
 1 

 

 

 

 

Improving the Efficiency of  

Markov Chain Analysis of  

Complex Distributed Systems  

 
 

 

 

 

Christopher Dabrowski  

Fern Hunt 

Katherine Morrison 

 
 

NISTIR 7744 



 2 



 3 

 

 

 

NISTIR 7744 

Improving Efficiency of  

Markov Chain Analysis of  

Complex Distributed Systems  
 
 

Christopher Dabrowski  
Advanced NetworkingTechnology Division  

Information Technology Laboratory  

National Institute of Standards and Technology  

Gaithersburg, MD 20899-8530  

 

Fern Hunt  
Mathematical and Computational Sciences Division 

Information Technology Laboratory  

National Institute of Standards and Technology  

Gaithersburg, MD 20899-8530 

 

Katherine Morrison 
University of Nebraska-Lincoln 

Department of Mathematics 

Avery Hall 

Lincoln, NE 68588 

 

 

 

 

 
 

November 2010 

                                                  U.S. Department of Commerce 
Gary Locke, Secretary 

 

National Institute of Standards and Technology 

Patrick D. Gallagher, Director 



 4 



 5 

Improving Efficiency of Markov Chain Analysis 

of Complex Distributed Systems 

 

 

Abstract: In large-scale distributed systems, the interactions of many independent components may lead to 

emergent global behaviors with unforeseen, often detrimental, outcomes. The increasing importance of 

distributed systems such as clouds and computing grids will require analytical tools to understand and predict, 

complex system behavior to ensure system reliability. In previous work, we described how a piecewise 

homogeneous Discrete Time Markov chain representation of a computing grid can be systematically 

perturbed to predict situations that lead to performance degradations. While the execution time of this 

approach compared favorably with detailed large-scale simulation, a sizable number of perturbations of the 

model were needed to identify scenarios in which system performance degraded. Here, we evolve our original 

approach and describe two novel methods for quickly identifying portions of the Markov chain that are 

sensitive to perturbation. The first method involves finding minimal s-t cut sets, consisting of state transitions 

that disconnect all paths in a Markov chain from the initial to a desired end state. By perturbing state 

transitions in the cut set, it is possible to quickly identify scenarios in which system performance is adversely 

affected. We show this method can be applied to larger Markov models than the approach described in our 

earlier work. We then present a second method, in which the Spectral Expansion Theorem is used to analyze 

the eigensystem of a set of Markov transition probability matrices to predict which state transitions, if 

perturbed, are likely to adversely affect system performance. Results are presented for both methods to show 

that they can be used to identify the same failure scenarios presented in our earlier paper (as well as additional 

scenarios, using the first method), while reducing the number of perturbations needed. We argue that these 

methods provide a basis for creating practical tools for analysis of complex systems behavior in distributed 

systems. 

 

Keywords: complex systems; perturbation analysis; discrete time piecewise homogenous Markov chain; graph 

theory; minimal s-t cut set; Spectral Expansion Theorem; eigenvector; eigenvalue; grid computing. 
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1. Introduction 

 

In recent years, the advent of large-scale distributed systems, such as computing grids and commercial cloud 

systems
1
 has enabled mass computing services to be made available to large numbers of users on demand. In 

large-scale heterogeneous, dynamic systems such as these, the interactions of many independent components 

will likely lead to emergent system-wide behaviors with unforeseen, often detrimental, outcomes [1]. The 

rapid growth and increasing economic importance of these systems [2, 3] argues for developing analytical 

tools to understand, and predict, complex system behavior in order to ensure availability and reliability of 

computing services. 

In particular, tools that can predict how system performance is impacted by changes to workload, system 

design, and key operational parameters will be of great importance. Studies of alternative economic strategies 

[4–6] and failure scenarios [1] have shown that small variations in key system variables can lead to large 

differences in overall system performance.  While large-scale simulations are more practical than operational 

testbeds, computational expense can increase dramatically with model size, a critical factor for studying 

large-scale systems such as the Internet. 

