
NISTIR 8236

Test Scenarios for Mission Critical
Push-To-Talk (MCPTT) Off-Network

Mode Protocols Implementation

Priam Varin
Yishen Sun

Wesley Garey

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8236

NISTIR 8236

Test Scenarios for Mission Critical
Push-To-Talk (MCPTT) Off-Network

Mode Protocols Implementation

Priam Varin
Yishen Sun

Wesley Garey
Wireless Networks Division

Communications Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8236

October 2018

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

i

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Abstract

The document provides both an overview and technical details of test scenarios that are
designed by our group. These test scenarios can be used to check the protocol implementation
of the 3rd Generation Partnership Project (3GPP) defined off-network mode operations of
mission critical push-to-talk (MCPTT), covering floor control, call control, and call type
control. This report includes test scenarios for basic group calls, broadcast group calls, and
private calls. A test scenario is presented in a table format, and sometimes is accompanied by
a figure that shows the protocol messages exchanged over the air as well.

Keywords

MCPTT; off-network; basic group call; broadcast group call; private call; call control; floor
control; test scenarios

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table of Contents
Abstract ... i
Keywords .. i
1. Introduction ... 1

1.1. Motivation ... 1

1.2. Overview ... 1

1.3. Test scenario examples .. 2

 Test scenarios details – basic group call .. 6

2.1. Basic group call – floor control ... 6

2.1.1. Floor request .. 6

2.1.1.1. Floor request – idle .. 6

2.1.1.2. Floor request – idle multiple floor requests ... 8

2.1.1.3. Floor request – queued .. 14

2.1.1.4. Floor request – denied ... 17

2.1.1.5. Floor request – pre-emptive .. 18

2.1.2. Floor release .. 21

2.1.2.1. Floor release by the floor arbitrator ... 21

2.1.2.2. Floor release by a queued floor participant ... 22

2.1.2.3. Floor release by the floor arbitrator with queued participants 23

2.1.2.4. Floor release by pre-empted floor arbitrator ... 25

2.1.3. Session initialization .. 28

2.1.3.1. Session initialization – normal .. 28

2.1.3.2. Session initialization – message lost ... 30

2.1.3.3. Session initialization – private call .. 32

2.1.3.4. Session initialization – broadcast call ... 34

2.1.4. Session release ... 35

2.2. Basic group call – call control ... 36

2.2.1. Call setup ... 36

2.2.1.1. Call setup – join a call ... 36

2.2.1.2. Call setup – establish a new call with confirm mode indication IE in the Call
Announcement message... 39

2.2.1.3. Call setup – establish a new call without confirm mode indication IE in the
Call Announcement message ... 44

2.2.2. Call merge ... 47

2.2.3. Call release .. 51

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

2.2.3.1. Call release while in the call .. 51

2.2.3.2. Call release after call probe and return to “S1: start-stop” 53

2.2.3.3. Call release after call probe and enter “S6: ignoring incoming call
announcements” ... 55

2.2.3.4. Call release while pending user action – without confirm indication 56

2.2.3.5. Call release while pending user action – with confirm indication 57

2.2.3.6. Call release when maximum duration of the call is reached 59

2.2.3.7. Call release and setup .. 60

2.2.4. Call reject .. 61

2.3. Basic group call – call type control ... 65

2.3.1. Call type initialization ... 65

2.3.1.1. Call type initialization – establish a new basic call 65

2.3.1.2. Call type initialization – establish a new emergency call 66

2.3.1.3. Call type initialization – establish a new imminent peril call 67

2.3.1.4. Call type initialization – join an emergency call after call probe 68

2.3.1.5. Call type initialization – join an imminent peril call after call probe 69

2.3.1.6. Call type initialization – join a basic group call after group call probe 70

2.3.1.7. Call type initialization – join a basic group call with user acknowledgement
required .. 71

2.3.1.8. Call type initialization – join an imminent peril group call with user
acknowledgement required .. 72

2.3.1.9. Call type initialization – join an emergency group call with user
acknowledgement required .. 73

2.3.1.10. Call type initialization – join an emergency group call without user
acknowledgement required .. 74

2.3.2. Call type upgrade ... 75

2.3.2.1. Call upgrade from basic to imminent peril group call 75

2.3.2.2. Call upgrade from basic to emergency group call ... 76

2.3.2.3. Call upgrade from imminent peril group call .. 77

2.3.3. Call type downgrade .. 78

2.3.3.1. Explicit downgrade from emergency call ... 78

2.3.3.2. Explicit downgrade from imminent peril call ... 80

2.3.3.3. Implicit downgrade from emergency call ... 82

2.3.3.4. Implicit downgrade from imminent peril call ... 83

2.3.4. Call release .. 84

2.3.4.1. Call release after call establishment .. 84

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

2.3.4.2. Call release before call establishment ... 85

2.3.5. Call merge ... 85

2.3.5.1. Call merge from different call type states ... 85

2.3.5.2. Call merge from same call type state .. 86

 Test scenarios details – broadcast group call .. 88

3.1. Broadcast group call – call control .. 88

3.1.1. Call setup ... 88

3.1.1.1. Call setup – establish a new call .. 88

3.1.1.2. Call setup – establish a new call with refusal to join 89

3.1.2. Call release .. 91

3.1.2.1. Call release by the originating user ... 91

3.1.2.2. Call release by a participant .. 92

 Test scenarios details – private call .. 95

4.1. Private call – call control ... 95

4.1.1. Private call setup ... 95

4.1.1.1. Private call setup – establish new call in automatic mode 95

4.1.1.2. Private call setup – establish and cancel new call in automatic mode 97

4.1.1.3. Private call setup – establish new call in manual mode 99

4.1.1.4. Private call setup – establish and cancel new call in manual mode 101

4.1.1.5. Private call setup – failure to establish new call ... 103

4.1.2. Private call cancellation ... 106

4.1.2.1. Private call cancellation – cancel an ongoing call (normal) 106

4.1.2.2. Private call cancellation – cancel an ongoing call (timer expiry) 106

4.1.3. Private call expiration .. 108

4.2. Private call – call type control ... 109

4.2.1. Enter private call ... 109

4.2.2. Enter private emergency call ... 111

4.2.3. Private call upgrade ... 112

4.2.3.1. Private call upgrade – upgrade call ... 112

4.2.3.2. Private call upgrade – rejected upgrade call .. 113

4.2.3.3. Private call upgrade – failed upgrade call ... 115

4.2.4. Private emergency call downgrade .. 116

4.2.4.1. Private emergency call downgrade – downgrade call TFP6 expiry 116

4.2.4.2. Private emergency call downgrade – downgrade call out of range 118

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

4.2.4.3. Private emergency call downgrade – downgrade call TFP8 expiry 120

 Summary and future work ... 122

Acknowledgments ... 122

References .. 123

Appendix: Scenario usages... 125

vi

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

List of Tables
Table 1: Floor release, 2 UEs (example) .. 2
Table 2: Test scenarios overview ... 6
Table 3: Floor request – idle .. 7
Table 4: Floor request – idle multiple floor requests ... 9
Table 5: Floor request – queued ... 14
Table 6: Floor request – denied .. 18
Table 7: Floor request – pre-emptive ... 19
Table 8: Floor release by the floor arbitrator ... 21
Table 9: Floor release by a queued floor participant .. 22
Table 10: Floor release by the floor participant with queued participants 23
Table 11: Floor release by pre-empted floor arbitrator .. 25
Table 12: Session initialization – normal ... 29
Table 13: Session initialization – message lost .. 30
Table 14: Session initialization – private call .. 32
Table 15: Session initialization – broadcast call .. 35
Table 16: Session release ... 35
Table 17: Call setup – join a call .. 36
Table 18: Call setup – establish a new call with confirm mode indication IE in the Call
Announcement message.. 39
Table 19: Call setup – establish a new call without confirm mode indication IE in the Call
Announcement message.. 45
Table 20: Call merge .. 48
Table 21: Call release while in the call .. 52
Table 22: Call release after call probe and return to “S1: start-stop” 54
Table 23: Call release after call probe and enter “S6: ignoring incoming call announcements”
... 55
Table 24: Call release while pending user action – without confirm indication 57
Table 25: Call release while pending user action – with confirm indication 58
Table 26: Call release when maximum duration of the call is reached 60
Table 27: Call release and setup ... 60
Table 28: Call reject ... 62
Table 29: Call type initialization – establish a new basic call ... 65
Table 30: Call type initialization – establish a new emergency call 66
Table 31: Call type initialization – establish a new imminent peril call 67
Table 32: Call type initialization – join an emergency call after call probe 68
Table 33: Call type initialization – join an imminent peril call after GROUP CALL PROBE
... 69
Table 34: Call type initialization – join a basic group call after group call probe 70
Table 35: Call type initialization – join a basic group call with user acknowledgement
required ... 72
Table 36: Call type initialization – join an imminent peril group call with user
acknowledgement required ... 73
Table 37: Call type initialization – join an emergency group call with user acknowledgement
required ... 74

vii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 38: Call type initialization – join an emergency group call without user
acknowledgement required ... 75
Table 39: Call upgrade from basic to imminent peril group call ... 75
Table 40: Call upgrade from basic to emergency group call ... 76
Table 41: Call upgrade from imminent peril group call ... 77
Table 42: Explicit downgrade from emergency call .. 79
Table 43: Explicit downgrade from imminent peril call .. 80
Table 44: Implicit downgrade from emergency call .. 83
Table 45: Implicit downgrade from imminent peril call .. 83
Table 46: Call release after call establishment ... 84
Table 47: Call release before call establishment .. 85
Table 48: Call merge from different call type states .. 85
Table 49: Call merge from same call type state ... 86
Table 50: Call setup – establish a new call .. 88
Table 51: Call setup – establish a new call with refusal to join ... 89
Table 52: Call release by the originating user .. 91
Table 53: Call release by a participant ... 92
Table 54: Private call setup – establish new call in automatic mode 95
Table 55: Private call setup – establish and cancel new call in automatic mode 97
Table 56: Private call setup – establish new call in manual mode 100
Table 57: Private call setup – establish and cancel new call in manual mode 102
Table 58: Private call setup – failure to establish a new call ... 103
Table 59: Private call cancellation – cancel an ongoing call (normal) 106
Table 60: Private call cancellation – cancel an ongoing call (timer expiry) 107
Table 61: Private call maximum duration expiration ... 108
Table 62: Enter private call .. 110
Table 63: Enter private emergency call.. 111
Table 64: Private call upgrade – upgrade call .. 112
Table 65: Private call upgrade – rejected upgrade call .. 114
Table 66: Private call upgrade – failed upgrade call .. 115
Table 67: Private emergency call downgrade – downgrade call TFP6 expiry 117
Table 68: Private emergency call downgrade – downgrade call out of range 119
Table 69: Private emergency call downgrade – downgrade call TFP8 expiry 120

viii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

List of Figures
Figure 1: Floor request – deny, 2 UEs (example) .. 5
Figure 2: Floor request – idle ... 8
Figure 3: Floor request – idle multiple floor requests .. 13
Figure 4: Floor request – queued ... 17
Figure 5: Floor request – denied .. 18
Figure 6: Floor request – pre-emptive.. 21
Figure 7: Floor release by pre-empted floor arbitrator .. 28
Figure 8: Session initialization – normal ... 30
Figure 9: Session initialization – message lost ... 31
Figure 10: Session initialization – private call ... 34
Figure 11: Call setup – join a call .. 39
Figure 12: Call setup – establish a new call with confirm mode ... 44
Figure 13: Call merge .. 51
Figure 14: Broadcast call setup – establish a new call with refusal to join 91
Figure 15: Broadcast call release by a participant ... 94
Figure 16: Private call setup – establish new call in automatic mode 96
Figure 17: Private call setup – establish and cancel new call in automatic mode 99
Figure 18: Private call setup – establish new call in manual mode 101
Figure 19: Private call setup – establish and cancel new call in manual mode 103
Figure 20: Private call setup – failure to establish a new call .. 105
Figure 21: Private call cancellation – cancel an ongoing call (timer expiry) 108
Figure 22: Private call upgrade – rejected upgrade call ... 115
Figure 23: Private emergency call downgrade – downgrade call TFP6 expiry 118
Figure 24: Private emergency call downgrade – downgrade call out of range 120

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

1. Introduction

1.1. Motivation

Public safety agencies require real-time applications. Mission critical voice (MCV) real-time
application remains the most critical means of communications for first responders in
emergency situations and cannot be compromised. The major MCV communication device is
using the mission critical push-to-talk (MCPTT) technology, which achieves public safety
grade PTT voice quality. A few general public safety requirements/expectations of push-to-
talk communications over Long Term Evolution (LTE) may be found in [1]. The 3rd
Generation Partnership Project (3GPP) working groups have defined a set of specifications [2-
7] for MCPTT operations over LTE in its recent releases: Release-13, Release-14, and Release
15, for both on-network mode and off-network mode.

When mission critical voice communication is desired while first responders are out of LTE
network coverage or when the network coverage is very weak, it is a very attractive or the only
feasible option for public safety users to operate in MCPTT off-network mode. However, due
to the lack of time or effort spent on off-network scenarios by the 3GPP working groups, the
completeness and correctness of MCPTT off-network mode are yet to be fully verified. In fact,
although the relevant 3GPP Release-13 specifications were officially completed in March
2016, quite a number of change requests (CRs) were submitted to LTE work groups to correct
errors. New features and enhancements of existing functionalities were discussed for Release-
14 and Release 15, as well. Therefore, evaluating the performance and limitations of MCPTT
off-network operations is of primary interest to the public safety community. For this reason,
it is one of the main research focuses of our division. Unless noted otherwise, the MCPTT
protocols, research findings, or both that will be discussed in the remainder of the document
all refer to MCPTT off-network mode.

Since the spring of 2016, our group has been developing an MCPTT off-network mode model
in ns-3. Major features of this model include basic group call capability, broadcast group call
capability, private call capability, floor control, call control, call type control, and emergency
alert. In order to check the correctness of protocol implementation defined in that ns-3 model,
our group has designed 61 test scenarios for MCPTT off-network mode operations. Future
revisions of this document may include additional scenarios. These test scenarios were used to
check our implementation of the MCPTT off-network mode protocols using ns-3 simulation
tool. As can be seen from the example shown in Section 1.3, as well as throughout the
remaining document, these test scenarios are based on the 3GPP MCPTT off-network mode
protocols and are not ns-3 specific. Therefore, there are potential benefits of utilizing these test
scenarios to verify the MCPTT off-network mode protocol implementations in other
embodiments, e.g., prototype or commercial devices. Utilizing the information provided in
these scenarios, one could create conformance tests or interoperability tests, as shown through
examples in the Appendix.

1.2. Overview

The remainder of the document is organized as follows. Example test scenarios are given in
Section 1.3, so that the interpretation and utilization of a test scenario may be illustrated in

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

more details. Section 2 is the collection of all test scenarios that our group has designed for
MCPTT off-network mode basic group call, including 14 test scenarios on floor control
(Section 2.1), 12 test scenarios on call control (Section 2.2), and 21 test scenarios on call type
control (Section 2.3). Section 3 summarizes all test scenarios we designed for MCPTT off-
network broadcast group call, including 4 scenarios on call control (Section 3.1). Section 4
presents test scenarios developed for MCPTT off-network private call, including 8 scenarios
on call control (Section 4.1) and 8 scenarios on call type control (Section 4.2). Summary and
future work is discussed in Section 5.

Test scenarios are designed to cover possible state transitions, as well as the main procedures
of MCPTT off-network mode operations.

1.3. Test scenario examples

In this section, a test scenario example will be explained in detail, in order to help the
interpretation and utilization of other test scenarios listed in the remainder of the document.

Each test scenario is presented in a table format. The table captures important information that
needs to be checked for each test scenario, such as event triggers, sequences, message
exchanges, timers, counters, and states. In addition to the table, a corresponding figure is
included in some of the test scenarios. The figure is provided to highlight the sequence of
MCPTT messages exchanged over the air, and thus can be used as a reference for the design
of 3GPP working group, RAN5, test scenarios. Note that the information contained in a figure
is a subset of information already included in the table of the same scenario. However, a figure
provides a better visualization of the interaction between users and the timeline of events. For
those test scenarios where there are none or very few over-the-air messages involved, a figure
is not shown.

As an example, Table 1 is the corresponding table of the “Floor Release” test scenario with 2
User Equipments (UEs) in the MCPTT group call. The 1st row names the columns, which will
be explained in more details later in this section. The 2nd row specifies the initial states of each
UE when the test scenario starts. Starting from the 3rd row, the table lists a sequence of events
organized chronologically, from the earliest (at the top of the table) to the latest (at the bottom
of the table). Each row corresponds to an event/step of the test scenario, and there are 2 steps
in this example, shown as 3rd and 4th row in Table 1.

Table 1: Floor release, 2 UEs (example)

 Timeline Triggering event UE A state
transition

UE B state
transition

Consequent
behavior

Reference
for details

0 - - O: has
permission

O: has no
permission - -

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering event UE A state
transition

UE B state
transition

Consequent
behavior

Reference
for details

1

T0

UE A receives
MCPTT

indication to stop
sending the Real-

time Transport
Protocol (RTP)

packets
(No Queued Floor
Requests at UE A)

O: silence -

UE A sends Floor
Release, starts T230,
stops T206 and T207

(if running), and
clears

Synchronization
SouRCe (SSRC) of
current arbitrator

7.2.3.5.5

2

T0 +
t_AB1

UE B receives
Floor Release - O: silence

UE B stops
rendering RTP

packets, stops T203
(if running), starts
T230, may send

Floor Idle
notification to

MCPTT user, and
clears SSRC of

current arbitrator

7.2.3.4.3

Each column of the table focuses on a specific aspect of the test scenario:
- The first unlabeled column numbers the rows in the table for easy referencing. The row

labeled zero provides the initial starting states for each scenario. The row numbers provide
the ordering of the events/steps in the scenario.

- “Timeline” is the timing of the event described in the row. T0 denotes the start time of
every scenario, and the timing of each event is indicated in the form of a time increment in
addition to the timing of the previous event wherever possible, e.g., T0 + t_AB1. The letters
A, B or C in the time increment symbol indicate the main contributor of the time increment.
t_ABx represents the transmission delay from UE A to UE B. t_BAx represents the
transmission delay from UE B to UE A. t_Ax represents the time between T0 and the
moment the stated action is performed at UE A. The “x” represents the ordered instance,
e.g., t_AB1 is the first instance of the transmission delay between UE A and UE B and
t_AB2 is the second instance of the transmission delay between UE A and UE B.

- “Triggering event” indicates the event that occurs at the time specified by “Timeline” of
the same row. The triggering of such an event may result in a UE state transition, as well
as consequent behavior, which are specified in other columns. A triggering event can be a
timer expiration, a counter reaching its upper bound, the reception of a specific message
(e.g., “UE B receives Floor Release”), the sending of RTP packets, etc. A triggering event
may also include certain conditions that need to be met, e.g., “No Queued Floor Request
at UE A” in row 3; such conditions shall be displayed between parentheses in an italic font.

- “UE A state transition” and “UE B state transition” indicate whether there are any changes
in the UEs’ states during this event, and if yes, to which state. In Table 1, UE A starts in
the ‘O: has permission’ state, and then transitions to the ‘O: silence’ state after the first
event. UE B starts in the ‘O: has no permission’ state, and then transitions to the ‘O: silence’
state after two events.

- “Consequent behavior” lists the actions that shall be taken immediately as the consequence
of the “Triggering event”. These actions focus on timer start/stop, counter maintenance,

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

the type of control messages to be generated, the indication to MCPTT user, the handling
of RTP packets in general, and the update of certain key parameters. Further details of how
to set control message fields, update other parameters or both can be found by referring to
the corresponding clause(s) provided in column “Reference for details”. Note that if more
than one action is present per UE, they are separated by commas. If there are more than
one UE, a semicolon is used to separate the list of actions for UE from the list of actions
for another UE. If several UEs share the same set of action(s) (e.g., share the same
“Reference for details” clause), they may be grouped together.

- “Reference for details” provides references to the corresponding clause(s) in 3GPP
specifications which are used as the basis when designing the test scenario and which are
associated with that particular event. For floor control, test scenarios are designed based
on 3GPP TS 24.380 v14.3.0 [5]. For call control and call type control, test scenarios are
designed based on 3GPP TS 24.379 v14.2.0 [4]. These references are listed in the same
order as that of the UEs described in the “Consequent behavior” section.

Additionally, throughout the table, several other color and font schemes are used:
- A UE represented in a bold font (such as “UE A”) indicates that this UE is the main

protagonist at play in a given cell description: in a “Triggering event” column, that means
the embolden UE is the one for which we expect an action to occur before the scenario
continues to unfold; in a “Consequent behavior” column, that means the text description
represents the behavior for that embolden UE.

- A blue-font text indicates an MCPTT message (such as “Floor Request”)
- A green-font text indicates an MCPTT timer or counter (such as “T205” or “C205”,

respectively)
- Supplemental conditions and/or explanations can be encountered in various columns (such

as already mentioned in the “Triggering event” column) by being displayed between
parentheses using an italic font.

As another example, Fig. 1 is the figure corresponding to test scenario “Floor request – deny”.
The interpretation of a figure follows the following practice:
- State transitions of UEs, e.g., UE A and UE B in Fig. 1, are shown on the vertical axes.
- Events that occur during the tests scenario are organized temporally in a “top-to-bottom”

fashion.
- Directional arrows between MCPTT clients represent messages exchanged between

network entities, with the message name labeled. Arrows with solid lines indicate that
messages are received successfully, whereas dotted lined arrows represent messages that
cannot be received successfully by the MCPTT entity at the receiving UE, e.g., due to
channel loss.

- Additional information may be included as well, such as timer start/stop, message
preparation. Those action descriptions follow a color code: red for UE A, blue for UE B
and orange for UE C.

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Floor participant

MCPTT client B

Floor arbitrator

Floor request - deny

O: has permission

O: pending request

O: has no permission

O: has no permission

• B analyzes Floor Request

• A stops T201

• A starts T201

Figure 1: Floor request – deny, 2 UEs (example)

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Test scenarios details – basic group call

A brief overview of test scenarios to be discussed in this section is summarized by Table 2:

Table 2: Test scenarios overview

Subject Sub-area Number of
scenarios

Reference 3GPP
specifications

Basic Group Call
– Floor Control

Floor Request 5 TS 24.380 v14.3.0
Floor Release 4
Session Initialization 4
Session Release 1

Basic Group Call
– Call Control

Call Setup 3 TS 24.379 v14.2.0
Call Merge 1
Call Release 7
Call Reject 1

Basic Group Call
– Call Type
Control

Call Type Initialization 10 TS 24.379 v14.2.0
Call Type Upgrade 3
Call Type Downgrade 4
Call Release 2
Call Merge 2

Broadcast Group
Call – Call
Control

Call Setup 2 TS 24.379 v14.2.0
Call Release 2

Private Call –
Call Control

Call Setup 5 TS 24.379 v14.2.0
Call Cancellation 2
Call Expiration 1

Private Call –
Call Type
Control

Enter Private Call 1 TS 24.379 v14.2.0
Enter Private Emergency Call 1
Private Call Upgrade 3
Private Call Downgrade 3

2.1. Basic group call – floor control

Floor control is the arbitration system in an MCPTT Service that determines who has the
authority to transmit (talk) at a point in time during an MCPTT call [2].
The state transitions that are analyzed in each test scenario of Section 2.1 are based on Fig.
7.2.3.1-1 of [5]. Floor control test scenarios can be categorized into 4 groups: floor request,
floor release, session initialization, and session release.

