX_EXT.1.5

FPT_TUD_EXT.1.4

CWE-111

CWE-285

CWE-296

CWE-494

CWE-532

CWE-732

V
u

ln
u

ra
b

ili
ty

 N
am

e

Vulnerability Identification: Test Case 5

Positive Identifications Maximum Expected

23

4.1.6. Test Case 6

Fig. 8. Vulnerability Identification Test Case 6

Table 23. Test Case 6 Positive Tool Identifications

Vulnerability Name # Positive Identifications

FCS_RBG_EXT.1.1 3

FCS_STO_EXT.1.1 5

FCS_TLSC_EXT.1.1 3

FCS_TLSC_EXT.1.2 4

3

5

3

4

5

5

5

5

6

4

3

5

2

5

1

3

0

4

3

2

5

1

3

4

5

0 1 2 3 4 5 6 7 8

FCS_RBG_EXT.1.1

FCS_STO_EXT.1.1

FCS_TLSC_EXT.1.1

FCS_TLSC_EXT.1.2

FCS_TLSC_EXT.1.3

FDP_DAR_EXT.1.1

FDP_DEC_EXT.1.1

FDP_DEC_EXT.1.2

FDP_NET_EXT.1.1

FIA_X509_EXT.1.1

FMT_CFG_EXT.1.1

FMT_CFG_EXT.1.2

FPT_API_EXT.1.1

FTP_DIT_EXT.1.1

CWE-20

CWE-284

CWE-285

CWE-295

CWE-296

CWE-312

CWE-319

CWE-349

CWE-532

CWE-552

CWE-922

V
u

ln
er

ab
ili

ty
 N

am
e

Vulnerability Identification: Test Case 6

Positive Identifications Maximum Expected

24

FCS_TLSC_EXT.1.3 5

FDP_DAR_EXT.1.1 5

FDP_DEC_EXT.1.1 5

FDP_DEC_EXT.1.2 5

FDP_NET_EXT.1.1 6

FIA_X509_EXT.1.1 4

FMT_CFG_EXT.1.1 3

FMT_CFG_EXT.1.2 5

FPT_API_EXT.1.1 2

FTP_DIT_EXT.1.1 5

CWE-20 1

CWE-284 3

CWE-285 0

CWE-295 4

CWE-296 3

CWE-312 2

CWE-319 5

CWE-349 1

CWE-532 3

CWE-552 4

CWE-922 5

4.1.7. Test Case 7

Fig. 9. Vulnerability Identification Test Case 7

2

1

0 1 2 3 4 5 6 7 8

CWE-284

CWE-312V
u

ln
e

ra
b

ili
ty

 N
am

e

Vulnerability Identification: Test Case 7

Positive Identifications Maximum Expected

25

Table 24. Test Case 7 Positive Tool Identifications

Vulnerability Name #Positive Identifications

CWE-284 2

CWE-312 1

 Results

4.2.1. Round Trip Time Per Test Case

The time required for each tool to process each test case was measured in the round-trip time

from test case retrieval to test case report submission (see Fig. 10).

Fig. 10. Round Trip Time

Fig. 11 describes the time taken to complete the analysis of each of the test cases.

26

Fig. 11. Analysis Time by Test Case

These times were collected by the orchestration platform described in Section 2.1. For this

exercise, the SATE team divided the data set into three buckets:

• analysis that took less than one hour

• analysis that took more than an hour, but less than a day

• analysis that took more than a day, but less than a full week

It should be noted that only seven of the eight total response times are represented in this chart,

as the timing information for one of the test sets was deemed inaccurate. Despite this, it can be

seen most participants were able to complete their analysis less than one day.

1

3 3 3

2 2 2

3

2 2 2

3 3 3

3

2 2 2 2 2 2

test case 1 test case 2 test case 3 test case 4 test case 5 test case 6 test case 7

Analysis Time by Test Case

< 1 hour < 1 day < 1 week

27

4.2.2. Overall Identification Performance

Fig. 12. Misses and Successes Grouped by Vulnerability Name

Fig. 12 shows the number of times a vulnerability (test name) was represented in the test corpus

when compared to the positive identification rate for that vulnerability. The test names are

ordered first by how frequently they appeared in the test corpus, and then by their positive

identification rate. For example, CWE-312 (on the left edge), was represented in three of the

seven mobile apps, however, it was only by 14 % of the time by participating tools. For each of

the appearance buckets (4,3,2,1) the most frequently identified tests are:

• 4 appearances

o CWE-284: 25 %

• 3 appearances

o FCS_TLSC_EXT.1.3: 62 %

• 2 appearances

o FDP_DEC_EXT.1.2: 71 %

• 1 appearance

o FSC_STO_EXT.1.1: 71 %

o FDP_DEC_EXT.1.1: 71 %

o FTP_DIT_EXT.1.1: 71 %

o CWE-922: 71 %

28

Furthermore, five vulnerabilities were not recognized by any tools, in any of the test cases that

they appeared in:

• CWE-285

• FPT_AEX_EXT.1.1

• FPT_AEX_EXT.1.5

• CWE-285

• CWE-502

Finally, Table 25 shows the average positive identification rate for each type of test based on

their source (CWE vs NIAP).