To remedy this situation, we presented an approach in earlier work [7] in which discrete time Markov chain 

analysis was used to model dynamics of large-scale grid systems.  In this approach, we developed a succinct 

Markov chain representation of a grid computing system that included a set of transition probability matrices 

(TPMs) that described system dynamics over different time periods. The TPMs could be perturbed to 

represent different system execution paths by changing values of individual transition probabilities. A 

perturbation algorithm was developed to systematically identify execution paths that led to degradations of 

grid system performance and to system-wide failures. This allowed Markov chain analysis to be used to 

predict how an operational system might react over time under different conditions. The approach could be 

used in cases where transition probabilities changed with (e.g., were non-homogenous with respect to) time 

and workload.  We showed that the computational cost of this approach was reduced in comparison with 

detailed large-scale simulation or testbeds. One reason for this was that the stochastic characteristics of 

Markov chains allow model size to be unaffected by the scale of the system being modeled, as expressed in 

terms of number of components or workload.   Another reason was that the perturbation algorithm was 

designed to enumerate alternative paths only within defined sub-areas of the Markov chain.  Despite these 

gains in efficiency, computational effort could increase significantly as the number of model states increased, 

making it expensive to apply the perturbation algorithm to larger Markov chains.  This in turn made it 

difficult to quickly discover those parts of a large Markov chain where changes could lead to declines in 

system performance. 

To address this problem, here we expand on our previous work by adding capabilities that allow fast 

identification of portions of a Markov chain where perturbation is most likely to affect system performance. 

We describe two methods that represent different approaches to do this. First, we employ efficient algorithms 

based on graph theory concepts to identify minimal s-t cut sets that disconnect all paths between two vertices 

in a graph. These algorithms can be used to identify states and state transitions, which if removed or blocked, 

would disconnect all paths from an initial state to desired end states and thus prevent processes from entering 

them. This allows specific state transitions to be directly perturbed to determine impact on performance. We 

show that this approach can be used to find the same parts of the grid system Markov chain where the 

perturbation algorithm also predicted marked performance degradation as reported in [7], but with a much 

lower computational cost. Using the large-scale simulation as a real-world proxy, we also apply the method to 

the grid computing system under near steady state conditions and then extend the procedure to a new 

domain—the modeling of the impact of different congestion control regimes on data flows in a network.  

                                                           
1 
Any mention of commercial products in this document is for information only; it does not imply recommendation or endorsement 

by NIST.   
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Finally, we show that the method can be used on much larger Markov chains to identify areas of performance 

degradation. To our knowledge, graph theory concepts have not previously been used in this manner to 

identify perturbations of Markov chains that predict drastic changes in system performance.  

We then present a second method, called the theoretical method, in which the Spectral Expansion Theorem 

is used to analyze the eigensystem of a set of Markov transition probability matrices (TPMs) in order to 

identify eigenvectors that are critical for predicting system performance. We show that changes in the leading 

eigenvector of the transient part of the TPM correlate reasonably well with performance changes discovered 

through Markov simulation. We describe how this second approach can also be used to indicate which state 

transitions, if perturbed, are likely to adversely affect system performance. Examples are provided of the use 

of the theoretical method to identify the same parts of the grid system Markov chain that were identified by 

the perturbation algorithm in [7], and by the first method, as being sensitive to perturbation. In this way, we 

show that the theoretical method can also provide a viable alternative to the perturbation algorithm at reduced 

computation cost. Results from application of both methods are detailed for all cases and corroborated by 

earlier results obtained by applying the perturbation algorithm. We show that the two general approaches 

presented in this report can be equally effective, but more efficient, than our previous Markov chain analysis 

using the perturbation algorithm. We also present results indicating scalability of the graph-theoretic method. 