2.1.1. Floor request

2.1.1.1.Floor request – idle

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

This scenario describes the process of requesting the floor, with all (e.g., 3) participants idle,
i.e., beginning in the ‘O: silence’ state. In this scenario, no other user intends to take the
floor, except the one (UE A), which sends the floor request message. After multiple rounds
of sending floor request messages, UE A assumes the floor. The other UEs’ actions to the
received floor control messages are shown.

Scenario Purpose: To observe that one and only one UE will become floor arbitrator and
begin transmitting (talking) when there is currently no active floor arbitrator and the details of
the protocol that allow this to happen.

Table 3: Floor request – idle

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0
 - - O: silence O: silence O: silence - -

1

T0
UE A

pushes PTT
button

O:
pending
request

- -

UE A sends Floor
Request, stops

T230, starts T201
and initializes

C201

7.2.3.3.2

2

T0 +
t_AB1

UE B and
UE C

receive
Floor

Request

- - -
UE B and UE C
discard the floor
control message

7.2.3.1
(7.2.3.3.5

applicable
to private
call only)

3

T0 + T201 UE A T201
expires - - -

UE A resends
Floor Request,
starts T201 and

increments C201

7.2.3.6.9

4

T0 + T201
+ t_AB2

UE B and
UE C

receive
Floor

Request

- - -
UE B and UE C
discard the floor
control message

7.2.3.1
(7.2.3.3.5

applicable
to private
call only)

5

T0 +
2*T201

UE A T201
expires - - -

UE A resends
Floor Request,
and starts T201
and increments

C201

7.2.3.6.9

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

6 T0 +
(n - 1) *
T201 +
t_ABn

UE B and
UE C

receive
Floor

Request

- - -
UE B and UE C
discard the floor
control message

7.2.3.1
(7.2.3.3.5

applicable
to private
call only)

7

T0 +
n*T201

UE A T201
expires

(C201 at
upper limit)

O: has
permission - - UE A sends Floor

Taken 7.2.3.6.6

8 T0 +
n*T201 +

t_AB
(n+1)

UE B and
UE C

receive
Floor Taken

- O: has no
permission

O: has no
permission

UE B and UE C
stop T230, start

T203 and set
SSRC of granted
floor arbitrator

7.2.3.3.6

And the corresponding figure is Fig. 2:

MCPTT client A

Floor participant

MCPTT client B

Floor participant

O: silence O: silence

O: has permission O: has no permission

O: pending request

• A timer T201 expires for the
Nth time

MCPTT client C

Floor participant

O: silence

O: has no permission

• B stops T230
• B starts T203

• C stops T230
• C starts T203

Floor request - idle

• A pushes PTT button
• A stops T230
• A starts T201 and initializes C201

• A timer T201 expires
• A starts T201 and increments C201

• A timer T201 expires
• A starts T201 and increments C201

Figure 2: Floor request – idle

2.1.1.2.Floor request – idle multiple floor requests

This scenario describes the process of requesting the floor, in an alternative way compared to
the previous scenario: all three participants begin in the ‘O: silence’ state and are at first not
interested in taking the floor, hence transitioning to the ‘O: start-stop’ state. After a while,
two users – UE A and UE C – declare their intention to take the floor.

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Scenario Purpose: To observe that a UE will become floor arbitrator when there is currently
no active floor arbitrator and when two UEs requested the floor at a close time; to also
observe that after being granted the floor and once done talking, the floor arbitrator tries to
pass on the floor to the other queued user.

Table 4: Floor request – idle multiple floor requests

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
0

 - - O: silence O: silence O: silence - -

1

T0 UE A T230
expires

O: start-
stop - -

UE A terminates
the floor

participant state
transition diagram

7.2.3.3.7

2

T0 +
t_B1

UE B T230
expires - O: start-

stop -

UE B terminates
the floor

participant state
transition diagram

7.2.3.3.7

3
T0 +
t_C1
(with

t_C1 >
t_B1)

UE C T230
expires - - O: start-

stop

UE C terminates
the floor

participant state
transition diagram

7.2.3.3.7

4
T0 +
t_C2
(with

t_C2 >
t_C1)

UE C
presses

PTT button
- -

O:
pending
request

UE C creates an
instance of floor
participant, sends

Floor Request,
starts T201 and
initializes C201

7.2.3.2.5

5

T0 +
t_C2 +
t_CA1

UE A and
UE B

receive
Floor

Request

- - -
UE A and UE B
discard the floor
control message

7.2.3.1

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
6

T0 +
t_A1
(with

t_A1 >
t_C2 +
t_CA1)

UE A
presses

PTT button

O:
pending
request

- -

UE A creates an
instance of floor
participant, sends

Floor Request,
starts T201 and
initializes C201

7.2.3.2.5

7

T0 +
t_A1 +
t_AB1

UE B and
UE C

receive
Floor

Request

- - -

UE B discards the
floor control

message;
UE C restarts T201

and resets C201

7.2.3.1
7.2.3.6.10

8

T0 +
t_A1 +
T201

UE A T201
expires - - -

UE A sends Floor
Request, starts

T201 and
increments C201

7.2.3.6.9

9

T0 +
t_A1 +
T201 +

t_AB2 +

UE B and
UE C

receive
Floor

Request

- - -

UE B discards the
floor control

message;
UE C restarts T201

and resets C201

7.2.3.1
7.2.3.6.10

10

T0 +
t_A1 +
n*T201

UE A T201
expires

(upper limit
of C201
reached)

O: has
permission - - UE A sends Floor

Taken 7.2.3.6.6

11

T0 +
t_A1 +
n*T201
+ t_AB3

UE B and
UE C

receive
Floor
Taken

- O: has no
permission -

UE B creates an
instance of floor
participant, sets
SSRC of current
floor arbitrator to
SSRC of UE A,
and starts T203;

UE C sets SSRC of
current floor

arbitrator to SSRC
of UE A, restarts
T201 and resets

C201

7.2.3.2.6
7.2.3.6.11

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
12

T0 +
t_A1 +
n*T201
+ t_AB3
+ T201

UE C T201
expires - - -

UE C sends Floor
Request, starts

T201 and
increments C201

7.2.3.6.9

13
 T0 +

t_A1 +
n*T201
+ t_AB3
+ T201+
t_CA2

UE A and
UE B

receive
Floor

Request

- - -

UE A stores the
request and sends

Floor Queue
Position Info;

UE B discards the
floor control

message

7.2.3.5.4
7.2.3.1

14 T0 +
t_A1 +
n*T201
+ t_AB3
+ T201+
t_CA2 +
t_AB4

UE B and
UE C

receive
Floor
Queue

Position
Info

- - O: queued

UE B discards the
floor control

message;
UE C updates the
queue status, and

stops T201

7.2.3.1
7.2.3.6.3

15 T0 +
t_A2
(with

t_A2 >
t_A1 +
n*T201
+ t_AB3
+ T201+
t_CA2 +
t_AB4)

UE A
sends RTP

media
- - - UE A starts T206 7.2.3.5.2

16

T0 +
t_A2 +
t_AB5

UE B and
UE C

receive
RTP media

- - -

UE B renders RTP
packets, starts

T203;
UE C renders RTP
media, and starts

T203

7.2.3.4.6
7.2.3.8.2

17
T0 +
t_C3
(with

t_C3 >
t_A2 +
t_AB5)

UE C
requests the

queue
position

information

- - -

UE C sends Floor
Queue Position
Request, starts

T204 and
initializes C204

7.2.3.8.11

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
18

T0 +
t_C3 +
t_CA3

UE A and
UE B

receive
Floor
Queue

Position
Request

- - -

UE A sends Floor
Queue Position

Info;
UE B discards the

floor control
message

7.2.3.5.8
7.2.3.1

19

T0 +
t_C3 +

t_CA3 +
t_AB6

UE B and
UE C

receive
Floor
Queue

Position
Info

- - -

UE B discards the
floor control

message;
UE C updates the

queue position, and
stops T204

7.2.3.1
7.2.3.8.3

20
T0 +
t_A3
(with

t_A3 >
t_C3 +

t_CA3 +
t_AB6)

UE A stops
sending

RTP media

O:
pending
granted

- -

UE A stops T206
and T207, sends
Floor Granted to
UE C, sets stored
SSRC of current
floor arbitrator to
SSRC of UE C,
starts T205 and
initializes C205

7.2.3.5.6

21

T0 +
t_A3 +
t_AB7

UE B and
UE C

receive
Floor

Granted

- - -

UE B stops
rendering RTP

packets, sets stored
SSRC of candidate
floor arbitrator to
SSRC of UE C,
and starts T203;

UE C stops
rendering RTP

packets, notifies
the user about the
floor grant, and

starts T233

7.2.3.4.5
7.2.3.8.6

22

T0 +
t_A3 +

t_AB7 +
T233

UE C T233
expires - - O: silence UE C starts T230 7.2.3.8.7

And the corresponding figure is Fig. 3:

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Floor participant

MCPTT client B

Floor participant

O: silence O: silence

MCPTT client C

Floor participant

O: silence

• C presses PTT button
• C starts T201 and C201

Floor Request – Idle multiple floor requests

• A timer T230 expires

O: start-stop

O: start-stop

O: pending request

O: start-stop

• B timer T230 expires

• C timer T230 expires

• A presses PTT button
• A starts T201 and C201 O: pending request

• C starts T201 and resets
C201

• A timer T201 expires
• A starts T201 and increments C201

• C starts T201 and resets
C201

• A timer T201 expires for the Nth time

O: has permission

• C restarts T201 and resets C201

• B starts T203O: has no permission

• C timer T201 expires
• C starts T201 and increments C201

• A stores the request

• C updates queue status
• C stops T201O: queued

• A starts T206

• B starts T203
• C starts T203

• C starts T204 and initializes C204

• C updates queue status
• C stops T204

• A stops sharing RTP media
• A stops T206 and T207
• A starts T205 and initializes C205

O: pending granted

• B starts T203

• C starts T233

• C timer T233 expires
• C starts T230O: silence

Figure 3: Floor request – idle multiple floor requests

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

2.1.1.3.Floor request – queued

This scenario describes another possible process of requesting the floor, with participants
beginning in the ‘O: has permission’ and the ‘O: has no permission’ state. Queuing is supported
and used in this scenario: a floor participant will ask for the floor, wait in queue and finally be
granted the floor. For the first few steps of this scenario, it is assumed that UE B does not
receive the various floor request messages until a later time (T0 + 4*T201 + t_AB5). In this
scenario, in addition to the multiple transmissions and receptions of floor request messages,
several timer expirations (timers T201 and T205) are observed.

Scenario Purpose: To observe that a floor request is properly handled by the floor arbitrator.
That is the floor request is queued and later the floor is granted.

Table 5: Floor request – queued

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
0

 - - O: has no
permission

O: has
permission

O: has no
permission - -

1

T0
UE A

pushes PTT
button

O:
pending
request

- -

UE A sends Floor
Request, starts

T201 and initializes
C201

7.2.3.4.2

2
T0 +
T201

UE A T201
expires - - -

UE A resends
Floor Request,
starts T201 and

increments C201

7.2.3.6.9

3
T0 +

2*T201
UE A T201

expires - - -

UE A resends
Floor Request,
starts T201 and

increments C201

7.2.3.6.9

4 T0 +
t_B1
(with

t_B1 >
2*T201)

UE B
sends RTP

packets
- - - UE B starts T206 7.2.3.5.2

5
T0 +

t_B1 +
t_BA1

UE A and
UE C

receive
RTP

packets

- - -

UE A restarts
T203, and resets

C201;
UE C restarts T203

7.2.3.6.2
7.2.3.4.6

6

T0 +
3*T201

UE A T201
expires - - -

UE A sends Floor
Request, and starts

T201 and
increments C201

7.2.3.6.9

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
7

T0 +
4*T201

UE A T201
expires - - -

UE A sends Floor
Request, starts

T201 and
increments C201

7.2.3.6.9

8 T0 +
4*T201
+ t_AB1

UE B
receives

Floor
Request

- - -

UE B stores the
request, and sends

Floor Queue
Position Info

7.2.3.5.4

9

T0 +
4*T201
+ t_AB1
+ t_BA2

UE A and
UE C

receive
Floor
Queue

Position
Info

O: queued - -
UE A updates the
queue status and

stops T201
7.2.3.6.3

10 T0 +
t_B2

(with +
4*T201
+ t_AB1
+ t_BA2)

UE B
sends RTP

packets
- - - UE B starts T206 7.2.3.5.2

11
T0 +

t_B2 +
t_BA3

UE A and
UE C

receive
RTP

packets

- - -
UE A restarts

T203;
UE C restarts T203

7.2.3.8.2
7.2.3.4.6

12

T0 +
t_B3
(with

t_B3 >
t_B2 +
t_BA3)

UE B
releases

PTT button
-

O:
pending
granted

-

UE B stops sending
RTP packets, sends

Floor Granted,
stops T206 and

T207 (if running),
sets SSRC of

current arbitrator to
SSRC of user (UE

A) to whom the
floor was granted,

starts T205 and
initializes C205
(the upper limit

value of C205 is 3)

7.2.3.5.6

13

T0 +
t_B3 +
t_BA4

UE A and
UE C

receive
Floor

Granted

- - -

UE A starts T233,
and shall notify the

MCPTT user of
Floor Grant;

UE C restarts T203
and sets the stored

SSRC of the
current arbitrator to
the SSRC of UE A

7.2.3.8.6
7.2.3.4.5

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
14 T0 +

t_B3 +
T205

UE B T205
expires - - -

UE B sends Floor
Granted, restarts

T205 and
increments C205

7.2.3.7.3

15

T0 +
t_B3 +
T205 +
t_BA5

UE A and
UE C

receive
Floor

Granted for
the 2nd

time

- - -

UE A shall notify
the MCPTT user of

Floor Grant;
UE C restarts T203

7.2.3.8.6
7.2.3.4.5

16
T0 +

t_B3 +
2*T205

UE B T205
expires (for
the second

time)

- - -

UE B sends Floor
Granted, restarts

T205 and
increments C205

7.2.3.7.3

17
T0 +

t_B3 +
2*T205
+ t_BA6

UE A and
UE C

receive
Floor

Granted

- - -

UE A shall notify
the MCPTT user of

Floor Grant;
UE C restarts T203

7.2.3.8.6
7.2.3.4.5

18
T0 +

t_B3 +
3*T205

UE B T205
expires (the
upper limit

value of
C205 is 3)

- - - UE B starts T233,
resets C205 7.2.3.7.4

19 T0 +
t_A1
(with

t_A1 >
t_B3 +
2*T205

+ t_BA6)

UE A
pushes PTT

button

O: has
permission - - UE A stops T233 7.2.3.8.8

20
T0 +
t_A2
(with

t_A2 >
t_A1)

UE A
sends RTP

packets
- - - UE A starts T206 7.2.3.5.2

21
T0 +

t_A2 +
t_AB2

UE B and
UE C

receive
RTP

packets

- O: has no
permission -

UE B starts T203,
and stops T233 and

T205;
UE C restarts T203

7.2.3.7.2
7.2.3.4.6

And the corresponding figure is Fig. 4:

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client B

Floor arbitrator

MCPTT client A

Floor participant

O: has permissionO: has no permission

• B stores the request

• A resets C201
• A starts T203

• A stops T201

• A starts T203

• B starts T206

• A starts T233

• B releases PTT button
• B stops T206 and T207
• B starts T205 and initializes C205

• B timer T205 expires
• B starts T205 and increments

C205

• A pushes PTT button
• A stops T233

• B starts T203
• B stops T205 and T233

O: pending request

MCPTT client C

Floor participant

Floor request - queued

O: has no permission

O: pending granted

• C starts T203

• C starts T203

• C starts T203

O: has no permission

• C starts T203

• A pushes PTT button
• A starts T201 and initializes C201

• A timer T201 expires
• A starts T201 and increments C201

• A timer T201 expires
• A starts T201 and increments C201

• B starts T206

• A timer T201 expires
• A starts T201 and

increments C201

• A timer T201 expires
• A starts T201 and

increments C201

• B timer T205 expires
• B starts T205 and increments

C205

• B timer T205 expires (for third
time)

• B starts T233 and resets C205

• A starts T206

• C restarts T203

• C restarts T203

O: queued

O: has permission

Figure 4: Floor request – queued

2.1.1.4.Floor request – denied

This scenario describes yet another possible outcome of requesting the floor, with participants
beginning in the ‘O: has permission’ and the ‘O: has no permission’ state. Queuing is not
supported here or the queue is already full or that the Floor Request message does not contain
information that queuing is supported, so the floor participant asking for the floor is denied
permission to take the floor and because the floor request is not pre-emptive.

Scenario Purpose: To observe that the floor request from UE A is denied by the floor arbitrator
and UE A makes no further floor requests.

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 6: Floor request – denied

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0
 - - O: has no

permission
O: has

permission
O: has no

permission - -

1

T0
UE A

pushes PTT
button

O: pending
request - -

UE A sends
Floor Request,

starts T201
and initializes

C201

7.2.3.4.2

2

T0 +
t_AB1

UE B and
UE C

receive
Floor

Request

- - -

UE B analyzes
Floor Request,
generates and
sends Floor

Deny;
UE C discards

the floor
control

message

7.2.3.5.4
7.2.3.1

3

T0 +
t_AB1 +
t_BA1

UE A and
UE C

receive
Floor Deny

O: has no
permission - -

UE A provides
Floor Deny

notification to
the user, stops

T201, and
starts T203;

UE C discards
the floor
control

message

7.2.3.6.4
7.2.3.1

And the corresponding figure is Fig. 5:

MCPTT client A

Floor participant

MCPTT client B

Floor arbitrator

O: has permission

O: pending request

O: has no permission

O: has no permission

• B analyzes Floor Request

• A stops T201
• A starts T203

MCPTT client C

Floor participant

Floor request - denied

O: has no permission

• A pushes PTT button
• A starts T201 and initializes C201

Figure 5: Floor request – denied

2.1.1.5.Floor request – pre-emptive

This scenario describes the process of requesting the floor, when the user requesting the floor
has a higher floor priority than the current speaker.

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Scenario Purpose: To observe that the current floor arbitrator relinquishes the floor when
another user requests the floor with a higher floor priority (pre-emptive).

Table 7: Floor request – pre-emptive

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
0

 O: has no
permission

O: has
permission

O: has no
permission

1

T0
UE B

sends RTP
packet

- - - UE B starts
T206 7.2.3.5.2

2

T0 +
t_BA1

UE A and
UE C

receive
RTP

packets

- - - UE A and UE C
start T203 7.2.3.4.6

3
T0 +
t_B1

UE B
sends RTP

packet
- - - UE B starts

T206 7.2.3.5.2

4 T0 +
t_B1 +
t_BA2

UE A and
UE C

receive
RTP packet

- - - UE A and UE C
start T203 7.2.3.4.6

5

T0 +
t_A1
(with

t_A1 >
t_B1 +
t_BA2)

UE A
receives

indication
from

MCPTT
user that
the user
wants to

send media

O: pending
request - -

UE A sends
Floor Request,
starts T201 and
initializes C201

7.2.3.4.2

6

T0 +
t_A1 +
t_AB1

UE B and
UE C

receive
Floor

Request

-
O:

pending
granted

-

UE B
determines
UE A's pre-

emption priority
is higher than its

own priority,
stops sending
RTP packets,

stops T206 and
T207(if

running), sends
Floor Granted,
starts T205 and
initializes C205;
UE C discards

the floor control
message

7.2.3.5.7
7.2.3.1

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
7

T0 +
t_A1 +

t_AB1 +
t_BA3

UE A and
UE C

receive
Floor

Granted

O: has
permission - -

UE A stops
rendering RTP
packets, stops

T201 and T203,
and may provide

floor granted
notification to
MCPTT user;
UE C stops

rendering RTP
packets, restarts
T203, sets the

stored SSRC of
candidate

arbitrator to the
SSRC of UE A,
and may provide

floor taken
notification

7.2.3.6.7
7.2.3.4.5

8
T0 +

t_A1 +
t_AB1 +

T205

UE B T205
expires - - -

UE B resends
Floor Granted,
restarts T205

and increments
C205

7.2.3.7.3

9

T0 +
t_A1 +

t_AB1 +
T205 +
t_BA4

UE A and
UE C

receive
Floor

Granted

- - -

UE A discards
the floor control

message;
UE C checks if
SSRC of Floor
Participant (UE
B) sending the
Floor Granted
matches SSRC

of current
arbitrator (UE

A)

7.2.3.1
7.2.3.4.5

10 T0 +
t_A2
(with

t_A2 >
t_A1 +

t_AB1 +
T205 +
t_BA4)

UE A
sends RTP

packets
- - - UE A starts

T206 7.2.3.5.2

11

T0 +
t_A2 +
t_AB2

UE B and
UE C

receive
RTP

Packets

- O: has no
permission -

UE B stops
T205 and T233,
and starts T203;

UE C starts
T203

7.2.3.7.2
7.2.3.4.6

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

And the corresponding figure is Fig. 6:

MCPTT client A

Floor participant

O: has permission

O: has no permission

O: pending request

• A starts T203

• A starts T203

• B starts T205 and initializes C205

• A stops T201 and T203

• B starts T203
• B stops T205 and T233

MCPTT client B

Floor participant

O: has no permission

• B stops T206 and T207

• B timer T205 expires
• B starts T205 and increments C205

• C starts T203

• C starts T203

• C starts T203
• C stores SSRC of A

MCPTT client B

Floor participant

O: has permission

O: pending granted

O: has no permission
• C starts T203

• B starts T206

• A starts T201 and initializes C201

• A starts T206

Floor request – pre-emptive

• B starts T206

Figure 6: Floor request – pre-emptive

2.1.2. Floor release

2.1.2.1.Floor release by the floor arbitrator

In this scenario, one user has the permission to talk (floor arbitrator), while the other one does
not. The floor arbitrator (UE A) stops talking and releases the floor and there is no other user
waiting in the queue. It is assumed in this scenario that the floor participant (UE B) receives
Floor Release message before the expiry of its own T203 timer.

Scenario Purpose: To observe that when the current arbitrator stops transmitting with an
empty queue, that it sends a Floor Release message and that the participants go back to the “O:
silence” state.

Table 8: Floor release by the floor arbitrator

 Timeline Triggering
event

UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

 - - O: has
permission

O: has no
permission - -

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition Consequent behavior Reference

for details
1

T0
UE A

sends RTP
packet

- - UE A starts T206 7.2.3.5.2

2

T0 + t_AB1

UE B
receives

RTP
packet

- - UE B restarts T203 7.2.3.4.6

3

T0 + t_A1
(with t_A1 > t_AB1)

UE A
receives
MCPTT

indication
to stop
sending

RTP
packets

O: silence -

UE A sends Floor
Release, starts T230,

stops T206 and T207 (if
running), and clears

SSRC of current
arbitrator

7.2.3.5.5

4

T0 + t_A1 + t_AB2
(with (t_A1+t_AB2)
< (t_AB1+T203))

UE B
receives

Floor
Release

- O: silence

UE B stops rendering
RTP packets, stops T203

and starts T230, may
send floor idle

notification to MCPTT
user, and clears SSRC of

current arbitrator

7.2.3.4.3

2.1.2.2.Floor release by a queued floor participant

In this scenario, one user has permission to talk, and another is queued. The queued user
removes his request at the beginning of the test scenario.