Table 25. Average Positive Identification by Test Type

Test Type # Appearances in Test Corpus Average Positive Identification

CWE 35 24 %

NIAP 29 45 %

Both 64 34 %

 Conclusions

 Overall Performance

As was shown in Table 25, vulnerabilities were identified at approximately 35 % when looking

at all participant groups across all vulnerabilities and all test cases. Furthermore, the

identification of CWEs was at roughly half the rate of NIAP vulnerabilities. We believe the

positive identification rate would be increased in future efforts with better identifications of

CWEs and improved test cases (see Section 5.2). In addition, the exercise shows that tools do

indeed find vulnerabilities in real code and a relatively low time investment.

 Lessons Learned

As mentioned in the beginning of this report, Mobile SATE VI is the first instance of a mobile

application focused analysis, and the results show there is a lot of space to improve and grow.

This section details the primary take-aways from the activity.

5.2.1. Formalized Report Submission Format

To promote ease of participation, the SATE team only placed one requirement on analysis

format submission: mobile app analysis reports needed to simply be a digital report that was

readable by the SATE team in some manner. The goal for this constraint was to enable machine-

aided review of the results while not placing unreasonable strain on the participating tools. This

29

allowed for most tool vendors to provide data in their tool-native formats. However, when the

machine-aided review resulted in much lower than expected success rates, we had to fall back on

manual evaluation. This resulted in the meta-analysis taking much longer than anticipated and

led to delays in meta-analysis phase of the activity. In future iterations of the SATE Mobile

Track, a more formalized and structured submission format will greatly improve the response

times of this analysis. However, finding the balance between expediated evaluation and added

participant burden will be crucial to promote participation.

5.2.2. Mixing Vulnerability Sources

The NIAP and CWE are useful sources for describing vulnerabilities. However, Table 25 shows

that while both types of tests appear roughly with the same frequency throughout the test corpus,

NIAP vulnerabilities are identified on average twice as often as CWEs.

We believe this to be more of an artifact of how each of the vulnerabilities is expressed in the

application rather than a deficiency in the participating tools. Many of NIAP vulnerabilities used

in the test cases are prescriptive and behavioral. They prescribe behavior such as:

“FIA_X509_EXT.1.1 The application shall [selection: invoked platform-

provided functionality, implement functionality] to validate certificates

in accordance with … RFC 5280 certificate validation and certificate

path validation.”

This behavior can be interpolated by examining what ends up resident on the device

(binary/artifact files) or by examining the behavior of the application (in this case, altering the

certificate and determining if the app rejects network communication. Another example, FMT

CFG EXT.1.2 requires all files created by the mobile app, be given restricted permissions to

prevent unauthorized access. Detecting a failure in this can “succeed quickly” by simply

interrogating the files created by the application during run time6. As a contrasting example, the

CWE-502: Deserialization of Untrusted Data, requires that a tool can 1) examine source code

and 2) introspect deeply into the data flow of the app. Mixing NIAP and CWE vulnerabilities

may be unfairly characterizing tools that make no claims to be able to do either.

Future evaluations will need to better describe and cater their test case sets to account for these

differences.

5.2.3. Expanding Test Case Resource Pool

Testing the capabilities of mobile app evaluation tools requires an evolving / real-world set of

apps with known vulnerabilities to utilize as ground truth. The SATE Mobile Track only had

seven test cases available during the evaluation. By contrast, the traditional SATE tracks have

tens of thousands of annotated and documented code samples for use during analysis [14]. As

part of the exercise, the SATE Team built one of the test cases in house. This represented a

significant time/resources investment that will not scale to needs of future exercise. In the future,

the SATE team will need to explore new venues to generate these vulnerable apps including the

following possible methods:

6 For the purposes of this argument, the authors are ignoring the difficulty of flexing the function space of an application

30

• Automated vulnerability injection

• Permuting publicly reported Common Vulnerabilities and Exposures (CVE)

• Targeted crowd-sourcing [15]

References

[1] Ogata MA, Franklin JM, Voas JM, Sritapan V, Quirolgico S (2019) Vetting the Security of

Mobile Applications. (National Institute of Standards and Technology, Gaithersburg, MD),

NIST Special Publication (SP) 800-163, Rev. 1. https://doi.org/10.6028/NIST.SP.800-163r1

[2] National Institute of Standards and Technology Software Assurance Metrics and Tool

Evaluation project. Available at https://www.nist.gov/itl/ssd/software-quality-group/samate.