 The plan of this report is as follows. Section 2 discusses previous work by other authors on using Markov 

chain analysis including previous uses of Graph theory for Markov chains. Section 3 overviews the most 

important results in our previous work [7], focusing on use of Markov chain concepts to model dynamic 

systems. Most importantly, Sec. 3 describes the perturbation algorithm for critical transitions in Markov 

chains where changes are likely to affect performance, which while effective, still requires a large 

expenditure of computational effort. This sets the stage for the contributions of this report. Section 4 

describes how minimal s-t cut sets on paths through the graph of a Markov chain can be used to directly 

identify critical state transitions where perturbation causes performance degradations. In Sec. 4, a simple 

method for identifying minimal s-t cut sets is discussed and examples are provided. Section 5 presents the 

results of using the methods described in Sec. 4 to predict areas of the Markov chain that are sensitive to 

perturbation. Section 5 compares these results with those produced by the perturbation algorithm described in 

Sec. 3 as well as with more detailed large-scale simulation. The comparison shows that identification of 

minimal s-t cut sets is equally effective as the perturbation algorithm in finding areas of the Markov chain 

that are sensitive to perturbation. Section 6 addresses the issue of using this approach on large Markov chains 

and presents an algorithm for finding minimal s-t cut sets that is intended to work on larger problems. 

Preliminary results are then presented on the application of the new algorithm to larger problems. Section 7 

presents the theoretical method describe above together with examples of its application. Section 8 concludes. 
 

Table 1.1. Summary of sections of report.   

Section Topics

Section 2 Review of previous work on use of Markov chain analysis to study dynamic systems.

Section 3 Use of Markov chain models to represent dynamic systems. Review of perturbation algorithm 
in [7] for finding areas of Markov chains that are sensitive to perturbation.

Section 4 Use of minimal cut set analysis to find state transitions in Markov chains that are sensitive to 
perturbation. 

Section 5 Comparison of results of minimal cut set analysis  with results from perturbation algorithm 
described in Section 3. Verification that minimal cut set analysis finds areas of Markov chains 
that  are sensitive to perturbation.

Section 6 Description of minimal cut set analysis method for large, complex Markov chains and 
presentation of preliminary results

Section 7 Presentation of theoretical method, in which the Spectral Expansion Theorem is used to 
analyze the eigensystem of a Markov chain.
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2. Previous Work 

 

The methods described in this report should be distinguished from the well-known use of Discrete Time 

Markov chains (DTMCs) for providing quantitative measures of system performance and reliability, which 

we review in [7]. Of this work, most closely related are [8, 9], in which a feedback control loop process is 

used to moderate delay in a network, where delay characteristics are modeled using a Markov chain. Instead 

of measuring reliability, we use Markov chain models to understand system-wide behaviors that occur as a 

consequence of significant events or decisions that affect the system as a whole. This section summarizes 

previous work on using Markov chains to study dynamic system behavior that focus on the main topic of this 

report—methods to reduce problem size and, more specifically, perturbation analysis techniques that reduce 

the size of the perturbation space. 

The combinatorial increase of the number of states in large DTMC problems has long been recognized as a 

significant barrier. On solution approach is to combine, or lump, states with similar characteristics into larger 

aggregated units, first introduced in [10]. Since then, various lumping approaches have been proposed, 

including [11, 12] who use model structure and symmetry to reduce size, [13] who rely on group-theoretic 

concepts for size reduction. Other approaches for reducing model size have been based on stochastic activity 

nets [14], stochastic colored nets [15], use of reward variable structures to identify symmetries [16], and use 

of eigenvector equivalence classes to partition a Markov state space into lumps [17]. While these approaches 

have merit, their reliance on existence of specific structural characteristics limits use in many cases. 

Moreover, the process of lumping could eliminate critical states and related state transitions that crucially 

impact overall system performance and need be explicitly identified (as we show in this report). 

In the last three decades, perturbation analysis of discrete time Markov chains has been the topic of 

significant theoretical [18, 19] and computational study [20, 21]. However, much of this work has focused on 

ergodic Markov chains and computation of the stationary vectors.  In contrast, our work focuses on 

identifying perturbations that have a significant effect on the behavior of an absorbing Markov chain.  

Like the problem of model size, the size of a typical perturbation space may quickly become 

computationally intractable, if there are many combinations of alternative system variable values to consider. 