Scenario Purpose: To observe that a queued user can cancel its floor request during a call.

Table 9: Floor release by a queued floor participant

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference for
details

0
 - - O: queued O: has

permission
O: has no

permission - -

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference for
details

1

T0

UE A
receives
MCPTT

indication
to release

the pending
request

O: has no
permission - -

UE A sends
Floor Release,
stops T233 (if

running)

7.2.3.8.5

2

T0 +
t_AB1

UE B and
UE C

receive
Floor

Release

- - -

UE B removes
UE A from the

queue;
UE C discards

the floor
control

message

7.2.3.5.3
7.2.3.1

2.1.2.3.Floor release by the floor arbitrator with queued participants

In this scenario, one user has the permission to talk (floor arbitrator), while the other ones are
waiting in the queue. The first floor arbitrator stops talking, releases the floor, and grants the
floor to the first floor participant in the queue. The new floor arbitrator takes the floor and
talks, then stops talking for quite a while without releasing floor explicitly. After a timer (T203)
expires, other floor participants assume there is no floor arbitrator.

Scenario Purpose: To observe that a floor arbitrator can release the medium and that the floor
is correctly given to the next queued user, who becomes the new floor arbitrator. When the
new floor arbitrator stops talking but does not release the floor explicitly, observe that the other
floor participants assume that there is no longer a floor arbitrator (i.e., T203 expires).

Table 10: Floor release by the floor participant with queued participants

Timeline Triggering

event
UE A state
transition

UE B State
transition

UE C State
transition

Consequent
behavior

Reference
for details

0 - - O: queued O: has
permission O: queued - -

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B State
transition

UE C State
transition

Consequent
behavior

Reference
for details

1

T0
UE B

releases
PTT button

-
O:

pending
granted

-

UE B stops
sending RTP

packets, sends
Floor Granted

(for UE A),
stops T206 and

T207 (if
running), sets

SSRC of current
arbitrator to

SSRC of user to
whom the floor

was granted (UE
A), starts T205
and initializes

C205

7.2.3.5.6

2

T0 +
t_BA1

UE A and
UE C

receive
Floor

Granted

- - -

UE A stops
rendering RTP
packets, starts
T233 (if not

running), shall
notify the

MCPTT user of
Floor Grant;
UE C stops

rendering RTP
packets, restarts
T203 and stores

SSRC of
candidate

arbitrator to
SSRC of UE A

7.2.3.8.6
7.2.3.8.9

3 T0 +
t_A1
(with

t_A1 >
t_BA1)

UE A
pushes PTT

button

O: has
permission - - UE A stops

T233 7.2.3.8.8

4 T0 +
t_A2
(with

t_A2 >
t_A1)

UE A
sends RTP

packets
- - - UE A starts

T206 7.2.3.5.2

5
T0 +

t_A2 +
t_AB1

UE B and
UE C

receive
RTP

packets

- O: has no
permission -

UE B stops
T205 and starts

T203;
UE C restarts

T203

7.2.3.7.2
7.2.3.8.2

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B State
transition

UE C State
transition

Consequent
behavior

Reference
for details

6

T0 +
t_A2 +

t_AB1 +
T203

UE C timer
T203

expires
- - O: pending

request

UE C stops
rendering RTP
packets, clears
SSRC of floor

arbitrator, sends
Floor Request,
starts T201 and
initializes C201

7.2.3.8.10

7

T0 +
t_A2 +

t_AB1 +
T203

UE B timer
T203

expires
- O: silence -

UE B stops
rendering RTP
packets, clears
stored SSRC of

current
arbitrator, starts

T230

7.2.3.4.4

Note: Due to the independence (not synchronized) of the timers T203 in the UEs, the
ordering of step 6 and step 7 may be reversed. We intentionally terminate the scenario at this
point and do not follow through with the reception of UE C’s Floor Request message by UE
A or UE B.

2.1.2.4.Floor release by pre-empted floor arbitrator

In this scenario, two users request the floor. Queuing is not supported. The floor is pre-
emptively granted to one of them, who shortly afterwards releases it (before sending any
RTP media).

Scenario Purpose: To observe that a user can pre-emptively request the floor and have it
granted to him, that a new user tries to request it as well, and then finally that the floor
arbitrator eventually releases the floor (before sending RTP media).

Table 11: Floor release by pre-empted floor arbitrator

Timeline Triggering

Event
UE A state
transition

UE B State
transition

UE C State
transition

Consequent
behavior

Reference
for details

0
- - O: has

permission
O: has no

permission
O: has no

permission - -

1

T0
UE B

pushes PTT
button

-
O:

pending
request

-

UE B sends
Floor Request,
starts T201 and
initializes C201

7.2.3.4.2

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

Event
UE A state
transition

UE B State
transition

UE C State
transition

Consequent
behavior

Reference
for details

2

T0 +
t_BA1

UE A and
UE C

receive
Floor

Request

O:
pending
granted

- -

UE A stops
sending RTP

packets, sends
Floor Granted,
stops T206 and

T207, starts
T205 and

initializes C205;
UE C discards

the floor control
message

7.2.3.5.7
7.2.3.1

3

T0 +
t_BA1 +
t_AB1

UE B and
UE C

receive
Floor

Granted

- O: has
permission -

UE B stops
rendering RTP

packets, and
stops T201 and

T203;
UE C stops

rendering RTP
packets, sets

stored SSRC of
candidate floor

arbitrator to
SSRC of UE B,
and starts T203

7.2.3.6.7
7.2.3.4.5

4 T0 +
t_C1
(with

t_C1 >
t_BA1 +
t_AB1)

UE C
pushes PTT

button
- - O: pending

request

UE C sends
Floor Request,
starts T201 and
initializes C201

7.2.3.4.2

5
T0 +

t_C1 +
t_CA1

UE A and
UE B

receive
Floor

Request

- - -

UE A sends
Floor Deny;
UE B sends
Floor Deny

7.2.3.7.10
7.2.3.5.4

6
T0 +

t_C1 +
t_CA1 +
t_AB2

UE B and
UE C

receive
Floor Deny
(from UE

A)

- - O: has no
permission

UE B discards
the floor control

message;
UE C stops

T201, and starts
T203

7.2.3.1
7.2.3.6.4

7 T0 +
t_C1 +

t_CA1 +
t_BA2
(with

t_BA2 >
t_AB2)

UE A and
UE C

receive
Floor Deny
(from UE

B)

- - -

UE A and UE C
discard the floor
control message

7.2.3.1

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

Event
UE A state
transition

UE B State
transition

UE C State
transition

Consequent
behavior

Reference
for details

8 T0 +
t_B1
(with

t_B1 >
max

(t_C1 +
t_CA1 +
t_AB2 ;
t_C1 +

t_CA1 +
t_BA2))

UE B
releases

PTT button
- O: silence -

UE B clears
stored SSRC of

current
arbitrator, sends
Floor Release,
stops T206 and
T207, and starts

T230

7.2.3.5.5

9

T0 +
t_B1 +
t_BA3

UE A and
UE C

receive
Floor

Release

- - O: silence

Since queuing is
not supported,
UE A remains
in its current

state;
UE C clears

SSRC of current
floor arbitrator
and candidate

arbitrator, stops
T203, and starts

T230

7.2.3.7.9
7.2.3.4.3

10
T0 +

t_BA1 +
T205

UE A T205
expires - - -

UE A sends
Floor Granted,
starts T205 and

increments
C205

7.2.3.7.3

11

T0 +
t_BA1 +
T205 +
t_AB3

UE B and
UE C

receive
Floor

Granted

- - O: has no
permission

UE B discards
the floor control

message;
UE C sets
SSRC of

candidate floor
arbitrator to

SSRC of UE B,
stops T230, and

starts T203

7.2.3.1
7.2.3.3.4

12

T0 +
t_BA1 +
n*T205

UE A T205
expires

(C205 at its
upper limit)

O: silence - -

UE A clears
SSRC of current
floor arbitrator,
starts T230, and

resets C205

7.2.3.7.5

13 T0 +
t_BA1 +
T205 +

t_AB3 +
T203

UE C T203
expires - - O: silence

UE C stops
rendering RTP
packets, clears

SSRC of current
floor arbitrator,
and starts T230

7.2.3.4.4

And the corresponding figure is Fig. 7:

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Floor participant

MCPTT client B

Floor participant

O: has permission

• A stops sending RTP packets
• A stops T206 and T207
• A starts T205 and intializes C205

MCPTT client C

Floor participant

Floor release by pre-empted floor arbitrator

• B pushes PTT button
• B starts T201 and initializes C201

• C starts T203

O: has no permission O: has no permission

• A timer T205 expires
• A starts T205 and increments C205

O: pending request

O: has permission

• B stops T201 and T203

O: pending granted

• C pushes PTT button
• C starts T201 and initializes C201O: pending request

O: silence

O: has no permission

O: silence

O: silence

O: has no permission

• C stops T201
• C starts T203

• B releases PTT button
• B stops T206 and T207
• B starts T230

• C stops T203
• C starts T230

• A timer T205 expires for the Nth time
• A starts T230
• A resets C205

• C stops T230
• C starts T203

• C timer T203 expires
• C starts T230

O: silence
Figure 7: Floor release by pre-empted floor arbitrator

2.1.3. Session initialization

2.1.3.1.Session initialization – normal

This scenario focuses on the initialization of the MCPTT session. It covers the creation of the
floor control entity and the sending of the first data packet after the call starts.

Scenario Purpose: To observe that the originating MCPTT call participant becomes arbitrator
(Floor Grant) and starts transmitting (RTP packets).

29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 12: Session initialization – normal

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
0 Start-stop Start-stop Start-stop - -
1

T0

UE A, UE
B and UE
C receive
from call
control
entity a

request to
initiate
Floor

Control

O: has
permission O: silence O: silence

UE A creates an
instance of Floor

Control
Participant, and

sends Floor
Granted;

UE B and UE C
create an

instance of Floor
Control

Participant, and
start T230

7.2.3.2.2
7.2.3.2.3

2

T0 +
t_AB1

UE B and
UE C

receives
Floor

Granted

- O: has no
permission

O: has no
permission

UE B and UE C
start T203, stop
T230, and set

SSRC of current
arbitrator to the
SSRC of user
(UE A) whom
the floor was

granted to

7.2.3.3.4

3 T0 +
t_A1
(with

t_A1 >
t_AB1)

UE A
sends RTP

packets
- - - UE A starts

T206 7.2.3.5.2

4

T0 +
t_A1 +
t_AB2

UE B and
UE C

receive
RTP

packets

- - -

UE B and UE C
restart T203 and

set SSRC of
current arbitrator
to SSRC of RTP

packet

7.2.3.4.6

And the corresponding figure is Fig. 8:

30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Floor participant

MCPTT client B

Floor participant

Start-stop Start-stop

O: has permission

• A starts T206

MCPTT client C

Floor participant

Start-stop

• B starts T230 • C starts T230

Session initialization - normal

O: silence O: silence

O: has no permission O: has no permission

• B starts T203
• B stops T230

• C starts T203
• C stops T230

• B starts T203 • C starts T203

Figure 8: Session initialization – normal

2.1.3.2.Session initialization – message lost

Similar to the scenario in Section 2.1.3.1, this scenario focuses on the initialization of the
MCPTT session. It covers the creation of the floor control entity and the sending of the first
data packet after the call starts. However, the floor granted message sent by UE A at time T0
is lost and does not reach UE B or UE C. UE B and UE C receive the RTP packet first instead.

Scenario Purpose: To observe that a UE can start receiving and rendering RTP packets from
arbitrator.

Table 13: Session initialization – message lost

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0 - - Start-stop Start-stop Start-stop - -

31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

UE A, UE
B and UE C
receive from
call control

entity
request to

initiate
Floor

Control

O: has
permission O: silence O: silence

UE A creates an
instance of Floor

Control
Participant, and

sends Floor
Granted;

UE B and UE C
create an

instance of Floor
Control

Participant, and
start T230

7.2.3.2.2
7.2.3.2.3

2 T0 +
t_A1

UE A sends
RTP packet - - - UE A starts

T206 7.2.3.5.2

3

T0 +
t_A1 +
t_AB1

UE B and
UE C

receive RTP
packet

- O: has no
permission

O: has no
permission

UE B and UE C
stop T230, start
T203, and set

SSRC of current
arbitrator to

SSRC (UE A) of
RTP packet

7.2.3.3.3

And the corresponding figure is Fig. 9:

MCPTT client A

Floor participant

MCPTT client B

Floor participant

Start-stop Start-stop

O: has permission

• A starts T206

MCPTT client C

Floor participant

Start-stop

• B starts T230 • C starts T230

Session initialization – message lost

O: silence O: silence

O: has no permission O: has no permission

• B starts T203
• B stops T230

• C starts T203
• C stops T230

Figure 9: Session initialization – message lost

32

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

2.1.3.3.Session initialization – private call

This scenario focuses on the initialization of the MCPTT session for a private call. It covers
the creation of the floor control entity and the sending of the first data packet after the call
starts, as well as the floor arbitrator giving back the floor to the second user once it is done
talking.

Scenario purpose: To observe that the originating MCPTT call participant becomes arbitrator
(Floor Grant) of the private call and starts transmitting (RTP packets), then once done talking,
hands over the floor to the other user.

Table 14: Session initialization – private call

 Timeline Triggering
event

UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0 Start-stop Start-stop - -
1

T0

UE A and UE
B receive from

call control
entity a request

to initiate
Floor Control

O: has
permission

O: has no
permission

UE A creates an
instance of Floor

Control Participant,
and sends Floor

Granted;
UE B creates an
instance of Floor

Control Participant,
and starts T203

7.2.3.2.2
7.2.3.2.4

2

T0 + t_AB1 UE B receives
Floor Granted - -

UE B stops rendering
RTP packets, sets

SSRC of candidate
arbitrator to SSRC of

UE A, and restarts
T203

7.2.3.4.5

3
T0 + t_A1
(with t_A1
> + t_AB1)

UE A sends
RTP media

packets
- - UE A starts T206 7.2.3.5.2

4

T0 + t_A1
+ t_AB2

UE B receives
RTP packets - -

UE B renders receives
RTP packets, sets
stored SSRC of

current arbitrator to
SSRC of UE A, clears

stores SSRC of
candidate arbitrator,

and restarts T203

7.2.3.4.6

5
T0 + t_A2
(with t_A2
> + t_A1 +

t_AB2)

UE A releases
PTT button O: silence -

UE A sends Floor
Release, stops T206

and T207, clears
SSRC of current floor
arbitrator, and starts

T230

7.2.3.5.5

33

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition Consequent behavior Reference

for details
6

T0 + t_A2
+ t_AB3

UE B receives
Floor Release - O: silence

UE B stops rendering
RTP packets, clears

SSRC of current floor
arbitrator, stops T203

and starts T230

7.2.3.4.3

7
T0 + t_B1
(with t_B1
> + t_A2 +

t_AB3)

UE B presses
PTT button - O: pending

request

UE B sends Floor
Request, starts T201
and initializes C201,

and stops T230

7.2.3.3.2

8

T0 + t_B1
+ t_BA1

UE A receives
Floor Request

O: pending
granted -

UE A sends Floor
Granted, stops T230

and starts T205
7.2.3.3.5

9

T0 + t_B1
+ t_BA1 +

t_AB4

UE B receives
Floor Granted - O: has

permission

UE B stops rendering
RTP packets, sets

SSRC of current floor
arbitrator to own

SSRC, and stops T201
and T203

7.2.3.6.7

And the corresponding figure is Fig. 10:

34

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Floor participant

MCPTT client B

Floor participant

• A initiates Floor Control

Session Initialization – Private Call

• B initiates Floor Control
• B starts T203

O: Start-stop

O: has permission O: has no permission

O: Start-stop

• B restarts T203

• A sends RTP packets
• A starts T206

• B restarts T203• A releases PTT button
• A stops T206 and T207
• A starts T230

O: silence

• B stops T203
• B starts T230O: silence

• B presses PTT button
• B starts T201 and initializes C201
• B stops T230

O: pending request

• A stops T230
• A starts T205 O: pending granted

• B stops T201 and T203O: has permission
Figure 10: Session initialization – private call

2.1.3.4.Session initialization – broadcast call

This scenario focuses on the initialization of the MCPTT session for a broadcast call.

Scenario purpose: To observe that the originating MCPTT call participant becomes
arbitrator (Floor Grant) of the broadcast call.

35

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 15: Session initialization – broadcast call

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
0 Start-stop Start-stop Start-stop - -
1

T0

UE A, UE
B and UE
C receive
from call
control
entity a

request to
initiate
Floor

Control

O: has
permission

O: has no
permission

O: has no
permission

UE A
creates an
instance of

Floor
Control

Participant,
and sends

Floor
Granted;

UE B and
UE C create
an instance

of Floor
Control

Participant,
and start

T203

7.2.3.2.2
7.2.3.2.9

2

T0 + t_AB1

UE B and
UE C

receive
Floor

Granted

- -

 UE B and
UE C set
SSRC of
candidate

arbitrator to
SSRC of

UE A, and
restart T203

7.2.3.4.5

2.1.4. Session release

This scenario focuses on the release of the MCPTT session, including the deletion of the floor
control entity.

Scenario Purpose: To observe that the floor control state machine is terminated when the call
is terminated.

Table 16: Session release

Timeline Triggering

event

UE A
state

transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
0

- - Any state Any state Any state - -

36

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event

UE A
state

transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
1

T0

UE A, UE
B, and UE
C receive

an MCPTT
call release

request

Start-stop Start-stop Start-stop

UE A, UE B, and
UE C stop sending

Floor Control
messages towards

other Floor
participants,
request the

MCPTT client to
stop sending and
receiving RTP
media packets,
release every

resource and stop
every running

timer, and
terminate the

instance of Floor
Participant state

diagram

7.2.3.9.2

2.2. Basic group call – call control

The call control protocol is the protocol used to control the session needed to support MCPTT.
It addresses issues such as how to initiate a call, how to terminate a call, and how to respond
when receiving a call. An MCPTT off-network mode call may be a basic group call, a private
call, or broadcast group call. Test scenarios presented in Section 2.2 and Section 2.3 are
designed for basic group calls.

The state transitions that are analyzed in each test scenario of Section 2.2 are based on Figure
10.2.2.2-1 of [4]. Call Control test scenarios can be categorized into 4 groups: call setup, call
merge, call release, and call reject.

2.2.1. Call setup

2.2.1.1.Call setup – join a call

In this scenario, a user decides to join an ongoing basic group call. It receives an answer to its
group call probe and joins the call as a terminating participant.

Scenario purpose: To observe that a user joins an ongoing group call.

Table 17: Call setup – join a call

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0
- - S1: start-

stop

S3: part of
ongoing

call

S3: part of
ongoing

call
- -

37

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

Indication
from UE A

to join a
group call

S2:
waiting for

call
announce

ment

- -

UE A stores
MCPTT group ID
as MCPTT group

ID of the call,
creates a Call

Type Control state
machine,

generates and
sends a GROUP
CALL PROBE
message, and

starts TFG1 and
TFG3

10.2.2.4.2.1

2

T0 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -

UE B and UE C
check if MCPTT

group ID IE
matches stored

MCPTT Group ID
of the call, stop

TFG2, start
TFG2, and set
stored probe

response of the
call to "true"

10.2.2.4.2.3

3 T0 +
t_AB1 +

TFG2
(with

TFG2 in
UE B <
TFG2 in
UE C)

UE B
TFG2
expires

- - -

UE B generates
and sends

GROUP CALL
ANNOUNCEME

NT, sets stored
probe response

value of the call to
"false", and starts

TFG2

10.2.2.4.4.1

38

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

4

T0 +
t_AB1 +
TFG2 +
t_BA1

UE A and
UE C

receive
GROUP
CALL

ANNOUN
CEMENT

S3: part of
ongoing

call
- -

UE A checks if
MCPTT Group ID
IE matches stored
MCPTT Group ID
of the call, stops
TFG1 and TFG3,
stores the values

of Session
Description

Protocol (SDP)
IE, Call Identifier

IE, originating
MCPTT user ID

IE, Refresh
interval IE, Call
start time IE of

the GROUP
CALL

ANNOUNCEME
NT as

corresponding
values, establishes

media session,
starts Floor
Control as

terminating Floor
Participant, and
starts TFG2 and

TFG6;
UE C stops
TFG2, starts

TFG2, and sets
the stored probe
response of the
call to “false”.

10.2.2.4.3.2
10.2.2.4.4.2

And the corresponding figure is Fig. 11:

39

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Floor participant

MCPTT client B

Floor participant

S1: start-stop

• A initiates a Group Call
• A starts TFG1 and TFG3

MCPTT client C

Floor participant

Call setup – join a call

• B stops TFG2
• B starts TFG2

• C stops TFG2
• C starts TFG2

• B timer TFG2 expires
• B starts TFG2

S3: part of ongoing call

S2: waiting for call announcement

• A stops TFG1 and TFG3
• A establishes media session
• A starts TFG2 and TFG6

S3: part of ongoing call

S3: part of ongoing call • C stops TFG2
• C starts TFG2

Figure 11: Call setup – join a call

2.2.1.2.Call setup – establish a new call with confirm mode indication IE in the Call

Announcement message

In this scenario, a user decides to establish a new group call, and initiates the call as the
originating participant. The confirm mode indication IE is included in the Call Announcement
message.

Scenario purpose: To observe that a user can establish a new group call with confirm mode
indication IE in the Call Announcement message and be joined by other members of the same
group.

In this scenario, UE B is configured as “MCPTT User acknowledgement is required upon a
terminating call request reception”. while UE C is configured as “MCPTT User
acknowledgement not required upon a terminating call request reception”.