[3] National Institute of Standards and Technology (2019) Static Analysis Tool Exposition

(SATE) VI. Available at https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-

tool-exposition-sate-vi

[4] Howell G, Ogata MA (2017) An Overview of Mobile Application Vetting Services for

Public Safety. (National Institute of Standards and Technology, Gaithersburg, MD), NIST

Interagency or Internal Report (IR) 8136. https://doi.org/10.6028/NIST.IR.8136

[5] National Information Assurance Partnership (2016) Requirements for Vetting Mobile Apps

from the Protection Profile for Application Software. Available at https://www.niap-

ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm

[6] The MITRE Corporation (2022) CWE - Common Weakness Enumeration. Available at

https://cwe.mitre.org

[7] Common Criteria for Information Technology Security Evaluation, Version 3.1, revision 5,

April 2017. Part 1: Introduction and general model. Available at

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf

[8] Common Criteria for Information Technology Security Evaluation, Version 3.1, revision 5,

April 2017. Part 2: Functional security components. Available at

https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf

[9] National Information Assurance Partnership (2022) Approved Protection Profiles. Available

at https://www.niap-ccevs.org/Profile/PP.cfm

[10] Saint-Andre, P. and J. Hodges, Representation and Verification of Domain-Based

Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX)

Certificates in the Context of Transport Layer Security (TLS) (RFC) 6125.

https://doi.org/10.17487/RFC6125

[11] C. Northern, M. Peck (2016) Analyzing the Effectiveness of App Vetting Tools in the

Enterprise: Recommendations to the Army Training and Doctrine Command. MITRE

Technical Report, MTR160242. (The MITRE Corporation)

[12] VideoLAN Organization (2022) VLC Media Player. Available at

https://www.videolan.org/vlc/

[13] VideoLabs (2022) VLC for Android. Available at:

https://play.google.com/store/apps/details?id=org.videolan.vlc

[14] National Institute of Standards and Technology (2022) Software Assurance Reference

Dataset. Available at https://samate.nist.gov/SARD

https://doi.org/10.6028/NIST.SP.800-163r1
https://www.nist.gov/itl/ssd/software-quality-group/samate
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-vi
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-vi
https://doi.org/10.6028/NIST.IR.8136
https://www.niap-ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm
https://www.niap-ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm
https://cwe.mitre.org/
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://www.niap-ccevs.org/Profile/PP.cfm
https://doi.org/10.17487/RFC6125
https://www.videolan.org/vlc/
https://play.google.com/store/apps/details?id=org.videolan.vlc
https://samate.nist.gov/SARD

31

[15] National Aeronautics and Space Administration (NASA) (2015) NASA Uses Crowdsourcing

for Open Innovation Contracts. Available at https://www.nasa.gov/press-release/nasa-uses-

crowdsourcing-for-open-innovation-contracts

Appendix A. List of Acronyms

AES

Advanced Encryption Standard

API

Application Programming Interface

CVE

Common Vulnerabilities and Exposures [12]

CWE

Common Weakness Enumeration

GPS

Global Positioning System

IMSI

International Mobile Subscriber Identity

IMEI

International Mobile Equipment Identity

HTTP

Hypertext Transfer Protocol

HTTPS

Hypertext Transfer Protocol Secure

IT

Information Technology

JNI

Java Native Interface

MAC

Message Authentication Code

MSAP

Mobile Security Application Platform

NFC

Near-field Communication

NIAP

National Information Assurance Partnership

OS

Operating System

https://www.nasa.gov/press-release/nasa-uses-crowdsourcing-for-open-innovation-contracts
https://www.nasa.gov/press-release/nasa-uses-crowdsourcing-for-open-innovation-contracts

32

PP

NIAP Protection Profile

SAMATE

Software Assurance Metrics and Tool Evaluation

SATE

Static Analysis Tool Exposition

SD

Secure Digital

SDK

Software Development Kit

SMS

Short Message Service

URL

Universal Resource Locator

USB

Universal Serial Bus

Appendix B. Glossary

dynamic analysis

Analysis targeting an application’s running executable.

protection profile

An implementation-independent set of security requirements for a category of IT products that

meet specific consumer needs [17].

result set

The set of mobile app reports associated with a singular analysis tool.

software vulnerability

A security flaw, glitch or weakness found in software that can be exploited by an attacker [1]

static analysis

Analysis targeting an application’s source code and/or non-executing binary with the goal of

determining unwanted runtime behaviors and characteristics.

test case

In the SATE VI Mobile track, a test case is a mobile application represented by both its compiled

binary and its source code.