To attack this problem, some researchers [22, 23] have advanced the idea of perturbation analysis of discrete 

event systems by calculating system performance gradients that are based on key decision parameters. This 

approach estimated the sensitivity of changes to decision parameters in order to optimize system 

performance. In some cases, gradient-based approaches needed to observe as few as one execution path of a 

system to reduce the size of the perturbation space. This approach was adapted for Markov chains by 

estimating gradients for alternative execution paths [23, 24] and extended by [25, 26] who reduced problem 

size by grouping state transitions on the basis of related events. This approach was believed to scale with the 

number of events and size of the system. However, not all problems were found to be reducible to a form 

which allowed tractable calculation of gradients. While gradient-based perturbation algorithms have 

demonstrated potential as efficient tools for analysis of some complex systems, they also introduced 

significant computational issues and were found not to be applicable to all Markov problems. Perhaps more 

importantly, the gradient-based approaches appeared more geared to optimization problems, rather than the 

more general problem of assessing alternative execution paths in dynamic systems and identifying areas of 

potential drastic performance reduction. While gradient-based methods merit, they did not appear of direct 

use for large DTMC problems where it is desirable to identify specific states and state transitions that affect 

performance; hence, we turned to graph theory.  

Graph-theoretic methods have previously been applied to Markov chains. Graph decomposition has also 

been used to calculate stationary probability distributions of Markov chains [27–29] including large-scale 

models [30]. In [29], the authors developed methods for computing approximations for first passage times 

and number of visits in a fixed state before absorption in cases where the size of perturbation was small. In 
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[31], distances between stationary distributions of perturbed Markov chains were calculated using graph-

theoretic techniques. In the preceding works, graph-theoretic methods were used to measure distance between 

individual perturbations, a measurement that could be used to aid in finding parts of a Markov chain that were 

sensitive to perturbation. In contrast, we seek to provide a more direct means to determine where perturbation 

of the probability of transitions between states leads to large system performance degradations. To do this, we 

leverage previous work on minimal s-t cut set identification [32–35] described below. Minimal cut set 

identification methods have long been used for analysis of VLSI designs, network systems, and design of 

various other distributed systems. For example, in [36], minimal cut sets of avionics system component 

graphs were used to identify the shortest sequence of individual component failures. However, to our 

knowledge, minimal cut set analysis has not yet been used to analyze Markov chain representations of the 

evolution of a system through a sequence of states. The approach we describe here appears to be novel. 

Finally, we mention maximum flow algorithms [37–39], which identify minimum cut sets between two 

vertices in a graph on the basis of maximum flow and minimum capacity. These algorithms have also been 

used for many practical problems and could potentially be used to identify critical state transitions, as the 

approach described here does. However, we regard maximum flow algorithms as a distinct approach from 

Markov chains which do not employ flows. Therefore, flow-based algorithms merit separate treatment, 

perhaps as future work. 
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3. Review of Discrete Time Markov Chain Approach 

 

In this section, we review previous work on our approach to modeling a dynamic system as a piecewise 

homogenous discrete time Markov chain. We show the application of this approach to the grid computing 

system and Abilene network models [40], both of which were developed by observing the operation of large-

scale simulations. We then present an overview of the perturbation algorithm described in [7] that does a 

limited brute-force search of selected parts of a Markov chain to identify areas where changes to state 

transitions probabilities lead to significant performance degradations. Finally, we provide an analysis of the 

efficiency and computational cost of the algorithm. The success of this perturbation algorithm and its 

relatively high computational cost for large problems provide the motivation for the development of more 

efficient methods. These are described in Secs. 4–7.  