Table 18: Call setup – establish a new call with confirm mode indication IE in the Call
Announcement message

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0
- - S1: start-

stop
S1: start-

stop
S1: start-

stop - -

40

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

Indication
from UE A
to initiate a
group call

S2:
waiting for

call
announce

ment

- -

UE A stores
MCPTT group ID
as MCPTT group

ID of the call,
creates a Call type

Control state
machine,

generates and
sends a GROUP
CALL PROBE
message, and

starts TFG1 and
TFG3

10.2.2.4.2.1

2

T0 +
TFG3

UE A
TFG3
expires

- - -

UE A generates
and sends GROUP

CALL PROBE,
and starts TFG3

10.2.2.4.2.2

3

T0 +
TFG3 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -
UE B and UE C

discard the
message

10.2.2.4.7.1

4
T0 +

n*TFG3

UE A
TFG3
expires

- - -

UE A generates
and sends GROUP

CALL PROBE,
and starts TFG3

10.2.2.4.2.2

5

T0 +
nTFG3 +

t_ABn

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -
UE B and UE C

discard the
message

10.2.2.4.7.1

41

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

6

T0 +
TFG1

UE A
TFG1
expires

S3: part of
ongoing

call
- -

UE A stops TFG3,
generates and

stores SDP body,
generates and
stores the call

identifier, selects
and stores refresh
interval, stores its
own MCPTT ID

as originating
MCPTT user ID,

stores current
UTC time as call

start time,
generates and
sends GROUP

CALL
ANNOUNCEME
NT with confirm
mode indication
IE, establishes
media session,

starts Floor
Control as

originating floor
participant, and
starts TFG2 and

TFG6

10.2.2.4.3.1

42

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

7

T0 +
TFG1 +
t_AB(n+

1)

UE B and
UE C

receive
GROUP
CALL

ANNOUN
CEMENT
(contains
Confirm

mode
Indication

IE)

-

S5:
pending

user action
with

confirm
indication
(UE B is

configured
as

“MCPTT
User

acknowled
gement is
required
upon a

terminating
call request
reception”)

S3: part of
ongoing

call
(UE C is

configured
as

“MCPTT
User

acknowled
gement not
required
upon a

terminating
call request
reception”)

UE B and UE C
check if MCPTT
group ID IE from
GROUP CALL

ANNOUNCEME
NT does not match
MCPTT group ID
of the call stored

for other state
machines, store

value of SDP IE,
Call Identifier IE,

Originating
MCPTT user ID

IE, Refresh
Interval IE,

MCPTT Group ID
IE, Call start time
IE of the GROUP

CALL
ANNOUNCEME

NT as
corresponding

values, create Call
Type Control state

machine;
UE B starts TFG4;
UE C establishes
media session
based on stored
SDP body of the
call, starts Floor
Control as
terminating floor
participant,
generates and
sends GROUP
CALL ACCEPT
message, and
starts TFG2 and
TFG6

10.2.2.4.3.3

43

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

8

T0 +
TFG1 +
t_AB(n+

1) +
t_CA1

UE A and
UE B

receive
GROUP
CALL

ACCEPT
from UE C

- - -

UE A checks if
MCPTT group ID

IE of GROUP
CALL ACCEPT
message matches
stored MCPTT
group ID of the

call, and informs
MCPTT user

about call
acceptance;

UE B discards the
group call control

message

10.2.2.4.3.6
10.2.2.4.7.1

9

T0 +
t_B1
(with

(TFG1 +
t_AB(n+

1) +
t_CA1) <

t_B1)

UE B
accepts the
terminating

call with
confirm

indication

-
S3: part of

ongoing
call

-

UE B establishes
media session

based on stored
SDP body of the
call, starts Floor

Control as
terminating floor

participant,
generates and
sends GROUP

CALL ACCEPT
message, and

starts TFG2 and
TFG6

10.2.2.4.3.4

10

T0 +
t_B1 +
t_BA1

UE A and
UE C

receive
GROUP
CALL

ACCEPT
from UE B

- - -

UE A and UE C
check if MCPTT
group ID IE of
GROUP CALL

ACCEPT message
matches stored

MCPTT group ID
of the call, and
inform MCPTT
user about call

acceptance

10.2.2.4.3.6

And the corresponding figure is Fig. 12:

44

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Call participant

S1: start-stop

• A initiates a Group Call
• A starts TFG1 and TFG3

Call setup – establish a new call with confirm mode

• C establishes media session
• C starts TFG2 and TFG6

S2: waiting for call announcement

• A timer TFG1 expires
• A stops TFG3
• A establishes media session
• A starts TFG2 and TFG6

S1: start-stop S1: start-stop

S3: part of ongoing call

S5: pending user action
with confirm indication

S3: part of ongoing call

MCPTT client B

Call participant

MCPTT client C

Call participant

• A informs User about call
acceptance

• C informs User about call
acceptance

• A timer TFG3 expires
• A starts TFG3

• A timer TFG3 expires
• A starts TFG3

• B starts TFG4

• B establishes media session
• B starts TFG2 and TFG6

• A informs User about call
acceptance

S3: part of ongoing call

Figure 12: Call setup – establish a new call with confirm mode

2.2.1.3.Call setup – establish a new call without confirm mode indication IE in the Call
Announcement message

In this scenario, a user decides to establish a new group call, and initiates the call as the
originating participant. The confirm mode indication IE is not included in the Call
Announcement message.

Scenario purpose: To observe that a user can establish a new group call without confirm mode
indication IE in the Call Announcement message and be joined by other members of the same
group.

45

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

In this scenario, UE B is configured as “MCPTT User acknowledgement is required upon a
terminating call request reception”, while UE C is configured as “MCPTT User
acknowledgement not required upon a terminating call request reception”.

Table 19: Call setup – establish a new call without confirm mode indication IE in the Call
Announcement message

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0 - - S1: start-
stop

S1: start-
stop

S1: start-
stop - -

1

T0

Indication
from UE A
to initiate a
group call

S2:
waiting for

call
announce

ment

- -

UE A stores
MCPTT group ID
as MCPTT group

ID of the call,
creates a Call type

Control state
machine,

generates and
sends a GROUP
CALL PROBE
message, and

starts TFG1 and
TFG3

10.2.2.4.2.1

2

T0 +
TFG3

UE A
TFG3
expires

- - -

UE A generates
and sends

GROUP CALL
PROBE, and
starts TFG3

10.2.2.4.2.2

3

T0 +
TFG3 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -
UE B and UE C

discard the
message

10.2.2.4.7.1

4

T0 +
n*TFG3

UE A
TFG3
expires

- - -

UE A generates
and sends

GROUP CALL
PROBE, and
starts TFG3

10.2.2.4.2.2

5

T0 +
n*TFG3
+ t_ABn

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -
UE B and UE C

discard the
message

10.2.2.4.7.1

46

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

6

T0 +
TFG1

UE A
TFG1
expires

S3: part of
ongoing

call
- -

UE A stops
TFG3, generates
and stores SDP
body, generates

and stores the call
identifier, selects
and stores refresh
interval, stores its
own MCPTT ID

as originating
MCPTT user ID,

stores current
UTC time as call

start time,
generates and
sends GROUP

CALL
ANNOUNCEME

NT with no
confirm mode
indication IE,

establishes media
session, starts

Floor Control as
originating floor
participant, and
starts TFG2 and

TFG6

10.2.2.4.3.1

47

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

7

T0 +
TFG1 +
t_AB(n+

1)

UE B and
UE C

receive
GROUP
CALL

ANNOUN
CEMENT
(does not
contain
Confirm

mode
Indication

IE)

-

S4:
pending

User
action

without
confirm

indication
(UE B is

configured
as MCPTT

User
acknowled

gement
required
upon a

terminating
call request
reception)

S3: part of
ongoing

call
(UE C is

configured
as MCPTT

User
acknowled
gement not
required
upon a

terminating
call request
reception)

UE B and UE C
check if MCPTT
group ID IE from
GROUP CALL

ANNOUNCEME
NT does not

match MCPTT
group ID of the
call stored for

other state
machines, store

value of SDP IE,
Call Identifier IE,

Originating
MCPTT user ID

IE, Refresh
Interval IE,

MCPTT Group ID
IE, Call start time
IE of the GROUP

CALL
ANNOUNCEME

NT as
corresponding

values, create Call
Type Control state

machine;
UE B starts

TFG4;
UE C establishes

media session
based on stored
SDP body of the
call, starts Floor

Control as
terminating floor
participant, and
starts TFG2 and

TFG6

10.2.2.4.3.3

8

T0 +
t_C1
(with

t_C1 >
TFG1 +
t_AB(n+

1))

UE B
accepts the
terminating

call

-
S3: part of

ongoing
call

-

UE B establishes
media session
based on SDP

body of the call,
starts Floor
Control as

terminating floor
participant, and
starts TFG2 and

TFG6

10.2.2.4.3.5

2.2.2. Call merge

48

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

In this scenario, there is already an ongoing group call with UE A and UE B. Although UE C
tries to join the group call by sending a GROUP CALL PROBE, it does not receive a response
from UE A or UE B (e.g., temporarily out of range), thus UE C starts a new group call for the
same group. Once UE A, UE B and UE C are within transmission range of each other, UE C
receives the GROUP CALL ANNOUNCEMENT message from UE A or UE B, and since the
group IDs match and the starting time of UE C’s group call is later than the original group call,
UE C merges with the existing group call. There is no state change for UE A or UE B during
the merging process.

Scenario purpose: To observe that a user, separated from other users already engaged in an
ongoing group call, creates his own group call; once this user gets back in range of the other
ongoing group call, the newly created group call merges with the older one.

Table 20: Call merge

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

S3: part of
ongoing call

(group
ID=n)

S3: part of
ongoing call

(group
ID=n)

S1: start-
stop - -

1

T0

Indication
from UE C
to initiate a
group call
with group

ID=n

- -

S2:
waiting for

call
announce

ment

UE C stores
MCPTT group ID
as MCPTT group
ID of the call,
creates a Call
Type Control
state machine,
generates and
sends a GROUP
CALL PROBE
message with
MCPTT group ID
= n, and starts
TFG1 and TFG3

10.2.2.4.2.1

2

T0 +
TFG3

UE C
TFG3
expires

- - -

UE C generates
and sends

GROUP CALL
PROBE, and
starts TFG3

10.2.2.4.2.2

3

T0 +
n*TFG3

UE C
TFG3
expires

- - -

UE C generates
and sends

GROUP CALL
PROBE, and
starts TFG3

10.2.2.4.2.2

49

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

4

T0 +
TFG1

UE C
TFG1
expires

- -

S3: part of
ongoing

call (group
ID=n, but

not the
same group
call as UE
A and UE

B)

UE C sets the
originating

MCPTT user ID
of the call to the
ID of UE C, sets
the call identifier,
the SDP body, the
refresh interval,

establishes media
session, starts

floor control as
originating
participant,

generates and
sends GROUP

CALL
ANNOUNCEME
NT, stops TFG3,
and starts TFG2

and TFG6

10.2.2.4.3.1

5

T0 +
TFG1 +
TFG2

UE C
TFG2
expires

- - -

UE C generates
and sends

GROUP CALL
ANNOUNCEME

NT, and starts
TFG2

10.2.2.4.4.1

6

T0 +
TFG1 +
TFG2 +
t_CA1

UE A and
UE B

receive
GROUP
CALL

ANNOUN
CEMENT

(from UE C
with

MCPTT
group ID
matching

stored
MCPTT

group ID of
the call)

- - -

UE A and UE B
compare the Call
start time IE of

the GROUP
CALL

ANNOUNCEME
NT message from

UE C and
determine it is not

lower than the
stored call start
time of the call

and take no
further action

10.2.2.4.6.1

7
T0 +
t_A1
(with

t_A1 >
TFG1 +
TFG2 +
t_CA1)

UE A
TFG2
expires

- - -

UE A generates
and sends

GROUP CALL
ANNOUNCEME

NT, and starts
TFG2

10.2.2.4.4.1

50

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

8

T0 +
t_A1 +
t_AB1

UE C and
UE B

receive
GROUP
CALL

ANNOUN
CEMENT

(with
MCPTT
group ID
matching

stored
MCPTT

group ID of
the call)

- - -

UE C stores
value of SDP IE,
Call Identifier IE,

Originating
MCPTT user ID

IE, Refresh
Interval IE and

Call start time IE,
adjusts the media

session, stops
TFG6 and TFG2,
and starts again

TFG6 and TFG2;
UE B stops TFG2
and starts TFG2

10.2.2.4.6.1
10.2.2.4.4.2

And the corresponding figure is Fig. 13:

51

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Floor participant

MCPTT client B

Floor participant

S3: part of ongoing call

MCPTT client C

Floor participant

Call Merge

• C initiates a Group Call
• C starts TFG1 and TFG3

Start-stopS3: part of ongoing call

S2: waiting for call
announcement

• C timer TFG3 expires
• C starts TFG3

• C timer TFG3 expires for the
Nth time

• C starts TFG3

• C timer TFG1 expires
• C establishes media session
• C stops TFG3
• C starts TFG2 and TFG6

S3: part of ongoing call

• A timer TFG2 expires
• A starts TFG2

• C stores identifier values to
that of A/B’s call

• C adjusts media session
• C stops TFG2 and TFG6
• C starts TFG2 and TFG6

• C timer TFG2 expires
• C starts TFG2

• B timer TFG2 expires
• B starts TFG2

Figure 13: Call merge

2.2.3. Call release

2.2.3.1.Call release while in the call

In this scenario, UE A starts in the state, “S3: part of ongoing call”, and decides to withdraw
from the call. We assume here that TFG5 < TFG2 for this particular scenario.

Scenario purpose: To observe that a user is able to release from an already ongoing call.

52

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 21: Call release while in the call

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0
- - S3: part of

ongoing call
S3: part of

ongoing call
S3: part of

ongoing call - -

1

T0

UE A
indication

from
MCPTT
user to
release

S6:
ignoring
incoming

call
announcem

ents

- -

UE A
releases
media

session,
stops TFG2,

and starts
TFG5

10.2.2.4.5.1

2

T0 +
t_B1

UE B
TFG2
expires

- - -

UE B
generates
and sends
GROUP
CALL

ANNOUNC
EMENT, if
stored probe

response
value of the
call is set to
"true", sets

stored probe
response

value of the
call to

"false", and
starts TFG2

10.2.2.4.4.1

53

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

3

T0 +
t_B1 +
t_BA1

UE A and
UE C

receive
GROUP
CALL

ANNOUN
CEMENT

- - -

UE A stores
value of

SDP IE, Call
identifier IE,
Originating

MCPTT
user ID IE,

refresh
interval IE,
Call start
time IE of

the GROUP
CALL

ANNOUNC
EMENT as
correspondi
ng values,

stops TFG5,
and starts

TFG5;
UE C stops
TFG2, starts
TFG2 and
sets probe

response of
the call to

“false”

10.2.2.4.5.2
10.2.2.4.4.2

4

T0 +
TFG5

UE A
TFG5
expires

S1: start-
stop - -

UE A
releases

stored SDP
body, call
identifier,
originating

MCPTT
user ID,
refresh

interval,
MCPTT

Group ID,
call start

time of the
call, and
destroys

Call Type
Control state

machine

10.2.2.4.5.4

2.2.3.2.Call release after call probe and return to “S1: start-stop”
In this scenario, a user in the “S2: waiting for call announcement” state decides to release its
probe to join the call, and transitions to “S1: start-stop” state. The user does not receive any
Group Call Announcement before transitioning to “S1: start-stop” state.

54

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Scenario purpose: To observe that a user can release its probe to find an ongoing call and
returns to “S1: start-stop” state.

Table 22: Call release after call probe and return to “S1: start-stop”

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0
- - S1: start-stop S3: part of

ongoing call
S3: part of

ongoing call - -

1

T0

Indication
from UE A

to join a
group call

S2: waiting for
call

announcement
- -

UE A stores
MCPTT

group ID as
MCPTT

group ID of
the call,
creates a
Call Type
Control

state
machine,
generates

and sends a
GROUP
CALL

PROBE
message,
and starts
TFG1 and

TFG3

10.2.2.4.2.1

2

T0 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -

UE B and
UE C check
if MCPTT

group ID IE
matches
stored

MCPTT
Group ID of

the call,
stop TFG2,
start TFG2,

and set
stored probe
response of
the call to

"true"

10.2.2.4.2.3

3

T0 +
t_A1

UE A
indication

from
MCPTT
User to

release the
Group Call

S7: waiting for
call

announcement
after call
release

- - UE A stops
TFG3 10.2.2.4.5.5

55

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

4

T0 +
TFG1
(with

TFG1 <
(T_AB1+
TFG2))

UE A
TFG1
expires

S1: start-stop - -

UE A
releases
stored

MCPTT
Group ID of
the call, and

destroys
Call Type
Control

state
machine

10.2.2.4.5.8

2.2.3.3.Call release after call probe and enter “S6: ignoring incoming call

announcements”

In this scenario, a user in the “S2: waiting for call announcement” state decides to release its
probe to join the call and receives a Group Call Announcement before it can transition to “S1:
start-stop” state. Thus, it enters “S6: ignoring incoming call announcements” instead of S1.

Scenario purpose: To observe that a user can release its probe to find an ongoing call and
enters “S6: ignoring incoming call announcements” state.

Table 23: Call release after call probe and enter “S6: ignoring incoming call announcements”

Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0
- - S1: start-

stop

S3: part of
ongoing

call

S3: part of
ongoing

call
- -

1

T0

Indication
from UE A

to join a
group call

S2:
waiting for

call
announce

ment

- -

UE A stores
MCPTT group ID as
MCPTT group ID of

the call, creates a
Call Type Control

state machine,
generates and sends
a GROUP CALL
PROBE message,

and starts TFG1 and
TFG3

10.2.2.4.2.1

56

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

2

T0 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -

UE B and UE C
check if MCPTT

group ID IE matches
stored MCPTT

Group ID of the call,
stop TFG2, start
TFG2, and set
stored probe

response of the call
to "true"

10.2.2.4.2.3

3

T0 + t_A1

UE A
indication

from
MCPTT
User to

release the
Group Call

S7:
waiting for

call
announce
ment after
call release

- - UE A stops TFG3 10.2.2.4.5.5

4 T0 +
t_AB1 +

TFG2
(with

(t_AB1 +
TFG2)

<TFG1)

UE C
TFG2

expires
- - -

UE C generates and
sends GROUP

CALL
ANNOUNCEMEN
T, and starts TFG2

10.2.2.4.4.1

5

T0 +
t_AB1 +
TFG2 +
t_CA1

UE A and
UE B

receive
GROUP
CALL

ANNOUN
CEMENT

S6:
ignoring
incoming

call
announce

ments

- -

UE A stores values
of SDP IE, Call

Identifier IE,
Originating MCPTT
user ID IE, Refresh
interval IE and Call
Start Time IE of the

GROUP CALL
ANNOUNCEMEN

T message as
corresponding

values, stops TFG1,
and starts TFG5;

UE B stops TFG2
and starts again

TFG2

10.2.2.4.5.7
10.2.2.4.4.2

2.2.3.4.Call release while pending user action – without confirm indication

In this scenario, a user in the “S4: pending user action without confirmation indication” state
decides to release the call. In this scenario, instead of going back to the “S1: start-stop” state,
the user decides to initiate a group call again before TFG5 expires, although the user (UE A)
released the call before.

57

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Scenario purpose: To observe that after receiving notification (GROUP CALL
ANNOUNCEMENT) of an ongoing call, a UE (without confirmation mode) can release its
request to join a call, only to re-enable it later and effectively join the call.

Table 24: Call release while pending user action – without confirm indication

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

S4: pending
user action

without
confirm

indication

S3: part of
ongoing call

S3: part of
ongoing call - -

1

T0

UE A
indication

from
MCPTT
user to

release the
call

S6:
ignoring
incoming

call
announcem

ents

- -

UE A
releases
media

session,
stops TFG2
and TFG4,
and starts

TFG5

10.2.2.4.5.1

2

T0 + t_A1

UE A
indication

from
MCPTT
user to

initiate a
Group Call

for an
MCPTT
group ID
matching

stored
MCPTT

Group ID
of the call

S3: part of
ongoing

call
- -

UE A stops
TFG5,

establishes
media

session,
starts Floor
Control as
terminating

Floor
Participant,
and starts
TFG2 and

TFG6

10.2.2.4.5.3

2.2.3.5.Call release while pending user action – with confirm indication

In this scenario, a user in the “S5: pending user action with confirmation indication” state
decides to release its request to join.

Scenario purpose: To observe that UE A does not respond to the request to join the ongoing
call and ignores future GROUP CALL ANNOUNCEMENT messages until the call is
terminated or the UE moves out of range so that GROUP CALL ANNOUNCEMENT
messages cease to be received by UE A and permits TFG5 to timeout, thus returning UE A to
the S1: start-stop state.

58

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 25: Call release while pending user action – with confirm indication

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

S5: pending
user action

with confirm
indication

S3: part of
ongoing call

S3: part of
ongoing call - -

1

T0

UE A
indication

from
MCPTT
user to

release the
call

S6: ignoring
incoming

call
announceme

nts

- -
UE A stops
TFG4, and
starts TFG5

10.2.2.4.5.1

2

T0 +
t_B1

UE B
TFG2
expires

- - -

UE B
generates
and sends
GROUP
CALL

ANNOUNC
EMENT, if
stored probe

response
value of the
call is set to
"true", sets

stored probe
response

value of the
call to

"false", and
starts TFG2

10.2.2.4.4.1

59

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

3

T0 +
t_B1 +
t_BA1

UE A and
UE C

receive
GROUP
CALL

ANNOUN
CEMENT

- - -

UE A stores
value of
SDP IE,

Call
identifier IE,
Originating

MCPTT
user ID IE,

refresh
interval IE,
Call start
time IE of

the GROUP
CALL

ANNOUNC
EMENT,

stops TFG5,
and starts

TFG5;
UE C stops
TFG2, starts
TFG2, and
sets probe

response of
the call to

“false”

10.2.2.4.5.2
10.2.2.4.4.2

4

T0 +
TFG5

UE A
TFG5
expires

S1: start-
stop - -

UE A
releases

stored SDP
body, call
identifier,
originating

MCPTT
user ID,
refresh

interval,
MCPTT

Group ID,
call start

time of the
call, and
destroys

Call Type
Control state

machine

10.2.2.4.5.4

2.2.3.6.Call release when maximum duration of the call is reached

In this scenario, one of the participants withdraws from the call because the maximum duration
(TFG6) of the call is reached. UE A is then afterwards considered out of range of UE B and
UE C, and is unable to receive their Group Call Announcement messages.

60

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Scenario purpose: To observe that when the maximum duration of a call occurs for a user,
that user withdraws from the call; to observe that this same user, now considered out of range
from the other users, goes back to S1: start-stop state of the state machine.

Table 26: Call release when maximum duration of the call is reached

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0
- -

S3: part of
ongoing

call

S3: part of
ongoing

call

S3: part of
ongoing

call
- -

1

T0
UE A
TFG6
expires

S6:
ignoring
incoming

call
announce

ments

- -

UE A releases the
media session,

stops TFG2, and
starts TFG5

10.2.2.4.5.9

2

T0 +
TFG5

UE A
TFG5
expires

S1: start-
stop - -

UE A releases
stored SDP body,

call identifier,
originating

MCPTT user ID,
refresh interval,

MCPTT Group ID,
call start time of

the call, and
destroys Call Type

Control state
machine

10.2.2.4.5.4

2.2.3.7.Call release and setup

In this scenario, after sending a GROUP CALL PROBE message, a user decides to release the
call, but later wants to start a new group call with the same group.

Scenario purpose: To observe that a user undecidedly tries to initiate a group call, release
such initialization, then initiates it again with no other ongoing call having already been
established.