 

3.1 The Markov Chain Model of a Grid Computing System 

 

The Markov chain model is derived from a previous large-scale grid computing system model [1, 6] that 

simulates the progress of a large number of computing tasks from the time they are submitted to the grid for 

execution by an end user to the time they either complete or fail. Figure 3.1 shows this Markov model as a 

state diagram for a single task. The state diagram has 7 states: an Initial State, where the task remains prior to 

submission; a Discovering state, during which service discovery middleware locates candidate grid service 

providers to execute the task; a Negotiating state during which a Service Level Agreement (SLA) to execute 

the task is negotiated with one of the discovered providers; a Waiting state for tasks that are temporarily 

unsuccessful in discovery or negotiation; a Monitoring phase in which a task is executed by a contracted 

provider; and the Tasks Completed or Tasks Failed states. Transitions between states, illustrated by the 

arrows in Fig. 3.1, represent actions taken by the grid system to process a task as described in [7]. The model 

is considered an absorbing chain because all tasks ultimately must enter one of two absorbing states, Tasks 

Completed or Tasks Failed, from which they cannot leave. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. State model of grid computing system. 

 

To convert the state model in Fig. 3.1 into a Markov chain, we observed the large-scale grid simulation and 

counted the frequency of transitions between states over a simulated duration.  Each probability of transition 

from state i to state j, written as si  sj, was considered separately. The probability of transitioning between 

any two states si, sj, written as pij, was estimated by calculating the frequency of si  sj, or fij, divided by the 

Negotiating

Tasks Failed

Tasks Completed

Waiting

MonitoringDiscovering

Initial 

State
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sum of the frequencies of transitions from si to all other states sk that si could transition to, where k ranges 

from 1..n and n is the number of states (7). 

      

                                                                                                                                                           (3.1) 

                                                                                                                                                

 

Repeating computation (1) for all i, j  = 1…n resulted in an n × n transition probability matrix (TPM) that 

succinctly summarized the dynamics of the grid system. Extensive simulation of the large-scale grid system 

revealed that system dynamics change over time, and for this reason we subdivided the simulated time 

duration into equal time periods and computed Eq. (3.1) for each period. This subdivision enabled the 

Markov model to capture changes in system behavior over time, or to be considered as piecewise 

homogenous [41]. A time period duration of 2 h, or 7200 s was chosen as the duration of a subdivided time 

period. Thus, a simulated 8 h duration had 4 time periods, plus a fifth for clean-up operations. For each time 

period, (1) was used to compute a separate TPM. The weighted average of these five TPMs, or the summary 

matrix, is shown in Fig. 3.2(a). Following this, we repeated these observations for the large-scale grid 

simulation over a 640 h period, which resulted in 321 time period TPMs, summarized in Fig. 3.2(b). (Note: 

The complete set of 5 time period TPMs for the 8 h duration appear in [42], while the complete set of 321 

TPMs can be obtained from [43] or upon request from the authors.) 
(a)                                                                                                   (b) 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.2 (a, b). Summary TPM for the grid computing system: (a) over 8 h duration (plus a 2 h clean-up period), and (b) over 640 

h duration in near steady-state conditions.  Both summary TPMs were computed as weighted averages of 5 (a) and 321 (b) TPMs 

for equal time period divisions of 2 h each (7200 s). To compute the summary TPMs, the individual pij from the time period 

matrices are weighted by the relative number of transitions in their respective period.  

 

A well-known use of Discrete Time Markov chain is to simulate change in a dynamic system over time in 

discrete time steps. To do this, the system state is represented as a vector v, where each element represents the 

proportion of tasks in one of the seven states. A discrete time step represents a fixed time duration, which in 

our experiments was chosen to be 85 s, or h = 85 (thus, a time period of duration dperiod = 7200 s has G= 

dperiod /h or 85 time steps). To advance the system state one time step, a vector vm-1, which represents the 

system state at time step m-1, is multiplied by the TPM              for the applicable time period tp(m) =integral 

value ((m-1)/G) + 1 to produce a new system state vm. This operation is represented by Eq. (3.2) below,  

                                                                                                                                                                         

                                                                       vm = vm-1 ∙         .                                                              (3.2) 

                                                                                                       

To perform this operation over a simulated duration consisting of many time steps, we start with state v0, 

which represents an initial system state with a value of 1.0 for the Initial State and 0 for all others (e.g, all 

tasks are in the Initial State). Assuming k time periods, Eq. (3.2) is repeated for G × k time steps until the end 

 

n

k ik

ij

ij

f

f
p

1

 

1.0000000Fail

01.000000Comp
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0.000100.19610.28820.01820.49740Ngt

0000.29310.67140.03550Disc
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FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp
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0000.29310.67140.03550Disc

0.0046000.09180.06730.83630Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial Initial Wait Disc Ngt Mon Comp Fail

Initial 0.9997 0 0.0003 0 0 0 0

Wait 0 0.6292 0.0252 0.3441 0 0 0.0015

Disc 0 0.0766 0.6133 0.3101 0 0 0

Ngt 0 0.0378 0.0015 0.0637 0.8710 0 0.0259

Mon 0 0 0 0.0004 0.9883 0.0113 0

Comp 0 0 0 0 0 1.0 0

Fail 0 0 0 0 0 0 1.0
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of the total simulated duration to produce the end state vector v(G x k). The result of this process, which we 

refer to as a Markov simulation is shown in Fig. 3.3(a) for the 8h simulated duration and in Fig. 3.3(b) for 640 

h duration which approached steady-state conditions. In Fig. 3.3 (a, b), the progress of tasks completed and 

tasks failed is compared to the results in the large-scale simulation.  As these figures show, the Markov 

simulations provide reasonable approximations of the large-scale simulations that they are models of. 
          (a)                                                                                                  (b)  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3 (a, b). Comparison between large-scale and Markov simulations of the change in the proportion of tasks completed and 

tasks failed in grid computing system for: (a) 8 h time duration (plus a 2 h clean-up period) in which Markov simulation covered  

421, 85 s time steps; and (b) 640 h duration in which Markov simulation covered > 27000 time steps.  

 

3.2 The Markov Chain Model the Abilene System 

 

The Abilene system Markov model is derived from a large-scale model of the Abilene network [40] that 

simulates the performance of a network using alternative congestion control algorithms. The large-scale 

model simulates in detail how different congestion control algorithms affect the transmission of data flows 

from the time the flows are submitted to the network to the time they either complete or fail. The procedures 

used in deriving the Abilene system Markov model were the same as those described in Sec. 3.1 for the grid 

system Markov model. Figure 3.4 shows the Abilene system Markov model as a state diagram for a single 

data flow. This state model describes how a single flow may progress through different congestion control 

regimes. This state model consists of 8 states. As in the grid system, prior to submission, flows reside in an 

Initial State.  Flow submission results in entering a Connecting state, during which a source to sink 

connection is established. Once connected, flows enter an Initial Slow Start (ISS) state from which they may 

either complete or enter states representing three additional congestion control regimes: Normal Congestion 

Avoidance (NCA), Alternate Congestion Avoidance (ACA), and Slow Start (SS). Flows may re-enter any of 

these three states according to criteria described in [40] until they complete (or fail). Flows may fail from the 

Connecting state, NCA, or SS, which we do not show in the figure for the sake of simplicity.  Like the grid 

system model, the Abilene system Markov model is an absorbing chain. 
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Figure 3.4. State model of Abilene network system 

     

To obtain probabilities of transition, the procedure described in Sec. 3.1 was repeated using a large-scale 

simulation of the Abilene system which, in this case, executed for a simulated 1500 s. Again, the Markov 

model was made to be piecewise homogenous by subdividing the 1500 s duration into 5 equal time periods of 

300 s each. Here, a much smaller time step of 0.05 s was chosen. The resulting summary TPM is shown in 

Fig. 3.5. The Markov simulation of the Abilene system and its comparison with the related large-scale 

simulation is shown in Fig. 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 shows that, as before, the Markov simulation is able to closely approximate the large-scale 

simulation. 
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Figure 3.5. Summary stochastic TPM for Abilene network 

Markov chain. This TPM is a weighted average of 5 TPMs 

for equal time period divisions of 300 s duration.  Individual 

pij from the five periods are weighted as described for Figure 

3.2 (a).  