Table 27: Call release and setup

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0
- - S1: start-

stop
S1: start-

stop
S1: start-

stop - -

61

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

Indication
from UE A to
initiate a group

call

S2: waiting
for call

announceme
nt

- -

UE A stores
MCPTT

group ID as
MCPTT

group ID of
the call,

creates a Call
type Control

state
machine,

generates and
sends a
GROUP
CALL

PROBE
message, and
starts TFG1
and TFG3

10.2.2.4.2.1

2

T0 +
t_AB1

UE B and UE
C receive
GROUP

CALL PROBE

- - -

UE B and
UE C discard

the call
control

message

10.2.2.4.7.1

3

T0 +
t_A1

Indication
from UE A to

release the
group call

S7: waiting
for call

announceme
nt after call

release

- - UE A stops
TFG3 10.2.2.4.5.5

4

T0 +
t_A2
(with

t_A2 >
t_A1)

Indication
from UE A to
initiate a group

call for
MCPTT group
ID matching

stored MCPTT
group ID of

the call

S2: waiting
for call

announceme
nt

- -

UE A stops
TFG1,

generates and
sends

GROUP
CALL

PROBE, and
starts TFG1
and TFG3

10.2.2.4.5.6

5
T0 +

t_A2 +
t_AB2

UE B and UE
C receive
GROUP

CALL PROBE

- - -

UE B and
UE C discard

the call
control

message

10.2.2.4.7.1

2.2.4. Call reject

In this scenario, UE A decides to establish a group call since there is no existing one. However,
UE B rejects the call explicitly, and UE C rejects the call implicitly due to no timely user
action.

62

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Scenario purpose: To observe that a user establishes a new group call, with other users
rejecting (in different manners) this call.

Table 28: Call reject

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0 - - S1: start-
stop

S1: start-
stop

S1: start-
stop - -

1

T0

Indication
from UE A
to initiate a
group call

S2:
waiting for

call
announce

ment

- -

UE A stores
MCPTT group
ID as MCPTT
group ID of the
call, creates a

Call Type
Control state

machine,
generates and

sends a GROUP
CALL PROBE
message, and

starts TFG1 and
TFG3

10.2.2.4.2.1

2

T0 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -
UE B and UE C
discard the call
control message

10.2.2.4.7.1

3

T0 +
TFG3

UE A
TFG3
expires

- - -

UE A generates
and sends

GROUP CALL
PROBE, and
starts TFG3

10.2.2.4.2.2

4

T0 +
TFG3 +
t_AB2

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -
UE B and UE C
discard the call
control message

10.2.2.4.7.1

5

T0 +
n*TFG3

UE A
TFG3
expires

- - -

UE A generates
and sends

GROUP CALL
PROBE, and
starts TFG3

10.2.2.4.2.2

63

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

6

T0 +
n*TFG3
+ t_ABn

UE B and
UE C

receive
GROUP
CALL

PROBE

- - -
UE B and UE C
discard the call
control message

10.2.2.4.7.1

7

T0 +
TFG1

UE A
TFG1
expires

S3: part of
ongoing

call
- -

UE A stops
TFG3, generates
and stores SDP
body, generates

and stores the call
identifier, selects
and stores refresh
interval, stores its
own MCPTT ID

as originating
MCPTT user ID,

stores current
UTC time as call

start time,
generates and
sends GROUP

CALL
ANNOUNCEME
NT, establishes
media session,

starts Floor
Control as

originating floor
participant, and
starts TFG2 and

TFG6

10.2.2.4.3.1

64

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

8

T0 +
TFG1 +
t_AB(n+

1)

UE B and
UE C

receive
GROUP
CALL

ANNOUN
CEMENT

-

S4: pending
user action

without
confirm

indication
(MCPTT

User
acknowledg

ement
required
upon a

terminating
call request
reception

and GROUP
CALL

ANNNOUN
CEMENT
does not
contain
Confirm

mode
indication

IE)

S4: pending
user action

without
confirm

indication
(MCPTT

User
acknowledg

ement
required
upon a

terminating
call request
reception

and GROUP
CALL

ANNOUNC
EMENT
does not
contain
Confirm

mode
indication

IE)

UE B and UE C
check if MCPTT
group ID IE from
GROUP CALL

ANNOUNCEME
NT does not

match MCPTT
group ID of the
call stored for

other state
machines, store

value of SDP IE,
Call Identifier IE,

Originating
MCPTT user ID

IE, Refresh
Interval IE,

MCPTT Group
ID IE, Call start
time IE of the

GROUP CALL
ANNOUNCEME

NT as
corresponding
values, create

Call Type
Control state
machine, and
start TFG4

10.2.2.4.3.3

9

T0 +
t_B1
(with

t_B1 >
TFG1 +
t_AB(n+

1))

UE B
rejects

terminating
call

-

S6:
ignoring
incoming

call
announcem

ents

-
UE B stops

TFG4, and starts
TFG5

10.2.2.4.3.7

1
0 T0 +

TFG1 +
t_AB(n+

1) +
TFG4

UE C
TFG4
expires

- -

S6:
ignoring
incoming

call
announcem

ents

UE C starts
TFG5 10.2.2.4.3.8

65

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

2.3. Basic group call – call type control

The call type control state machine exists when a UE is part of an ongoing group call. The
basic call control state machine has a related call type control state machine. The call type
control state machine provides additional detail, i.e., call type, about the status of the call taking
place: emergency group call, imminent peril group call, and basic group call.
The state transitions that are analyzed in each test scenario of Section 2.3 are based on
“Figure 10.2.3.2-1: Call type control state machine” of TS 24.379 v14.2.0 [4]. Call type control
test scenarios can be categorized into 5 groups: call type initialization, call type upgrade, call
type downgrade, call release, and call merge.

Note: Interaction dependence between basic call control and basic call type control.

2.3.1. Call type initialization

2.3.1.1.Call type initialization – establish a new basic call

At the beginning of this scenario, there is no ongoing call established. UE A starts a new basic
group call and initializes the call type state machine. It is important to note that this test scenario
only depicts the changes happening at the call type state machine. There are other call control
messages exchanged in the meanwhile, such as the GROUP CALL ANNOUNCEMENT
messages, GROUP CALL PROBE messages, or both.

Scenario purpose: To observe that the “basic group call” type state is entered after creation
of a new basic group call.

Table 29: Call type initialization – establish a new basic call

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -
T0: waiting
for call to
establish

T0:
Waiting

for call to
establish

T0:
Waiting

for call to
establish

- -

1

T0

UE A
initiates
GROUP
CALL

PROBE

- - -

Follow 10.2.3.4.2
for lengthy

detailed behavior
(the stored

current call type
is set to “BASIC
GROUP CALL”)

10.2.3.4.2

66

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

2

T0 +
TFG1

UE A
TFG1
expires

(hence a
GROUP
CALL

ANNOUN
CEMENT
message
shall be

sent from
the basic

call control
state

machine)

T2: in-
progress

basic group
call

- -
UE A no action,
except for state

change
10.2.3.4.6

2.3.1.2.Call type initialization – establish a new emergency call

At the beginning of this scenario, there is no ongoing call established. UE A starts a new
emergency group call and initializes the call type state machine. It is important to note that this
test scenario only depicts the changes happening at the call type state machine. There are other
call control messages exchanged in the meanwhile, such as the GROUP CALL
ANNOUNCEMENT messages, GROUP CALL PROBE messages, or both.

Scenario purpose: To observe that the “emergency group call” type state is entered after
creation of a new emergency group call.

Table 30: Call type initialization – establish a new emergency call

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -
T0: waiting
for call to
establish

T0:
Waiting

for call to
establish

T0:
Waiting

for call to
establish

- -

1

T0

UE A
initiates
GROUP
CALL

PROBE

- - -

Follow 10.2.3.4.2
for lengthy

detailed behavior
(the stored

current call type
is set to

“EMERGENCY
GROUP CALL”)

10.2.3.4.2

67

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

2

T0 +
TFG1

UE A
TFG1
expires

(hence a
GROUP
CALL

ANNOUN
CEMENT
message
shall be

sent from
the basic

call control
state

machine)

T1: in-
progress

emergency
group call

- - UE A starts
TFG13 10.2.3.4.6

2.3.1.3.Call type initialization – establish a new imminent peril call

At the beginning of this scenario, there is no ongoing call established. UE A starts a new
imminent peril group call and initializes the call type state machine. It is important to note that
this test scenario only depicts the changes happening at the call type state machine. There are
other call control messages exchanged in the meanwhile, such as the GROUP CALL
ANNOUNCEMENT messages, GROUP CALL PROBE messages, or both.

Scenario purpose: To observe that the “imminent peril group call” type state is entered after
creation of a new imminent peril group call.

Table 31: Call type initialization – establish a new imminent peril call

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -
T0: waiting
for call to
establish

T0:
Waiting

for call to
establish

T0:
Waiting

for call to
establish

- -

1

T0

UE A
initiates
GROUP
CALL

PROBE

- - -

Follow 10.2.3.4.2
for lengthy

detailed behavior
(the stored

current call type
is set to

“IMMINENT
PERIL GROUP

CALL”)

10.2.3.4.2

68

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

2

T0 +
TFG1

UE A
TFG1
expires

(hence a
GROUP
CALL

ANNOUN
CEMENT
message
shall be

sent from
the basic

call control
state

machine)

T3: in-
progress
imminent

peril group
call

- - UE A starts
TFG14 10.2.3.4.6

2.3.1.4.Call type initialization – join an emergency call after call probe

In this scenario, there is an ongoing emergency group call. UE A sends a call probe and joins
this emergency group call.

Scenario purpose: To observe that the emergency call is joined after receiving an
emergency-based GROUP CALL ANNOUNCEMENT message.

Table 32: Call type initialization – join an emergency call after call probe

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -
T0: waiting
for call to
establish

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group call

- -

1

T0

UE A
initiates
GROUP
CALL

PROBE

- - -

Follow
10.2.3.4.2 for

lengthy detailed
behavior

10.2.3.4.2

2

T0 +
t_B1

UE B
TFG2
expires

UE B sends a
GROUP CALL
ANNOUNCEM

ENT

NOTE:
happens
outside

call type
control

69

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

3

T0 +
t_B1 +
t_BA1

UE A
receives
GROUP
CALL

ANNOUN
CEMENT
from UE B

T1: in-
progress

emergency
group call

- -

UE A sets
current call type

to
"EMERGENC

Y GROUP
CALL", sets

Proximity
Based Services

(ProSe) per-
packet priority

to value of
MCPTT off-

network
emergency

group call, sets
stored last call
type change
time and last

user to change
call type to

corresponding
values of

GROUP CALL
ANNOUNCEM
ENT, and starts

TFG13

10.2.3.4.3

2.3.1.5.Call type initialization – join an imminent peril call after call probe

In this scenario, there is an ongoing imminent peril group call. UE A sends a GROUP CALL
PROBE and joins this imminent peril group call.

Scenario purpose: To observe that the imminent peril call is joined after receiving an
imminent peril-based GROUP CALL ANNOUNCEMENT message.

Table 33: Call type initialization – join an imminent peril call after GROUP CALL PROBE

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

-- -

T0:
waiting for

call to
establish

T3: in-
progress
imminent

peril group
call

T3: in-
progress
imminent

peril group
call

- -

1

T0

UE A
initiates
GROUP
CALL

PROBE

- - -

Follow
10.2.3.4.2 for
lengthy detailed
behavior

10.2.3.4.2

70

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

2

T0 +
t_B1

UE B
TFG2
expires

UE B sends a
GROUP CALL
ANNOUNCEM
ENT

NOTE:
happens
outside

call type
control

3

T0 +
t_B1 +
t_BA1

UE A
receives
GROUP
CALL

ANNNOU
NCEMEN
T from UE

B

T3: in-
progress
imminent

peril
group call

- -

UE A checks if
current call type

is not
"EMERGENC

Y GROUP
CALL", sets

current call type
to "IMMINENT
PERIL GROUP

CALL", sets
ProSe per-

packet priority
to value of

MCPTT off-
network

imminent peril
group call, sets
stored last call
type change
time and last

user to change
call type to

corresponding
values of

GROUP CALL
ANNOUNCEM
ENT, and starts

TFG14

10.2.3.4.3

2.3.1.6.Call type initialization – join a basic group call after group call probe

In this scenario, there is an ongoing basic group call. UE A sends a GROUP CALL PROBE
message and joins this basic group call.

Scenario purpose: To observe that the basic group call is joined after receiving a basic
group call-based GROUP CALL ANNOUNCEMENT message.

Table 34: Call type initialization – join a basic group call after group call probe

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -
T0: waiting
for call to
establish

T2: in-
progress

basic group
call

T2: in-
progress

basic group
call

- -

71

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

UE A
initiates
GROUP
CALL

PROBE

- - -

Follow
10.2.3.4.2 for

lengthy
detailed
behavior

10.2.3.4.2

2

T0 + t_B1

Either UE
B or UE C

TFG2
expires

UE B or UE C
sends a
GROUP
CALL

ANNOUNCE
MENT

NOTE:
happens
outside

call type
control

3

T0 + t_B1
+ t_BA1

UE A
receives
GROUP
CALL

ANNOUN
CEMENT

T2: in-
progress

basic group
call

- -

UE A checks
if current call

type is not
"EMERGENC

Y GROUP
CALL", sets
current call

type to
"BASIC
GROUP

CALL", and
sets stored last

call type
change time

and last user to
change call

type to
corresponding

values of
GROUP
CALL

ANNOUNCE
MENT

10.2.3.4.3

2.3.1.7.Call type initialization – join a basic group call with user acknowledgement

required

In this scenario, a basic group call is ongoing. UE A receives a group call announcement
message of that call which requires user acknowledgment. The MCPTT user of UE A accepts
the call.

Scenario purpose: To observe that the basic group call state is entered after joining an
already established basic group call (with acknowledgement required).

72

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 35: Call type initialization – join a basic group call with user acknowledgement
required

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Referenc
e for

details
0

- -

T0:
waiting for

call to
establish

T2: in-
progress

basic
group call

T2: in-
progress

basic
group call

- -

1

T0
UE B
TFG2
expires

- - -

UE B sends a
GROUP CALL

ANNOUNCEMENT
(with Call type IE set
to “BASIC GROUP

CALL”)

NOTE:
happens
outside

call type
control

2

T0 +
t_BA1

UE A
receives
GROUP
CALL

ANNOUN
CEMENT

(with
MCPTT

user
acknowled

gement
required)

- - -

Follow 10.2.3.4.4. for
lengthy detailed

behavior
UE A stores current
call type as “BASIC

GROUP CALL”

10.2.3.4.4

3
T0 +
t_A1
(with

t_A1 >
t_BA1)

UE A
accepts the

call

T2: in-
progress

basic
group call

- -
UE A no action,
except for state

change
10.2.3.4.6

2.3.1.8.Call type initialization – join an imminent peril group call with user

acknowledgement required

In this scenario, an imminent peril group call is ongoing. UE A receives a group call
announcement message of that call which requires user acknowledgment. The MCPTT user of
UE A accepts the call.

Scenario purpose: To observe that the imminent peril call state is entered after joining an
already established imminent peril group call (with acknowledgement required).

73

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 36: Call type initialization – join an imminent peril group call with user
acknowledgement required

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Referenc
e for

details
0

- -

T0:
waiting for

call to
establish

T3: in-
progress
imminent

peril
group call

T3: in-
progress
imminent

peril
group call

- -

1

T0
UE B
TFG2
expires

- - -

UE B sends a
GROUP CALL

ANNOUNCEMENT
(with Call type IE set

to “IMMINENT
PERIL GROUP

CALL”)

NOTE:
happens
outside

call type
control

2

T0 +
t_BA1

UE A
receives
GROUP
CALL

ANNOUN
CEMENT

(with
MCPTT

user
acknowled

gement
required)

- - -

Follow 10.2.3.4.4. for
lengthy detailed

behavior
UE A stores current

call type as
“IMMINENT PERIL

GROUP CALL”

10.2.3.4.4

3
T0 +
t_A1
(with

t_A1 >
t_BA1)

UE A
accepts the

call

T3: in-
progress
imminent

peril
group call

- - UE A starts TFG14 10.2.3.4.6

2.3.1.9.Call type initialization – join an emergency group call with user

acknowledgement required

In this scenario, an emergency group call is ongoing. UE A receives a group call announcement
message of that call which requires user acknowledgment. The MCPTT user of UE A accepts
the call.

Scenario purpose: To observe that the emergency group call state is entered after joining an
already established emergency group call.

74

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 37: Call type initialization – join an emergency group call with user acknowledgement
required

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Referenc
e for

details
0

- -

T0:
waiting for

call to
establish

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group call

- -

1

T0
UE B
TFG2
expires

- - -

UE B sends a
GROUP CALL

ANNOUNCEMENT
(with Call type IE set

to “EMERGENCY
GROUP CALL”)

NOTE:
happens
outside

call type
control

2

T0 +
t_BA1

UE A
receives
GROUP
CALL

ANNOUN
CEMENT

(with
MCPTT

user
acknowled

gement
required)

- - -

Follow 10.2.3.4.4. for
lengthy detailed

behavior
UE A stores current

call type as
“EMERGENCY
GROUP CALL”

10.2.3.4.4

3
T0 +
t_A1
(with

t_A1 >
t_BA1)

UE A
accepts the

call

T1: in-
progress

emergency
group call

- - UE A starts TFG13 10.2.3.4.6

2.3.1.10. Call type initialization – join an emergency group call without user

acknowledgement required

In this scenario, an emergency group call is ongoing. UE A receives a group call announcement
that does not require user acknowledgment and joins the call. This scenario can be generalized
to other scenarios in which the ongoing group call is basic or imminent peril.

Scenario purpose: To observe that the emergency call state is entered after joining an already
established emergency group call (without acknowledgement required), based on the call type
setting in the GROUP CALL ANNOUNCEMENT message.

75

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 38: Call type initialization – join an emergency group call without user
acknowledgement required

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Referenc
e for

details
0

- -
T0: waiting
for call to
establish

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group

- -

1

T0
UE B
TFG2
expires

- - -

UE B sends a
GROUP CALL
ANNOUNCEM
ENT (with Call
type IE set to

“EMERGENCY
GROUP CALL”)

NOTE:
happens
outside

call type
control

2

T0 +
t_BA1

UE A
receives
GROUP
CALL

ANNOUN
CEMENT
(without
MCPTT

user
acknowled

gement
required)

T1: in-
progress

emergency
group call

- -

Follow
10.2.3.4.5 for

lengthy detailed
behavior

UE A stores
current call type

as set to
“EMERGENCY
GROUP CALL”

10.2.3.4.5

2.3.2. Call type upgrade

2.3.2.1.Call upgrade from basic to imminent peril group call

In this scenario, a basic group call is ongoing. A user decides to upgrade the call to an imminent
peril group call, so other users’ call types are upgraded accordingly.

Scenario purpose: To observe that a basic group call can be upgraded to an imminent peril
group call.

Table 39: Call upgrade from basic to imminent peril group call

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T2: in-
progress

basic group
call

T2: in-
progress

basic
group call

T2: in-
progress

basic
group call

- -

76

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

UE A
requests to
upgrade the

call to
"IMMINEN

T PERIL
GROUP
CALL"

T3: in-
progress
imminent

peril group
call

- -

UE A sets
current call type
to "IMMINENT
PERIL GROUP

CALL" and
accordingly sets
ProSe per-packet

priority, starts
TFG14, stores

UTC time as last
call type change

time of the call as
well as own

MCPTT user ID
as last user to

change call type
of the call,

generates and
sends GROUP

CALL
ANNOUNCEME

NT

10.2.3.4.7.1

2

T0 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

ANNOUN
CEMENT

-

T3:
imminent

peril
group call

T3:
imminent

peril
group call

Follow
10.2.3.4.7.2 for
lengthy detailed

behavior

10.2.3.4.7.2

2.3.2.2.Call upgrade from basic to emergency group call

In this scenario, a basic group call is ongoing. A user decides to upgrade the call to an
emergency group call, so other users’ call types are upgraded accordingly.

Scenario purpose: To observe that a basic group call can be upgraded to an emergency
group call.

Table 40: Call upgrade from basic to emergency group call

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T2: in-
progress

basic group
call

T2: in-
progress

basic
group call

T2: in-
progress

basic
group call

- -

77

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

UE A
requests to
upgrade the

call to
"EMERGE

NCY
GROUP
CALL"

T1: in-
progress

emergency
group call

- -

UE A sets
current call type
accordingly as
well as current

ProSe per-packet
priority, starts
TFG13, stores

UTC time as last
call type change

time of the call as
well as own

MCPTT user ID
as last user to

change call type
of the call, and
generates and
sends GROUP

CALL
ANNOUNCEME

NT

10.2.3.4.7.1

2

T0 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

ANNOUN
CEMENT

-

T1: in-
progress

emergency
group call

T: in-
progress

emergency
group call

Follow
10.2.3.4.7.2 for
lengthy detailed

behavior

10.2.3.4.7.2

2.3.2.3.Call upgrade from imminent peril group call

In this scenario, an imminent peril group call is ongoing. A user decides to upgrade the call to
an emergency group call, and the other users’ call types are upgraded accordingly.

Scenario purpose: To observe that an imminent peril group call can be upgraded to an
emergency group call.

Table 41: Call upgrade from imminent peril group call

Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T3: in-
progress
imminent

peril group
call

T3: in-
progress
imminent

peril
group call

T3: in-
progress
imminent

peril
group call

- -

78

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

UE A
requests to
upgrade the

call to
"EMERGE

NCY
GROUP
CALL"

T1: in-
progress

emergency
group call

- -

UE A sets
current call type
accordingly as
well as current

ProSe per-
packet priority,
starts TFG13

and stops
TFG14, stores
UTC time as
last call type

change time of
the call as well
as own MCPTT
user ID as last
user to change
call type of the
call, generates

and sends
GROUP CALL
ANNOUNCEM

ENT

10.2.3.4.7.1

2

T0 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

ANNOUNC
EMENT

-

T1: in-
progress

emergency
group call

T1: in-
progress
emergency
group call

Follow
10.2.3.4.7.2 for
lengthy detailed

behavior

10.2.3.4.7.2

2.3.3. Call type downgrade

2.3.3.1.Explicit downgrade from emergency call

In this scenario, an emergency group call is in progress. An authorized user (UE A) decides to
downgrade the call to a basic group call. In addition, multiple TFG11 expirations are observed
in this test scenario. It is assumed that if there are n “GROUP CALL EMERGENCY END”
messages, then the first n - 1 are lost, and UE B and UE C only receive the nth message.

Scenario purpose: To observe that an emergency group call can explicitly be downgraded to
a basic group call.

79

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 42: Explicit downgrade from emergency call

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group call

- -

1

T0

UE A
requests to
downgrade

the call

T2: in-
progress

basic
group call

- -

UE A sets
stored current

call type to
“BASIC
GROUP

CALL” as well
as per-packet
priority, call
type change
time and last

user to change
call type

accordingly,
generates and
sends GROUP

CALL
EMERGENCY

END, stops
TFG13, starts
TFG11 and
initializes
CFG11

10.2.3.4.8.1

2

T0 +
TFG11

UE A
TFG11
expires

- - -

UE A generates
and sends

GROUP CALL
EMERGENCY

END,
increments

value of
CFG11, and

starts TFG11 (if
value of CFG11
is less than its
upper limit)

10.2.3.4.8.2

3

T0 +
n*TFG1

1

UE A
TFG11
expires

(CFG11 at
its upper

limit)

- - -

UE A generates
and sends

GROUP CALL
EMERGENCY

END, and
increments

value of CFG11
(now equal to
its upper limit)

10.2.3.4.8.2

80

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

4

T0 +
n*TFG1

1 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

EMERGE
NCY END

-

T2: in-
progress

basic group
call

T2: in-
progress

basic group
call

UE B and UE C
set stored last

call type change
time and last

user to change
call type to

corresponding
values of

GROUP CALL
EMERGENCY
END message,

set stored
current call type

to "BASIC
GROUP

CALL" as well
as current ProSe

per-packet
priority to

corresponding
value, and stop

TFG13

10.2.3.4.8.3

2.3.3.2.Explicit downgrade from imminent peril call

In this scenario, an imminent peril group call is in progress. An authorized user (UE A) decides
to downgrade the call. In addition, multiple TFG12 expirations are observed in this test
scenario. It is assumed that if there are n “GROUP CALL IMMINENT PERIL END”
messages, then the first n - 1 are lost, thus UE B and UE C only receive the nth message.

Scenario purpose: To observe that an imminent peril group call can explicitly be downgraded
to a basic group call.

Table 43: Explicit downgrade from imminent peril call

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T3: in-
progress
imminent

peril group
call

T3: in-
progress
imminent

peril group
call

T3: in-
progress
imminent

peril
group call

- -

81

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

UE A
requests to
downgrade

the call

T2: in-
progress basic

group call
- -

UE A sets
stored

current call
type to

“BASIC
GROUP

CALL” as
well as per-

packet
priority, call
type change
time and last

user to
change call

type
accordingly,

generates
and sends
GROUP
CALL

IMMINENT
PERIL

END, stops
TFG14,

starts
TFG12 and
initializes
CFG12

10.2.3.4.8.4

2

T0 +
TFG12

UE A
TFG12
expires

- - -

UE A
generates
and sends
GROUP
CALL

IMMINENT
PERIL
END,

increments
value of

CFG12, and
starts

TFG12
(because
value of

CFG12 is
less than its
upper limit)

10.2.3.4.8.5

82

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

3

T0 +
n*TFG12

UE A
TFG12
(with

CFG12 at
upper limit

- 1)

- - -

UE A
generates
and sends
GROUP
CALL

IMMINENT
PERIL

END, and
increments

value of
CFG12

10.2.3.4.8.5

4

T0 +
n*TFG12
+ t_AB1

UE B and
UE C

receive
GROUP
CALL

IMMINEN
T PERIL

END

-

T2: in-
progress

basic group
call

T2: in-
progress

basic
group call

UE B and
UE C set
stored last
call type

change time
and last user

to change
call type to
correspondi
ng values of

GROUP
CALL

IMMINENT
PERIL END
message, set

stored
current call

type to
"BASIC
GROUP

CALL" as
well as
current

ProSe per-
packet

priority to
correspondi

ng value,
and stop
TFG14

10.2.3.4.8.6

2.3.3.3.Implicit downgrade from emergency call

In this scenario, an emergency group call is in progress. The expiration of a user’s timer,
TFG13, invokes the implicit downgrade of the call type.

Scenario purpose: To observe that an emergency group call can implicitly (timer expiration)
initiate the downgrade to a basic group call.

83

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 44: Implicit downgrade from emergency call

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group call

- -

1

T0
UE A

TFG13
expires

T2: in-
progress

basic group
call

- -

UE A sets
stored current

call type to
"BASIC

GROUP CALL"
as well as

current ProSe
per-packet
priority to

corresponding
value, and sets
current UTC

time as last call
type change

time of the call
and own

MCPTT user ID
as last user to

change call type
of the call

10.2.3.4.8.8

2.3.3.4.Implicit downgrade from imminent peril call

In this scenario, an imminent peril group call is in progress. The expiration of a user’s timer,
TFG14, invokes the downgrade of the call type.

Scenario purpose: To observe that an imminent peril group call can implicitly (timer
expiration) initiate the downgrade to a basic group call.

Table 45: Implicit downgrade from imminent peril call

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T3: in-
progress
imminent

peril
group call

T3: in-
progress
imminent

peril
group call

T3: in-
progress
imminent

peril group
call

- -

84

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0
UE A

TFG14
expires

T2: in-
progress

basic
group call

- -

UE A sets stored
current call type to
"BASIC GROUP
CALL" as well as
current ProSe per-
packet priority to

corresponding
value, and sets

current UTC time as
last call type change
time of the call and
own MCPTT user
ID as last user to

change call type of
the call

10.2.3.4.8.9

2.3.4. Call release

2.3.4.1.Call release after call establishment

In this scenario, a group call is ongoing (any call type state). One of the users releases the call.

Scenario purpose: To observe that a user can release the call, regardless of the ongoing call
type state.

Table 46: Call release after call establishment

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T2: in-
progress

basic, T3:
imminent

peril or T1:
emergency
group call
(same call

type state as
UE B and UE

C)

T2: in-
progress

basic, T3:
imminent

peril or T1:
emergency
group call
(same call

type state as
UE A and UE

C)

T2: in-
progress

basic, T3:
imminent

peril or T1:
emergency
group call
(same call

type state as
UE A and

UE B)

- -

1

T0

UE A
requests to
release the

call

T0: waiting
for call to
establish

- -

UE A releases
stored current

call type, ProSe
per-packet

priority, Last
call type

change time
and Last user
to change call

type

10.2.3.4.10

85

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

2.3.4.2.Call release before call establishment

In this scenario, there is no ongoing group call yet. One of the users attempts to establish a call
but releases it before completion.

Scenario purpose: To observe that a user attempting to establish a call can release from the
call prior to completion.

Table 47: Call release before call establishment

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T0:
waiting for

call to
establish

T0:
waiting for

call to
establish

T0:
waiting for

call to
establish

- -

1

T0

UE A
requests to
release or
reject the

call

- - -

UE A releases stored
current call type,
ProSe per-packet
priority, Last call

type change time and
Last user to change

call type

10.2.3.4.11

2.3.5. Call merge

2.3.5.1.Call merge from different call type states

In this scenario, there are two ongoing group calls, (UE A and UE B) and (UE C), both group
calls with the same group ID, but different call type states. UE A and UE B receive a group
call announcement from UE C, and adjust their call type status accordingly.

Scenario purpose: To observe that the call type states are properly updated after the merge.

Table 48: Call merge from different call type states

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T3: in-
progress
imminent

peril group
call

T3: in-
progress
imminent

peril group
call

T1: in-
progress

emergency
group call

- -

86

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0 UE C TFG2
expires - - -

UE C sends
GROUP
CALL

ANNOUNCE
MENT

NOTE:
happens
outside

call type
control

2

T0 +
t_CA1

UE A and
UE B

receive
GROUP
CALL

ANNOUNC
EMENT
message

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group call

-

Follow
10.2.3.4.9 for

lengthy
detailed
behavior

10.2.3.4.9

2.3.5.2.Call merge from same call type state

In this scenario, there are two ongoing group calls with the same group ID and same call type
state, but one group call (UE C) has a lower call start time IE than the other group (UE A and
UE B). A call merge occurs for UE A and UE B when each receive a GROUP CALL
ANNOUNCEMENT from UE C. There is no state change, just updates to the internal
variables.

Scenario purpose: To observe that the call type internal variables are properly updated after
the merge.

Table 49: Call merge from same call type state

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group call

T1: in-
progress

emergency
group call

- -

1

T0 UE C TFG2
expires - - -

UE C sends
GROUP
CALL

ANNOUNCE
MENT

NOTE:
happens
outside

call type
control

87

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

2

T0 +
t_CA1

UE A and
UE B

receive
GROUP
CALL

ANNOUNC
EMENT
message

- - -

UE A and
UE B store
the value of
the Last call
type change

time IE, store
the value of
the Last user
to change call
type IE, and
set PPPP to

value for
emergency
group call

10.2.3.4.9

The scenario can be generalized similarly to the situation when all three UEs have the same
group ID, the same Call Type and the same call start time, but the call identifier IE of UE C’s
group call is lower than that of the group call that UE A and UE B are in.

88

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Test scenarios details – broadcast group call

According to 3GPP TS 24.379 v14.2.0 [4], a broadcast group call is “a group call where the
initiating MCPTT user expects no response from the other MCPTT users, so that when the
user's transmission is complete, so is the call.” No floor control procedure is specified here,
since it is assumed that there shall be no change in floor arbitration throughout the entire
duration of the broadcast group call.

3.1. Broadcast group call – call control

3.1.1. Call setup

3.1.1.1.Call setup – establish a new call

In this scenario a user, UE A, decides to establish a broadcast group call (no existing one yet).
UE B requires user acknowledgement, while UE C does not.

Scenario purpose: To observe that a new broadcast group call can be established and that
users can join in.

Table 50: Call setup – establish a new call

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
0

- - B1: start-
stop

B1: start-
stop

B1: start-
stop - -

1

T0

UE A
initiates a
broadcast
group call

B2: in
progress

broadcast
group call

- -

UE A generates
and stores SDP,

call identifier
and MCPTT
user ID of the
call, generates

and sends
GROUP CALL
BROADCAST,

starts floor
control as

originating floor
participant,
establishes

media session,
and starts TFB2

10.3.2.4.1

89

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for

details
2

T0 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

BROADC
AST

- B3: pending
user action

B2: in-
progress

broadcast
group call

UE B stores the
call identifier,

current call type,
SDP, originating
MCPTT user ID
IE and MCPTT
group ID IE of

the call, and
starts TFB3;

UE C stores the
call identifier,

current call type,
SDP, originating
MCPTT user ID
IE and MCPTT
group ID IE of

the call,
establishes

media session,
starts floor
control as

terminating
participant and

starts TFB1

10.3.2.4.2

3

T0 +
t_AB1 +

t_B1

UE B
accepts the
incoming
broadcast
group call

-

B2: in-
progress

broadcast
group call

-

UE B establishes
media session,

starts floor
control as

terminating
participant, stops
TFB3 and starts

TFB1

10.3.2.4.3

3.1.1.2.Call setup – establish a new call with refusal to join

In this scenario, a user, UE A, decides to establish a broadcast group call (no existing one yet).
UE B requires user acknowledgement, while UE C does not. One of the users, UE B, decides
to reject the newly initiated call.

Scenario purpose: To observe that a new broadcast group call can be established and that a
user can refuse to join the call.

Table 51: Call setup – establish a new call with refusal to join

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0 - - B1: start-
stop

B1: start-
stop

B1: start-
stop

- -

90

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Timeline Triggering
event

UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0
UE A initiates

a broadcast
group call

B2: in
progress

broadcast
group call

- -

UE A generates
and stores SDP,

call identifier
and MCPTT
user ID of the
call, generates

and sends
GROUP CALL
BROADCAST,

starts floor
control as

originating floor
participant,
establishes

media session,
and starts TFB2

10.3.2.4.1

2

T0 +
t_AB1

UE B and UE
C receive
GROUP
CALL

BROADCAST

-
B3:

pending
user action

B2: in-
progress

broadcast
group call

UE B stores the
call identifier,

current call type,
SDP, originating
MCPTT user ID
IE and MCPTT
group ID IE of

the call, and
starts TFB3;

UE C stores the
call identifier,

current call type,
SDP, originating
MCPTT user ID
IE and MCPTT
group ID IE of

the call,
establishes

media session,
starts floor
control as

terminating
participant and

starts TFB1

10.3.2.4.2

3 T0 +
t_AB1 +

t_B1

UE B rejects
the incoming

broadcast
group call

-

B4:
ignoring
same call

ID

- UE B stops
TFB3 10.3.2.4.4

And the corresponding figure is Fig. 14:

91

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Call participant

MCPTT client B

Call participant

B1: start-stop

• A initiates a Broadcast Group
Call

• A starts TFB2

MCPTT client C

Call participant

Broadcast call setup – establish a new call with refusal to join

• B starts TFB3

• C establishes media session
• C starts TFB1

• B rejects broadcast call
• B stops TFB3

B2: in-progress broadcast
group call

B1: start-stop B1: start-stop

B2: in-progress broadcast
group call

B3: pending user action

B4: ignoring same call ID

Figure 14: Broadcast call setup – establish a new call with refusal to join

3.1.2. Call release

3.1.2.1.Call release by the originating user

In this scenario, a broadcast group call is released by the originating user of the broadcast group
call. UE A is considered the originating user. The originating user releases the call.

Scenario purpose: To observe that an ongoing broadcast group call can be released by the
originating user.

Table 52: Call release by the originating user

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

B2: in
progress

broadcast
group call

B2: in
progress

broadcast
group call

B2: in
progress

broadcast
group call

- -

92

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

1

T0

UE A
releases

broadcast
group call

B1: start-
stop - -

UE A releases
media session,
generates and
sends GROUP

CALL
BROADCAST

END, stops
floor control,

and stops TFB2

10.3.2.4.7

2

T0 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

BROADC
AST END

- B1: start-
stop

B1: start-
stop

UE B and UE
C release media

session and
stop floor

control

10.3.2.4.8

3.1.2.2.Call release by a participant

In this scenario, a terminating user (i.e., not the originating user of the broadcast group call)
releases from the broadcast group call. UE A is considered the originating user. A terminating
user, UE B, releases the call. We consider this scenario starts after UE A has already talked for
a while (nearing TFB1 expiry), and that there is only enough time left to retransmit the GROUP
CALL BROADCAST message once.

Scenario purpose: To observe that an ongoing broadcast group call can be released by a
participating user.

Table 53: Call release by a participant

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

0

- -

B2: in
progress

broadcast
group call

B2: in
progress

broadcast
group call

B2: in
progress

broadcast
group call

- -

1

T0

UE B
releases in-

progress
broadcast
group call

- B4: ignoring
same call ID -

UE B releases
the media

session, and
stops floor

control

10.3.2.4.6

2

T0 +
t_A1

UE A
TFB2

expires
- - -

UE A generates
and sends

GROUP CALL
BROADCAST,
and starts TFB2

10.3.2.4.9

93

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition

UE C state
transition

Consequent
behavior

Reference
for details

3

T0 +
t_A1 +
t_AB1

UE B and
UE C

receive
GROUP
CALL

BROADC
AST

- - -

UE B checks
that identifier in
GROUP CALL
BROADCAST
matches with
the stored call
identifier, and
starts TFB1;

UE C:
undefined

action /
behavior

10.3.2.4.10
N/A

4 T0 +
t_C1
(with

t_C1 >
t_A1 +
t_AB1)

UE C
TFB1

expires
- - B1: start-

stop

UE C clears
stored call
identifier

10.3.2.4.11

5 T0 +
t_B1
(with

t_B1 >
t_A1 +
t_AB1)

UE B
TFB1

expires
- B1: start-

stop -
UE B clears
stored call
identifier

10.3.2.4.11

And the corresponding figure is Fig. 15:

94

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Call participant

MCPTT client B

Call participant

MCPTT client C

Call participant

Broadcast Call Release by a participant

• B starts TFB1

• C timer TFB1 expires
• C clears identifiers

• B releases media session

• A timer TFB2 expires
• A re-starts TFB2

B4: ignoring same call ID

B1: start-stop
• B timer TFB1 expires
• B clears identifiers

B2: in-progress broadcast
group call

B2: in-progress broadcast
group call

B2: in-progress broadcast
group call

B1: start-stop

Figure 15: Broadcast call release by a participant

95

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Test scenarios details – private call

A private call is a call occurring between two MCPTT clients. A private call can operate under
automatic commencement mode or the manual commencement mode, modifying the way the
call shall be established. 3GPP TS 24.379 v14.2.0 [4], clause 11 describes the logic and
functioning of private calls, specifically clause 11.2 for off-network private call.

4.1. Private call – call control

4.1.1. Private call setup

4.1.1.1.Private call setup – establish new call in automatic mode

In this scenario a user, UE A, decides to establish a private call (no existing one yet). The call
is made using automatic commencement mode.

Scenario purpose: To observe that a private call can be initiated (in automatic commencement
mode).

Table 54: Private call setup – establish new call in automatic mode

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- - P0: start-
stop

P0: start-
stop - -

1

T0

Indication
from UE A
to initiate a
private call

to UE B

P2: waiting
for call

response
-

UE A generates and stores Call
Identifier, MCPTT user ID, user
ID of the callee, user location,

offer SDP, creates call type
control state machine and

establishes end-to-end security
(if needed), stores

commencement mode as
"AUTOMATIC

COMMENCEMENT MODE",
generates and sends PRIVATE

CALL SETUP REQUEST,
starts TFP1 and initializes CFP1

11.2.2.4.2.1

2

T0 +
t_AB1

UE B
receives

PRIVATE
CALL
SETUP

REQUEST

- P5: pending

UE B stores Call Identifier IE
as call identifier, MCPTT user
ID of the caller IE as caller ID
and own MCPTT user ID as
callee IE, creates call type

control state machine, generates
and stores answer SDP,

generates and sends PRIVATE
CALL ACCEPT, establishes a
media session, starts TFP4 and

initializes CFP4

11.2.2.4.3.2

96

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
3

T0 +
t_AB1 +
t_BA1

UE A
receives

PRIVATE
CALL

ACCEPT

P4: part of
ongoing

call
-

UE A stores SDP answer,
generates and sends PRIVATE

CALL ACCEPT ACK,
establishes a media session,

starts floor control as
terminating floor participant,
stops TFP1, and starts TFP5

11.2.2.4.2.8

4
T0 +

t_AB1 +
t_BA1 +
t_AB2

UE B
receives

PRIVATE
CALL

ACCEPT
ACK

- P4: part of
ongoing call

UE B starts floor control as
terminating MCPTT client,
stops TFP4 and starts TFP5

11.2.2.4.3.4

And the corresponding figure is Fig. 16:

MCPTT client A

Call participant

MCPTT client B

Call participant

P0: start-stop

• A starts TFP1
• A initializes CFP1

Private Call Setup – establish a new call in automatic mode

• B establishes media session
• B starts TFP4
• B initializes CFP4

P2: waiting for call response

P0: start-stop

P5: pending

• B stops TFP4
• B starts TFP5P4: part of ongoing call

• A establishes media session
• A stops TFP1
• A starts TFP5

P4: part of ongoing call

Figure 16: Private call setup – establish new call in automatic mode

97

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

4.1.1.2.Private call setup – establish and cancel new call in automatic mode

In this scenario a user, UE A, decides to establish a private call (no existing one yet). The call
is made using automatic commencement mode. The UE initiating the call decides to cancel the
call almost immediately afterwards and the SDP offer does not contain a dedicated key
attribute.

Scenario purpose: To observe that a private call can be initiated (in automatic
commencement mode) and canceled before it is established.

Table 55: Private call setup – establish and cancel new call in automatic mode

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- - P0: start-stop P0: start-stop -- -

1

T0

Indication
from UE A to

initiate a
private call to

UE B

P2: waiting
for call

response
-

UE A generates and
stores Call Identifier,
MCPTT user ID, user
ID of the callee, user
location, offer SDP,

creates call type control
state machine and

establishes end-to-end
security (if needed),

stores commencement
mode as

"AUTOMATIC
COMMENCEMENT

MODE", generates and
sends PRIVATE CALL

SETUP REQUEST,
starts TFP1 and
initializes CFP1

11.2.2.4.2.1

2

T0 +
t_AB1

UE B
receives

PRIVATE
CALL
SETUP

REQUEST

- P5: pending

UE B stores Call
Identifier IE as call

identifier, MCPTT user
ID of the caller IE as

caller ID and own
MCPTT user ID as

callee IE, creates call
type control state

machine, generates and
stores answer SDP,
generates and sends
PRIVATE CALL

ACCEPT, establishes a
media session, starts
TFP4 and initializes

CFP4

11.2.2.4.3.2

98

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
3

T0 +
t_A1

UE A cancels
the private
call request

P3: waiting
for release
response

-

UE A generates and
sends PRIVATE CALL
RELEASE, and starts

TFP3

11.2.2.4.2.9

4
T0 +

t_AB1 +
t_BA1

UE A
receives

PRIVATE
CALL

ACCEPT

- - UE A discards the
message 11.2.2.4.6.1

5
T0 +

t_A1 +
t_AB2

UE B
receives

PRIVATE
CALL

RELEASE

- - UE B discards the
message 11.2.2.4.6.1

6 T0 +
t_A1 +
n*TFP3

(with
CFP3 at
its upper

limit)

UE A TFP3
expires

P1: ignoring
same call ID

UE A terminates the
media session, releases

the call type control
state machine, and

starts TFP7

11.2.2.4.5.3

7 T0 +
t_A1 +
n*TFP3
+ TFP7

UE A TFP7
expires P0: start-stop UE A clears the stored

call identifier 11.2.2.4.5.7

And the corresponding figure is Fig. 17:

99

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Call participant

MCPTT client B

Call participant

P0: start-stop

• A starts TFP1
• A initializes CFP1

Private Call Setup – establish and cancel new call in automatic mode

• B establishes media session
• B starts TFP4
• B initializes CFP4

P2: waiting for call response

P0: start-stop

P5: pending

• A cancels call request
• A starts TFP3

P3: waiting for release
response

P1: ignoring same call ID

P0: start-stop

• A terminates media session
• A releases call type control

state machine
• A starts TFP7

• A timer TFP7 expires
• A clears stored call identifier

Figure 17: Private call setup – establish and cancel new call in automatic mode

4.1.1.3.Private call setup – establish new call in manual mode

In this scenario a user, UE A, decides to establish a private call (no existing one yet). The call
is made using manual commencement mode, and the SDP offer does not contain a dedicated
key attribute.

Scenario purpose: To observe that a private call can be initiated (in manual commencement
mode), without any key attribute in the SDP offer.

100

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 56: Private call setup – establish new call in manual mode

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- - P0: start-stop P0: start-stop - -

1

T0

Indication
from UE A
to initiate a
private call

to UE B

P2: waiting
for call

response
-

UE A generates and stores
Call Identifier, MCPTT
user ID, user ID of the

callee, user location, offer
SDP, creates call type
control state machine,
stores commencement
mode as "MANUAL
COMMENCEMENT

MODE", generates and
sends PRIVATE CALL

SETUP REQUEST, starts
TFP1 and initializes CFP1

11.2.2.4.2.1

2

T0 +
t_AB1

UE B
receives

PRIVATE
CALL
SETUP

REQUEST

- P5: pending

UE B stores Call Identifier
IE as call identifier,

MCPTT user ID of the
caller IE as caller ID and
own MCPTT user ID as

callee ID, creates call type
control state machine,
generates and stores

answer SDP, generates and
sends PRIVATE CALL

RINGING, and starts TFP2

11.2.2.4.4.1

3
T0 +

t_AB1 +
t_BA1

UE A
receives

PRIVATE
CALL

RINGING

- - UE A remains in its state 11.2.2.4.2.3

4

T0 + t_B1
(with

t_B1 >
t_AB1)

UE B
accepts the
incoming

private call

- -

UE B generates and stores
SDP, generates and sends

PRIVATE CALL
ACCEPT, establishes a

media session, stops TFP2,
starts TFP4 and initializes

CFP4

11.2.2.4.4.3

5

T0 + t_B1
+ t_BA2

UE A
receives

PRIVATE
CALL

ACCEPT

P4: part of
ongoing call -

UE A stores SDP answer,
generates and sends
PRIVATE CALL

ACCEPT ACK, establishes
a media session, starts

floor control as terminating
floor participant, stops

TFP1 and TFP2, and starts
TFP5

11.2.2.4.2.8

101

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
6

T0 + t_B1
+ t_BA2
+ t_AB2

UE B
receives

PRIVATE
CALL

ACCEPT
ACK

- P4: part of
ongoing call

UE B starts floor control as
terminating MCPTT client,

stops TFP4 and starts
TFP5

11.2.2.4.4.5

And the corresponding figure is Fig. 18:

MCPTT client A

Call participant

MCPTT client B

Call participant

P0: start-stop

• A starts TFP1
• A initializes CFP1

Private Call Setup – establish a new call in manual mode

• B starts TFP2

P2: waiting for call response

P0: start-stop

P5: pending

• B stops TFP4
• B starts TFP5

• A establishes media session
• A stops TFP1 & TFP2
• A starts TFP5

P4: part of ongoing call

• B accepts private call
• B establishes media session
• B stops TFP2
• B starts TFP4 and initializes CFP4

P4: part of ongoing call
Figure 18: Private call setup – establish new call in manual mode

4.1.1.4.Private call setup – establish and cancel new call in manual mode

In this scenario a user, UE A, decides to establish a private call (no existing one yet). The call
is made using manual commencement mode. The UE initiating the call decides to cancel it
almost immediately after.

Scenario purpose: To observe that a private call can be initiated (in manual commencement
mode) and canceled before it is established.

102

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 57: Private call setup – establish and cancel new call in manual mode

Timeline Triggering

event

UE A
state

transition

UE B
state

transition
Consequent behavior Reference

for details

0
- - P0: start-

stop
P0: start-

stop - -

1

T0

Indication
from UE A
to initiate a
private call

to UE B

P2:
waiting
for call

response

-

UE A generates and stores Call
Identifier, MCPTT user ID, user
ID of the callee, user location,

offer SDP, creates call type
control state machine, stores

commencement mode as
"MANUAL

COMMENCEMENT MODE",
generates and sends PRIVATE

CALL SETUP REQUEST, starts
TFP1 and initializes CFP1

11.2.2.4.2.1

2

T0 +
t_AB1

UE B
receives

PRIVATE
CALL
SETUP

REQUEST

- P5:
pending

UE B stores Call Identifier IE as
call identifier, MCPTT user ID
of the caller IE as caller ID and
own MCPTT user ID as callee

ID, creates call type control state
machine, generates and stores

answer SDP, generates and sends
PRIVATE CALL RINGING,

and starts TFP2

11.2.2.4.4.1

3
T0 +
t_A1

UE A
cancels the
private call

request

P3:
waiting

for release
response

-
UE A generates and sends

PRIVATE CALL RELEASE,
and starts TFP3

11.2.2.4.2.9

4
T0 +

t_AB1 +
t_BA1

UE A
receives

PRIVATE
CALL

RINGING

- - UE A discards the call control
message 11.2.2.4.6.1

5

T0 +
t_A1 +
t_AB2

UE B
receives

PRIVATE
CALL

RELEASE

-

P1:
ignoring
same call

ID

UE B generates and sends
PRIVATE CALL RELEASE

ACK, stops TFP4, starts TFP7
and releases the call type control

state machine

11.2.2.4.4.8

6
T0 +

t_A1 +
t_AB2 +
t_BA2

UE A
receives

PRIVATE
CALL

RELEASE
ACK

P1:
ignoring
same call

ID

-
UE A terminates the media

session, stops TFP3 and starts
TFP7

11.2.2.4.5.5

And the corresponding figure is Fig. 19:

103

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Call participant

MCPTT client B

Call participant

P0: start-stop

• A starts TFP1
• A initializes CFP1

Private Call Setup – establish and cancel new call in manual mode

• B starts TFP2

P2: waiting for call response

P0: start-stop

P5: pending

• B stops TFP4
• B starts TFP7

P1: ignoring same call ID

• A terminates media session
• A stops TFP3
• A starts TFP7

P1: ignoring same call ID

• B accepts private call
• B establishes media session
• B stops TFP2
• B starts TFP4 and initializes CFP4

P3: waiting for release
response

• A cancels private call
• A starts TFP3

Figure 19: Private call setup – establish and cancel new call in manual mode

4.1.1.5.Private call setup – failure to establish new call

In this scenario a user, UE A, decides to establish a private call. The call is made using
automatic commencement mode. Both users have different call identifiers, hence the call fails
to establish. Two attempts are made by UE A.

Scenario purpose: To observe that a private call cannot be established between two users
with different call identifiers.

Table 58: Private call setup – failure to establish a new call

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details

0
- - P0: start-stop P0: start-stop - -

104

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details

1

T0

Indication
from UE A to

initiate a
private call to

UE B

P2: waiting for call
response -

UE A generates and stores
Call Identifier, MCPTT user

ID, user ID of the callee,
user location, offer SDP,

creates call type control state
machine and establishes end-
to-end security (if needed),

stores commencement mode
as "AUTOMATIC

COMMENCEMENT
MODE", generates and
sends PRIVATE CALL

SETUP REQUEST, starts
TFP1 and initializes CFP1

11.2.2.4.2.1

2

T0 +
t_AB1

UE B
receives

PRIVATE
CALL
SETUP

REQUEST

- P1: ignoring
same call ID

UE B compares and
acknowledges difference
between Call Identifiers,

stores Call Identifier IE of
received message as call

identifier, MCPTT user ID
of caller IE as caller ID, own
MCPTT user ID as callee ID,

generates and sends
PRIVATE CALL REJECT,

and starts TFP7

11.2.2.4.3.1

3
T0 +

t_AB1 +
t_BA1

UE A
receives

PRIVATE
CALL

REJECT

P1: ignoring same
call ID -

UE A releases call control
state machine, stops TFP1
and TFP2, and starts TFP7

11.2.2.4.2.7

4

T0 +
t_AB1 +
t_BA1 +

t_A1

Indication
from UE A to

initiate a
private call

P2: waiting for call
response -

UE A generates and stores
Call Identifier, MCPTT user

ID, user ID of the callee,
user location, offer SDP,

creates call type control state
machine and establishes end-
to-end security (if needed),

stores commencement mode
as "AUTOMATIC

COMMENCEMENT
MODE", generates and
sends PRIVATE CALL

SETUP REQUEST, starts
TFP1 and initializes CFP1

11.2.2.4.2.1

105

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details

5

T0 +
t_AB1 +
t_BA1 +
t_A1 +
t_AB2

UE B
receives

PRIVATE
CALL
SETUP

REQUEST

- -

UE B compares and
acknowledges difference
between Call Identifiers,

stores Call Identifier IE of
received message as call

identifier, MCPTT user ID
of caller IE as caller ID, own
MCPTT user ID as callee ID,

generates and sends
PRIVATE CALL REJECT,

and starts TFP7

11.2.2.4.3.1

6 T0 +
t_AB1 +
t_BA1 +
t_A1 +

t_AB2 +
t_BA2

UE A
receives

PRIVATE
CALL

REJECT

P1: ignoring same
call ID -

UE A releases call control
state machine, stops TFP1
and TFP2, and starts TFP7

11.2.2.4.2.7

And the corresponding figure is Fig. 20:

MCPTT client A

Call participant

MCPTT client B

Call participant

P0: start-stop

• A starts TFP1
• A initializes CFP1

Private Call Setup – failure to establish new call

• B starts TFP7

P0: start-stop

• B starts TFP7

• A stops TFP1 & TFP2
• A starts TFP7

• A initiates private call
• A starts TFP1 and initializes

CFP1

P1: ignoring same call ID

P1: ignoring same call ID

P1: ignoring same call ID

P2: waiting for call response

P2: waiting for call response

• A stops TFP1 & TFP2
• A starts TFP7

Figure 20: Private call setup – failure to establish a new call

106

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

4.1.2. Private call cancellation

4.1.2.1.Private call cancellation – cancel an ongoing call (normal)

In this scenario a user, UE A, decides to cancel an ongoing private call as part of the usual
normal call release (i.e., the user wants to end the private call).

Scenario purpose: To observe that a user can cancel an ongoing private call.

Table 59: Private call cancellation – cancel an ongoing call (normal)

Timeline Triggering

event
UE A state
transition

UE B state
transition

Consequent
behavior

Reference
for details

0
- - P4: part of

ongoing call
P4: part of

ongoing call - -

1

T0 UE A releases
the private call

P3: waiting for
release

response
-

UE A generates
and sends

PRIVATE CALL
RELEASE, starts

TFP3 and
initializes CFP3

11.2.2.4.5.1

2

T0 + t_AB1

UE B receives
PRIVATE

CALL
RELEASE

- P1: ignoring
same call ID

UE B generates
and sends

PRIVATE CALL
RELEASE ACK,
terminates media
session, releases

the call type
control state
machine and
starts TFP7

11.2.2.4.5.4

3

T0 + t_AB1
+ t_BA1

UE A receives
PRIVATE

CALL
RELEASE ACK

P1: ignoring
same call ID -

UE A terminates
the media

session, stops
TFP3 and starts

TFP7

11.2.2.4.5.5

4.1.2.2.Private call cancellation – cancel an ongoing call (timer expiry)

In this scenario a user, UE A, decides to cancel an ongoing private call. However, those Private
Call Release messages are lost and not received by UE B (out of range). Hence no response
(i.e., Private Call Release Ack) message is received at UE A.

Scenario purpose: To observe that a user can cancel an ongoing private call using timer, due
to a non-responding user (e.g., out of range).

107

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 60: Private call cancellation – cancel an ongoing call (timer expiry)

Timeline Triggering

event
UE A state
transition

UE B state
transition

Consequent
behavior

Reference
for details

0
- - P4: part of

ongoing call
P4: part of

ongoing call - -

1

T0
UE A

releases the
private call

P3: waiting for
release

response
-

UE A generates and
sends PRIVATE

CALL RELEASE,
starts TFP3 and
initializes CFP3

11.2.2.4.5.1

2

T0 + TFP3 UE A TFP3
expires - -

UE A generates and
sends PRIVATE

CALL RELEASE,
starts TFP3 and

increments CFP3

11.2.2.4.5.2

3

T0 +
n*TFP3

UE A TFP3
expires
(CFP3's

upper limit)

P1: ignoring
same call ID-- -

UE A terminates the
media session,

releases the call type
control state machine

and starts TFP7

11.2.2.4.5.3

4
T0 + TFP5
(with TFP5
> n*TFP3)

UE B TFP5
expires - P1: ignoring

same call ID

UE B terminates the
media session,

releases the call type
control state machine

and starts TFP7

11.2.2.4.5.6

And the corresponding figure is Fig. 21:

108

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Call participant

MCPTT client B

Call participant

• A starts TFP3
• A initializes CFP3

Private Call Cancellation – cancel an ongoing call (timer expiry)

P1: ignoring same call ID

• A timer TFP3 expires
• A starts TFP3 & increments

CFP3

P4: part of ongoing call P4: part of ongoing call

P3: waiting for release
response

• A timer TFP3 expires for Nth
time

• A terminates media session
• A starts TFP7

P1: ignoring same call ID
• B timer TFP5 expires
• B starts TFP7

Figure 21: Private call cancellation – cancel an ongoing call (timer expiry)

4.1.3. Private call expiration

In this scenario a private call is ongoing. Timer TFP5 expires (lasted the maximum time for a
private call), hence the call is terminated. The call is renewed afterwards.

Scenario purpose: To observe that a private call is terminated when the maximum duration
for the call is reached (TFP5).

Table 61: Private call maximum duration expiration

Timeline Triggering

event

UE A
state

transition

UE B
state

transition
Consequent behavior Reference

for details

0

- -

P4: part
of

ongoing
call

P4: part
of

ongoing
call

- -

1

T0 UE A TFP5
expires

P1:
ignoring
same call

ID

-

UE A releases the call type
control state machine and

terminates the media session, and
starts TFP7

11.2.2.4.5.6

109

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event

UE A
state

transition

UE B
state

transition
Consequent behavior Reference

for details

2

T0 + t_B1 UE B TFP5
expires -

P1:
ignoring
same call

ID

UE B releases the call type
control state machine and

terminates the media session, and
starts TFP7

11.2.2.4.5.6

3

T0 +
t_A1
(with

t_A1 > +
t_B1)

Indication
from UE A
to initiate a
private call

P2:
waiting
for call

response

-

UE A generates and stores Call
Identifier, MCPTT user ID, user
ID of the callee, user location,

offer SDP, creates call type
control state machine and

establishes end-to-end security (if
needed), stores commencement

mode as "MANUAL
COMMENCEMENT MODE",
generates and sends PRIVATE

CALL SETUP REQUEST, starts
TFP1 and initializes CFP1

11.2.2.4.2.1

4

T0 +
t_A1 +
t_AB1

UE B
receives

PRIVATE
CALL
SETUP

REQUEST

- P5:
pending

UE B stores Call Identifier IE as
call identifier, MCPTT user ID of
the caller IE as caller ID and own

MCPTT user ID as callee ID,
creates call type control state
machine, generates and stores

answer SDP, generates and sends
PRIVATE CALL RINGING, and

starts TFP2

11.2.2.4.4.1

5 T0 +
t_A1 +

t_AB1 +
t_BA1

UE A
receives

PRIVATE
CALL

RINGING

- - - 11.2.2.4.2.3

4.2. Private call – call type control

Note: Interaction dependence between private call control and private call type control.

4.2.1. Enter private call

In this scenario no ongoing private call is established yet. UE A eventually establishes a call.
The stored emergency state is set to “False”. The various messages sent are originating from
the private call control state machine, not the private call type state machine.

Scenario purpose: To observe that the private call state type is entered upon establishment
of a private call.

110

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 62: Enter private call

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- -
Q0: waiting for

the call to be
established

Q0: waiting for
the call to be
established

- -

1

T0

UE A
initiates a

Private
Call

- -

UE A sets current Call
Type to "PRIVATE
CALL" and stores
current ProSe per-
packet priority to

MCPTT off-network
private call

corresponding value (a
PRIVATE CALL

SETUP REQUEST is
sent by UE A’s basic

call control state
machine)

11.2.3.4.2

2

T0 +
t_AB1

UE B
receives

PRIVATE
CALL
SETUP

REQUEST
(message
sent from
the basic

call
control

state
machine)

- -

UE B sets the current
call type to "PRIVATE

CALL" and sets
current ProSe per-
packet priority to

MCPTT off-network
private call

corresponding value

11.2.3.4.3

3

T0 +
t_AB1 +
t_BA1

UE A
receives

PRIVATE
CALL

ACCEPT
(message
sent from
the basic

call
control

state
machine)

Q1: in-progress
private call - - 11.2.3.4.4

111

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
4

T0 +
t_AB1 +
t_BA1 +
t_AB2

UE B
receives

PRIVATE
CALL

ACCEPT
ACK

(message
sent from
the basic

call
control

state
machine)

- Q1: in-progress
private call - 11.2.3.4.4

4.2.2. Enter private emergency call

In this scenario no ongoing private call is established yet. UE A eventually establishes a call.
The stored emergency state is set to “True”.

Scenario purpose: To observe that the emergency private call state type is entered upon
establishment of a private emergency call.

Table 63: Enter private emergency call

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- -

Q0: waiting
for the call

to be
established

Q0: waiting
for the call

to be
established

- -

1

T0 UE A initiates
a Private Call - -

UE A sets current Call
Type to "EMERGENCY
PRIVATE CALL" and

stores current ProSe per-
packet priority to MCPTT

off-network private call
corresponding value (a

PRIVATE CALL SETUP
REQUEST is sent by

UE A’s basic call control
state machine)

11.2.3.4.2

2

T0 +
t_AB1

UE B receives
PRIVATE

CALL SETUP
REQUEST

(message sent
from the basic

call control
state machine)

- -

UE B sets the current call
type to "EMERGENCY

PRIVATE CALL" and sets
current ProSe per-packet
priority to MCPTT off-

network private call
corresponding value

11.2.3.4.3

112

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
3

T0 +
t_AB1 +
t_BA1

UE A receives
PRIVATE

CALL
ACCEPT

(message sent
from the basic

call control
state machine)

Q2: in-
progress

emergency
private call

- UE A starts TFP8 11.2.3.4.4

4

T0 +
t_AB1 +
t_BA1 +
t_AB2

UE B receives
PRIVATE

CALL
ACCEPT ACK
(message sent
from the basic

call control
state machine)

-

Q2: in-
progress

emergency
private call

UE B starts TFP8 11.2.3.4.4

4.2.3. Private call upgrade

4.2.3.1.Private call upgrade – upgrade call

In this scenario an ongoing private call is already established. UE A decides to upgrade the call
to an emergency private call.

Scenario purpose: To observe that a private call can be upgraded to an emergency private
call, with corresponding state types.

Table 64: Private call upgrade – upgrade call

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- -
Q1: in-

progress
private call

Q1: in-
progress

private call
- -

113

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
1

T0

UE A
upgrades

call to
Emergency

Call

Q2: in-
progress

emergency
private call

-

UE A checks if emergency
leaf node from user profile is
set to "True", generates and
stores emergency offer SDP,

updates caller ID as own
MCPTT user ID and callee ID

as MCPTT user ID of the
other user, stores current user
location, sets current call type
to "EMERGENCY PRIVATE
CALL", generates and sends

PRIVATE CALL SETUP
REQUEST, sets ProSe per-

packet priority to
corresponding value, starts
TFP1 and initializes CFP1

11.2.3.4.5.1

2

T0 +
t_AB1

UE B
receives

PRIVATE
CALL
SETUP

REQUEST

-

Q2: in-
progress

emergency
private call

UE B generates and stores
emergency answer SDP,
updates caller ID with

MCPTT user ID of the caller
IE and callee ID with own
MCPTT user ID, generates
and sends PRIVATE CALL
ACCEPT, sets ProSe per-

packet priority to
corresponding value, sets

current call type to
"EMERGENCY PRIVATE

CALL", and starts TFP8

11.2.3.4.5.6

3

T0 +
t_AB1 +
t_BA1

UE A
receives

PRIVATE
CALL

ACCEPT

- -

UE A stores SDP answer IE as
emergency SDP answer,

generates and sends PRIVATE
CALL ACCEPT ACK,

establishes media session,
stops TFP1 and starts TFP8

11.2.3.4.5.3

4.2.3.2.Private call upgrade – rejected upgrade call

In this scenario an ongoing private call is already established. UE A decides to upgrade the call
to an emergency private call. The media session cannot be established on UE B’s side hence
the upgrade is rejected. A TFP1 timer expiration occurs due to the first private call setup
request message being lost.

Scenario purpose: To observe that a private call upgrade can be rejected by the called user.

114

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 65: Private call upgrade – rejected upgrade call

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- -
Q1: in-

progress
private call

Q1: in-
progress

private call
- -

1

T0

UE A
upgrades

call to
Emergency

Call

Q2: in-
progress

emergency
private call

-

UE A checks if emergency
leaf node from user profile is
set to "True", generates and
stores emergency offer SDP,

updates caller ID as own
MCPTT user ID and callee ID

as MCPTT user ID of the
other user, stores current user
location, sets current call type
to "EMERGENCY PRIVATE
CALL", generates and sends

PRIVATE CALL SETUP
REQUEST, sets ProSe per-

packet priority to
corresponding value, starts
TFP1 and initializes CFP1

11.2.3.4.5.1

2

T0 +
TFP1

UE A TFP1
expires - -

UE A may update user
location, generates and sends

PRIVATE CALL SETUP
REQUEST, starts TFP1 and

increments CFP1

11.2.3.4.5.2

3

T0 +
TFP1 +
t_AB1

UE B
receives

PRIVATE
CALL
SETUP

REQUEST

- -

UE B sets call identifier IE
with the call identifier in the

received message, sets
MCPTT user ID of the caller
IE and of the callee IE, sets

Reason IE as either "FAILED"
or "MEDIA FAILURE",

generates and sends PRIVATE
CALL REJECT

11.2.3.4.5.6

4

T0 +
TFP1 +
t_AB1 +
t_BA1

UE A
receives

PRIVATE
CALL

REJECT

Q1: in-
progress

private call
-

UE A sets ProSe per-packet
priority to corresponding

value, sets current call type to
"PRIVATE CALL" and stops

TFP1

11.2.3.4.5.4

And the corresponding figure is Fig. 22:

115

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Call participant

MCPTT client B

Call participant

• A starts TFP1
• A initializes CFP1
• A sets call type to

“Emergency Private Call”

Private call upgrade – rejected upgrade call

• A sets call type to “Private
Call”

• A stops TFP1

Q1: in-progress private call Q1: in-progress private call

Q2: in-progress emergency
private call

Q1: in-progress private call

• A timer TFP1 expires
• A starts TFP1 & increments

CFP1

Figure 22: Private call upgrade – rejected upgrade call

4.2.3.3.Private call upgrade – failed upgrade call

In this scenario an ongoing private call is already established. UE A decides to upgrade the call
to an emergency private call. However, in the meantime UE A and UE B get out of range of
each other. UE B does not respond to the upgrade, hence UE A releases the call.

Scenario purpose: To observe that a private call upgrade fails if the user does not respond
(e.g., out of range), and results in the call being released by the callee and called party receives
an internal indication to release the call.

Table 66: Private call upgrade – failed upgrade call

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- -
Q1: in-

progress
private call

Q1: in-
progress

private call
- -

116

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
1

T0

UE A
upgrades

call to
Emergency

Call

Q2: in-
progress

emergency
private call

-

UE A checks if
emergency leaf node

from user profile is set to
"True", generates and
stores emergency offer
SDP, updates caller ID
as own MCPTT user ID
and callee ID as MCPTT
user ID of the other user,

stores current user
location, sets current call
type to "EMERGENCY

PRIVATE CALL"",
generates and sends
PRIVATE CALL

SETUP REQUEST, sets
ProSe per-packet priority
to corresponding value,

starts TFP1 and
initializes CFP1

11.2.3.4.5.1

2

T0 +
TFP1

UE A TFP1
expires - -

UE A may update user
location, generates and
sends PRIVATE CALL

SETUP REQUEST,
starts TFP1 and

increments CFP1

11.2.3.4.5.2

3

T0 +
n*TFP1

UE A TFP1
expires

(CFP1 at its
upper limit)

Q0: waiting
for the call to
be established

-
UE A releases stored

current call type, releases
ProSe per-packet priority

11.2.3.4.5.5

4

T0 +
t_B1
(with

t_B1 >
n*TFP1)

UE B
releases the

call
-

Q0: waiting for
the call to be
established

UE B releases stored
current call type, releases
ProSe per-packet priority

11.2.3.4.7

4.2.4. Private emergency call downgrade

4.2.4.1.Private emergency call downgrade – downgrade call TFP6 expiry

117

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

In this scenario an ongoing emergency private call is already established. UE A decides to
downgrade the call to a private call. Timer TFP6 expires since the first PRIVATE CALL
EMERGENCY CANCEL message is lost.

Scenario purpose: To observe that an ongoing emergency private call can be downgraded to
a private call, even with the loss of a single message (PRIVATE CALL EMERGENCY
CANCEL).

Table 67: Private emergency call downgrade – downgrade call TFP6 expiry

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- -

Q2: in-
progress

emergency
private call

Q2: in-
progress

emergency
private call

- -

1

T0
UE A cancels the

emergency
private call

Q1: in-
progress

private call
-

UE A generates and
sends PRIVATE CALL

EMERGENCY
CANCEL, sets stored

current call type to
"PRIVATE CANCEL",
stops TFP8, initializes
CFP6 and starts TFP6

11.2.3.4.6.1

2

T0 +
TFP6

UE A TFP6
expires - -

UE A generates and
sends PRIVATE CALL

EMERGENCY
CANCEL, starts TFP6
and increments CFP6

11.2.3.4.6.2

3

T0 +
TFP6 +
t_AB1

UE B receives
PRIVATE

CALL
EMERGENCY

CANCEL

-
Q1: in-

progress
private call

UE B generates and
sends PRIVATE CALL

EMERGENCY CANCEL
ACK, establishes a media
session based on the SDP

body of stored answer
SDP, sets current call
type to "PRIVATE

CALL", sets ProSe per-
packet priority to

corresponding value, and
stops TFP8

11.2.3.4.6.5

4

T0 +
TFP6 +
t_AB1 +
t_BA1

UE A receives
PRIVATE

CALL
EMERGENCY
CANCEL ACK

- -

UE A sets ProSe per-
packet priority to

corresponding value,
establishes a media

session based on the SDP
body of stored answer
SDP, and stops TFP6

11.2.3.4.6.3

118

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

And the corresponding figure is Fig. 23:

MCPTT client A

Call participant

MCPTT client B

Call participant

• A stops TFP8
• A starts TFP6 & initializes

CFP6
• A sets call type to

“Private Cancel”

Private emergency call downgrade – downgrade call TFP6 expiry

• A establishes media session
• A stops TFP6

Q2: in-progress emergency
private call

Q2: in-progress emergency
private call

Q1: in-progress private call

• B sets call type to “Private Call”
• B stops TFP8Q1: in-progress private call

• A timer TFP6 expires
• A starts TFP6 &

incremenents CFP6

Figure 23: Private emergency call downgrade – downgrade call TFP6 expiry

4.2.4.2.Private emergency call downgrade – downgrade call out of range

In this scenario an ongoing emergency private call is already established. UE A decides to
downgrade the call to a private call. However, the “PRIVATE CALL EMERGENCY
CANCEL” messages sent by UE A are lost (UE B is out of range) during this scenario. Thus,
UE B does not respond to the downgrade, so UE A releases the call.

Scenario purpose: To observe that, when downgrading an ongoing emergency private call to
a basic private call, if both users are out of range then the private call eventually gets released
by UE A.

119

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Table 68: Private emergency call downgrade – downgrade call out of range

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- -

Q2: in-
progress

emergency
private call

Q2: in-
progress

emergency
private call

- -

1

T0
UE A cancels
the emergency

private call

Q1: in-
progress

private call
-

UE A generates and
sends PRIVATE CALL

EMERGENCY
CANCEL, sets stored

current call type to
"PRIVATE CANCEL",
stops TFP8, initializes
CFP6 and starts TFP6

11.2.3.4.6.1

2

T0 +
TFP6

UE A TFP6
expires - -

UE A generates and
sends PRIVATE CALL

EMERGENCY
CANCEL, starts TFP6
and increments CFP6

11.2.3.4.6.2

3

T0 +
n*TFP6

UE A TFP6
expires (with

value of CFP6
at its upper

limit)

Q0: waiting
for the call

to be
established

-

UE A releases stored
current call type, releases
stored ProSe per-packet

priority

11.2.3.4.6.4

And the corresponding figure is Fig. 24:

120

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

MCPTT client A

Call participant

MCPTT client B

Call participant

• A stops TFP8
• A starts TFP6 & initializes

CFP6
• A sets call type to

“Private Cancel”

Private emergency call downgrade – downgrade call out of range

Q2: in-progress emergency
private call

Q1: in-progress private call

• A timer TFP6 expires with
value of CFP6 at upper limit

Q2: in-progress emergency
private call

Q0: waiting for call to be
established

• A timer TFP6 expires
• A starts TFP6 &

increments CFP6

Figure 24: Private emergency call downgrade – downgrade call out of range

4.2.4.3.Private emergency call downgrade – downgrade call TFP8 expiry

In this scenario an ongoing emergency private call is already established. Timer TFP8 expires
at UE A and at UE B, so both UE A and UE B downgrade the call to a private call.

Scenario purpose: To observe that an ongoing emergency private call gets downgraded once
the appropriate implicit timer (TFP8) expires.

Table 69: Private emergency call downgrade – downgrade call TFP8 expiry

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
0

- -

Q2: in-
progress

emergency
private call

Q2: in-
progress

emergency
private call

- -

121

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Timeline Triggering

event
UE A state
transition

UE B state
transition Consequent behavior Reference

for details
1

T0 UE A TFP8
expires

Q1: in-
progress

private call
-

UE A establishes a media
session based on SDP body
of stored answer SDP, sets
ProSe per-packet priority to

corresponding value, and
sets stored current call type

to "PRIVATE CALL"

11.2.3.4.6A

2

T0 +
t_B1

UE B TFP8
expires -

Q1: in-
progress

private call

UE B establishes a media
session based on SDP body
of stored answer SDP, sets
ProSe per-packet priority to

corresponding value, and
sets stored current call type

to "PRIVATE CALL"

11.2.3.4.6A

122

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

 Summary and future work

Test scenarios presented in this document are designed based on 3GPP’s MCPTT off-network
mode protocols strictly, with the objective to help the verification of protocol implementations.
Benefits of these test scenarios are at least three folds:

 First, and the motivation of the effort, is that test scenarios are used to verify the ns-3

simulation model that our group developed. The simulator passed all tests.
 Second, during the process of test scenario design and simulation model verification,

the completeness and correctness of 3GPP’s MCPTT off-network mode operations
were examined in great details. In the past one and a half years, our group has identified
many errors and discrepancies in the MCPTT floor control and call control protocols,
and, as a result, have submitted several CRs [8-19] addressing off-network mode
operations to the 3GPP CT1 task group international meetings. All documents were
well received, as all corrections were accepted.

 Third, but not least, it is possible to utilize these test scenarios to verify the MCPTT
protocol implementations in other embodiments, e.g., prototype and commercial
devices. It is also possible to develop more specific test scenarios that may be adopted
by 3GPP, especially the sequence of message exchanges over the air, which are more
observable externally based on the figures that accompany several test scenarios.

The above benefits may accelerate the deployment of MCV over LTE, especially for the out-
of-coverage communication situation for public safety users. In the future, we plan to update
existing test scenarios and simulation models to conform with 3GPP standards as progress is
made.

Acknowledgments

The authors would like to thank Richard Rouil and David Cypher of Wireless Networks
Division in Communications Technology Laboratory at National Institute of Standards and
Technology for their technical discussions and suggestions, whose knowledge and insights
have accelerated the achievement of the task and motivated the completion of this document.

123

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

References

[1] NPSTC Public Safety Communications Report, “Public Safety Broadband Push-to-Talk
over Long Term Evolution Requirements,” July 2013.
[2] 3GPP TS 22.179 v13.3.0, “Mission Critical Push To Talk (MCPTT) over LTE; Stage 1
(Release 13)”, December 2015.
[3] 3GPP TS 23.179 v13.5.0, “Functional architecture and information flows to support
mission critical communication services; Stage 2 (Release 13)”, March 2017.
[4] 3GPP TS 24.379 v14.2.0, “Mission Critical Push To Talk (MCPTT) call control; Protocol
specification (Release 14)”, June 2017.
[5] 3GPP TS 24.380 v14.3.0, “Mission Critical Push To Talk (MCPTT) media plane control;
Protocol specification (Release 14)”, June 2017.
[6] 3GPP TS 24.381 v13.4.0, “Mission Critical Push To Talk (MCPTT) group management;
Protocol specification (Release 13)”, March 2017.
[7] 3GPP TS 24.384 v13.4.0, “Mission Critical Push To Talk (MCPTT) configuration
management; Protocol specification (Release 13)”, March 2017.
[8] US Department of Commerce, CT1 #99, “Corrections needed for alignment within TS”,
C1-163707 (revision of C1-163265), Tenerife, Spain, July 2016
[9] US Department of Commerce, FirstNet, CT1 #105, “Corrections to off-network floor
control procedures (Rel-13)”, C1-173438 (revision of C1-172949), Krakow, Poland, August
2017
[10] US Department of Commerce, FirstNet, CT1 #105, “Corrections to off-network floor
control procedures (Rel-14)”, C1-173439 (revision of C1-172949), Krakow, Poland, August
2017
[11] US Department of Commerce, FirstNet, CT1 #105, “Explicit corrections to off-network
floor control procedures and steps (Rel-13)”, C1-173440 (revision of C1-172950), Krakow,
Poland, August 2017
[12] US Department of Commerce, FirstNet, CT1 #105, “Explicit corrections to off-network
floor control procedures and steps (Rel-14)”, C1-173441 (revision of C1-172950), Krakow,
Poland, August 2017
[13] US Department of Commerce, FirstNet, CT1 #105, “Corrections to off-network call
control procedures (Rel-13)”, C1-173449 (revision of C1-173150), Krakow, Poland, August
2017
[14] US Department of Commerce, FirstNet, CT1 #105, “Corrections to off-network call
control procedures (Rel-14)”, C1-173450 (revision of C1-173150), Krakow, Poland, August
2017
[15] US Department of Commerce, CT1 #107, “Off-network call type control procedures:
merge of two calls (Rel-13)”, C1-175223 (revision of C1-174780), Reno, USA, November
2017
[16] US Department of Commerce, CT1 #107, “Off-network call type control procedures:
merge of two calls (Rel-14)”, C1-175224 (revision of C1-174780), Reno, USA, November
2017
[17] US Department of Commerce, CT1 #107, “Off-network Broadcast group call
procedures (Rel-13)”, C1-175225 (revision of C1-174781), Reno, USA, November 2017
[18] US Department of Commerce, CT1 #107, “Off-network Broadcast group call
procedures (Rel-14)”, C1-175226 (revision of C1-174781), Reno, USA, November 2017

124

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

[19] US Department of Commerce, CT1 #107, “Companion document for Off-network
Broadcast Group Call procedures updates”, C1-174782, Reno, USA, November 2017

125

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

Appendix: Scenario usages

This appendix gives a few examples for using the scenarios described in this document in
other areas of expertise, such as software testing, conformance testing, and interoperability
testing.

• Software testing:

When using the scenarios for software tests, they can be used to derive white box tests,
because some scenarios lack the necessary control and events to perform black box testing.
For black box testing, it is assumed that input, whether it be a user indication or a message
from a peer system, can be observed at the time it is consumed by the state machine being
tested, and that any outputs, such as a message, can also be observed after it is produced by
the state machine being tested. Thus, only inputs and outputs are used to derive a black box
test. It is also assumed that the inputs and outputs can be recorded over a period of time, such
that one can organize them into a sequence of events to compare with the order of events
described in the scenario timeline. Therefore, to pass a test, not only should all inputs and
outputs occur, but those inputs and outputs should happen in the same chronological order of
the scenario timeline. Any other events or order of events should be considered a failure. In
addition to the assumptions and requirements for black box testing, white box testing requires
observation of state transitions, the starting, stopping, and expiration of timers, as well as
changes in counter values to determine the result of a test. Thus, white box tests require
additional checks to verify that after each event (e.g., user indication, reception of a message
or timer expiration) all state machine variables contain the proper value based on the changes
described in the scenario. These checks are conditional and should evaluate to true or false.

Black Box Testing Example

*Note: Only state machines A and B are considered for black box testing in the following
scenario because the necessary control to ensure that UE B’s TFG2 timer expires before
UE C’s TFG2 timer, which occurs at step 3 of the scenario, may be lacking.

For the scenario, “Call setup – join call” defined in section 2.2.1.1, the following needs to be
done:

1. Instantiate two “Basic Group Call” call control state machines, which we will call A
and B

2. Interact with the state machines so that state machine B is in a basic group call while
A is not

3. Now the following should be observed, in order, after providing an indication to A to
“Initiate a basic group call”:

a. Observe that A sends a GROUP CALL PROBE message
b. Observe that B receives the GROUP CALL PROBE message
c. Observe that B sends a GROUP CALL ANNOUNCEMENT message with

fields coded properly within a certain timer period based on TFG2 + delta.
d. Observe that A receives the GROUP CALL ANNOUNCEMENT message

sent by B

126

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

If all events are observed and observed in the order in which they are described, then model
has passed the test that was derived from the scenario. If not, then the model has failed the
test.

White Box Testing

For the scenario, “Call setup – join call” defined in section 2.2.1.1, the following needs to be
done:

1. Instantiate three “Basic Group Call” call control state machines, which we will call A,
B, and C

2. Interact with the state machines so that state machines B and C are in the same basic
group call while A is not

3. Now the following should be observed and checked, in order, after providing an
indication to A to “Initiate a basic group call”:

a. Observe that A sends a GROUP CALL PROBE message
b. Checks for A:

i. Stored MCPTT group ID matches the group ID
ii. The corresponding Call Type Control state machine exist

iii. The timer TFG1 is running
iv. The timer TFG3 is running
v. Current state is the “S2: waiting for call announcement” state

c. Observe that:
i. B receives the GROUP CALL PROBE message

- Checks for B:
a. The timer TFG2 is running
b. The timer TFG6 is running
c. Stored probe response for the call is set to “true”
d. Current state is the “S3: part of ongoing call” state

-AND-
ii. C receives the GROUP CALL PROBE message

- Checks for C:
a. The timer TFG2 is running
b. The timer TFG6 is running
c. Stored probe response for the call is set to “true”
d. Current state is the “S3: part of ongoing call” state

d. Observe that B’s TFG2 timer expires
e. Observe that B sends a GROUP CALL ANNOUNCEMENT message with

fields coded properly within a certain timer period based on TFG2 + delta
i. Checks for B:

- The timer TFG2 is running
- The timer TFG6 is running
- Stored probe response for the call is set to “false”
- Current state is the “S3: part of ongoing call” state

127

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

f. Observe that A receives the GROUP CALL ANNOUNCEMENT message
sent by B

i. Checks for A:
- The timer TFG6 is running
- The timer TFG2 is running
- The timer TFG1 is NOT running
- The timer TFG3 is NOT running
- The stored SDP matches SDP received in the message
- The stored call ID matches call ID received in the message
- The stored originating user ID matches originating user ID

received in the message
- The stored refresh interval matches the refresh interval

received in the message
- The stored call start time matches the call start time received in

the message
- The floor control state machine has been initialized
- Current state is the “S3: part of ongoing call” state

g. Observe that C receives the GROUP CALL ANNOUNCEMENT message
sent by B

i. Checks for C:
- The timer TFG2 is running
- Stored probe response for the call is set to “false”

If all events are observed, all events are observed in the order in which they are described,
and all checks evaluated to true, i.e., all expected values and statuses were found, then the
model has passed the test that was derived from the scenario. If not, then the model has failed
the test.

• Conformance testing:

To use this scenario for conformance testing, one must examine one UE column at a time.

Test 1

Conformance test for UE A (device under test)
First one would need to create a test purpose based on the scenario.
For example: Test purpose: To determine that the Device Under Test (DUT) can join a group
call.
Second one would need to create a preamble to place the device under test into the start state
stated in the cell in the row labeled with a zero and under the UE A state transition column.
For example: Preamble: Turn on device.
Next the first action of conformance test would be to have UE A initiate the joining of a
group call and to observe that UE A sends a GROUP CALL PROBE message. This
information is contained in the row labeled 1. NOTE: If this was being used as an internal
software test, where one has access to the internal information, then one could also confirm

128

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

that there was a state transition from “S1: Start-stop“ to “S2: waiting for call
announcement” as stated in row 1 column UE A state transition and that timers TFG1 and
TFG3 were started as stated in the Consequent behavior column.
If any other message is sent by UE A, then the test would be considered a failure or
inconclusive.
Continuing the tester (acting as UE B) would then send a GROUP CALL
ANNOUNCEMENT message properly coded to UE A.
Since there is no observable action by UE A upon the receipt of the GROUP CALL
ANNOUNCEMENT message, one would need to provide an observable ending, such as
observe that the UE A hears the transmission on the group that was just joined.
If one hears the transmission of the group call via UE A, then the test verdict is pass.
If this does not occur, then the test verdict is fail.

Test 2

Conformance test for UE B (device under test)
First one would need to create a test purpose based on the scenario.
For example: Test purpose: To determine that the DUT responds to a request to join a group
call with the properly coded message.
One would read the cell in the row labeled with a zero and the UE B state transition column
to determine the start state which is “S3: part of ongoing-call”. Thus a preamble would be
needed to place UE B (device under test) in this state.
For example: Preamble: Have the tester establish a group call with DUT.
The first action of the conformance test would be to have the tester (acting as UE A) to send
a GROUP CALL PROBE message (coded with a different user identifier than the one used
in the preamble) to UE B. This information is contained in the row labeled 1.
The tester (acting as UE A) would wait to see if UE B (device under test) sends a GROUP
CALL ANNOUNCEMENT message with the properly coded fields back to the tester using
the information contained in both row 2 and row 3 Consequent behavior column within a
timer value that is TFG2 + delta.
If a GROUP CALL ANNOUNCEMENT message is received with fields properly coded,
then the test verdict is pass.
Otherwise fail.

• Interoperability testing:

*Note: Only state machines A and B are considered for interoperability testing in the following
scenario because the necessary control to ensure that UE B’s TFG2 timer expires before
UE C’s TFG2 timer, which occurs at step 3 of the scenario, may be lacking.

To use this scenario for interoperability testing, one will consider the observable interfaces
between UE A and UE B.
In this case UE A and UE B are required and thus the pair of interfaces is observable.
Create a test purpose:
For example: Observe that a UE (UE A) can join an ongoing group call (started by UE B).
Preamble:

129

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8236

o Turn on one UE (UE B)
o Cause UE B to establish a group call
o Begin speaking on the group call

Test step 1: Turn on UE A
Test step 2: Cause UE A to want to join the existing group call.

1: Observe that UE A sends a GROUP CALL PROBE message
2: Observe that UE B sends a GROUP CALL ANNOUNCEMENT message with

fields coded properly within a certain timer period based on TFG2 + delta
3: Observe (listen) that UE A hears the conversation on the group call.

If all events are observed, then verdict is pass.
If not, then verdict is fail.

	Abstract
	Keywords
	1. Introduction
	1.1. Motivation
	1.2. Overview
	1.3. Test scenario examples

	2. Test scenarios details – basic group call
	2.1. Basic group call – floor control
	2.1.1. Floor request
	2.1.1.1. Floor request – idle
	2.1.1.2. Floor request – idle multiple floor requests
	2.1.1.3. Floor request – queued
	2.1.1.4. Floor request – denied
	2.1.1.5. Floor request – pre-emptive

	2.1.2. Floor release
	2.1.2.1. Floor release by the floor arbitrator
	2.1.2.2. Floor release by a queued floor participant
	2.1.2.3. Floor release by the floor arbitrator with queued participants
	2.1.2.4. Floor release by pre-empted floor arbitrator

	2.1.3. Session initialization
	2.1.3.1. Session initialization – normal
	2.1.3.2. Session initialization – message lost
	2.1.3.3. Session initialization – private call
	2.1.3.4. Session initialization – broadcast call

	2.1.4. Session release

	2.2. Basic group call – call control
	2.2.1. Call setup
	2.2.1.1. Call setup – join a call
	2.2.1.2. Call setup – establish a new call with confirm mode indication IE in the Call Announcement message
	2.2.1.3. Call setup – establish a new call without confirm mode indication IE in the Call Announcement message

	2.2.2. Call merge
	2.2.3. Call release
	2.2.3.1. Call release while in the call
	2.2.3.2. Call release after call probe and return to “S1: start-stop”
	2.2.3.3. Call release after call probe and enter “S6: ignoring incoming call announcements”
	2.2.3.4. Call release while pending user action – without confirm indication
	2.2.3.5. Call release while pending user action – with confirm indication
	2.2.3.6. Call release when maximum duration of the call is reached
	2.2.3.7. Call release and setup

	2.2.4. Call reject

	2.3. Basic group call – call type control
	2.3.1. Call type initialization
	2.3.1.1. Call type initialization – establish a new basic call
	2.3.1.2. Call type initialization – establish a new emergency call
	2.3.1.3. Call type initialization – establish a new imminent peril call
	2.3.1.4. Call type initialization – join an emergency call after call probe
	2.3.1.5. Call type initialization – join an imminent peril call after call probe
	2.3.1.6. Call type initialization – join a basic group call after group call probe
	2.3.1.7. Call type initialization – join a basic group call with user acknowledgement required
	2.3.1.8. Call type initialization – join an imminent peril group call with user acknowledgement required
	2.3.1.9. Call type initialization – join an emergency group call with user acknowledgement required
	2.3.1.10. Call type initialization – join an emergency group call without user acknowledgement required

	2.3.2. Call type upgrade
	2.3.2.1. Call upgrade from basic to imminent peril group call
	2.3.2.2. Call upgrade from basic to emergency group call
	2.3.2.3. Call upgrade from imminent peril group call

	2.3.3. Call type downgrade
	2.3.3.1. Explicit downgrade from emergency call
	2.3.3.2. Explicit downgrade from imminent peril call
	2.3.3.3. Implicit downgrade from emergency call
	2.3.3.4. Implicit downgrade from imminent peril call

	2.3.4. Call release
	2.3.4.1. Call release after call establishment
	2.3.4.2. Call release before call establishment

	2.3.5. Call merge
	2.3.5.1. Call merge from different call type states
	2.3.5.2. Call merge from same call type state

	3. Test scenarios details – broadcast group call
	3.1. Broadcast group call – call control
	3.1.1. Call setup
	3.1.1.1. Call setup – establish a new call
	3.1.1.2. Call setup – establish a new call with refusal to join

	3.1.2. Call release
	3.1.2.1. Call release by the originating user
	3.1.2.2. Call release by a participant

	4. Test scenarios details – private call
	4.1. Private call – call control
	4.1.1. Private call setup
	4.1.1.1. Private call setup – establish new call in automatic mode
	4.1.1.2. Private call setup – establish and cancel new call in automatic mode
	4.1.1.3. Private call setup – establish new call in manual mode
	4.1.1.4. Private call setup – establish and cancel new call in manual mode
	4.1.1.5. Private call setup – failure to establish new call

	4.1.2. Private call cancellation
	4.1.2.1. Private call cancellation – cancel an ongoing call (normal)
	4.1.2.2. Private call cancellation – cancel an ongoing call (timer expiry)

	4.1.3. Private call expiration

	4.2. Private call – call type control
	4.2.1. Enter private call
	4.2.2. Enter private emergency call
	4.2.3. Private call upgrade
	4.2.3.1. Private call upgrade – upgrade call
	4.2.3.2. Private call upgrade – rejected upgrade call
	4.2.3.3. Private call upgrade – failed upgrade call

	4.2.4. Private emergency call downgrade
	4.2.4.1. Private emergency call downgrade – downgrade call TFP6 expiry
	4.2.4.2. Private emergency call downgrade – downgrade call out of range
	4.2.4.3. Private emergency call downgrade – downgrade call TFP8 expiry

	5. Summary and future work
	Acknowledgments
	References
	Appendix: Scenario usages