 

Figure 3.6. Comparison between Abilene network large-scale 

simulation and Markov simulation of comparative progress of 

flows completed and flows failed (see inset) over 1500 s 

duration. Results show that the Markov simulation provides a 

very close approximation of the large-scale simulation. 
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3.3 The Perturbation Algorithm for Predicting Performance Degradations 

 

Our work in [7] demonstrates that a suitably perturbed Markov chain model can replicate (with good 

agreement) specific scenarios in the large-scale grid computing system simulation in which performance 

degrades significantly. However, we also found that it is difficult to identify a set of state transitions and their 

respective perturbations that capture such a scenario. We found that some form of search must be undertaken 

of a large space of possible perturbations in order to find the state transitions and perturbations that represent 

scenarios in which system performance degrades. In this section, we provide an overview of the algorithm 

described in [7].  

The perturbation algorithm executes a limited, brute-force search that is restricted in order to conserve 

resources while exploring a reasonable range of alternatives. The algorithm predicts approximate changes in 

system performance that occur as specific state transition probabilities are gradually altered. The output of the 

algorithm is a set of Markov simulation results that identify, or predict, situations where system performance 

degrades in response to changes to a specific set of transition probabilities. These predictions can be tested by 

comparing them with large-scale grid simulations. 

The algorithm permits simultaneous perturbation of combinations of two rows in a TPM for a Markov 

chain in order to capture situations where inter-row, i.e., inter-state, dependencies exist. The algorithm 

proceeds by incrementally raising and lowering all feasible combinations of non-zero state transitions in these 

rows.  To begin, a user must first select a state to perturb, which is represented by the primary row, r. Each 

row element, or column, in this row with a probability of transition greater than zero is selected in turn for 

incremental increase and designated as a primary increase column c
↑
. The primary increase column c

↑
 

corresponds to a state being transitioned into from the state corresponding to the row r.  During the 

procedure, the transition probability of c
↑ 

is incrementally raised. To offset this increase, a row element 

corresponding to a different state is selected as a primary sink column, c
↓
. The row element c

↓ 
is decreased by 

a portion of the increase to c
↑
, where the portion is determined by the weight w ≤ 1. The remainder of the 

increase to c
↑
 is offset by decreasing any remaining non-zero elements of r by amounts that are proportional 

to their non-zero values.  In this way the changes c
↑
, c

↓
, and the non-zero elements of row r are made to 

ensure that the individual transition probabilities of all elements in the r still sum to 1.  

The second row to be perturbed, or secondary row s, is determined on the basis of which c
↑
 has been 

selected. The procedure for perturbing the secondary row s is simpler than the procedure for the primary row, 

and the secondary row elements are perturbed by larger amounts. In s, each row element with a value greater 

than 0 is in turn designated as a secondary increase column, d
↑
. The row element d

↑
 is raised by the amount 

msec to a predetermined maximum. In the perturbation of the secondary row, the decrease is distributed 

proportionally to all other row elements having non-zero transition probabilities. A set of values {r, c
↑
, c

↓
, w, 

s, d
↑
, msec} is considered a perturbation combination, which represents a set of state transition probabilities to 

be altered in order to explore alternative execution paths in the Markov simulation.  

To investigate the various perturbation combinations, the user also selects the perturbation limit L to limit 

how far transition probabilities can be perturbed (a separate Lr and Ls may be chosen for r and s, if desired). 

The user must also select the incremental amounts, vr and vs, by which c
↑ 
and d

↑
 are raised respectively. These 

decisions define the extent and granularity of the perturbation (note, vs is used to determine msec mentioned 

above). The algorithm proceeds by enumerating all feasible perturbation combinations. For each combination, 

an iteration is performed to raise c
↑ 
and d

↑
 by the designated increments (and correspondingly lower the other 

elements) across all time-period matrices until L is reached in each time period matrix. The Markov 

simulation is executed for each incremental perturbation of each perturbation combination, and the result is 

recorded.  This set of results can then be examined to identify those perturbation combinations for which 

systematic changes to transition probabilities lead to performance degradations. 

Fig. 3.7 illustrates an example of one such drastic performance degradation identified by the perturbation 

algorithm in both the 8 h and 640 h cases. These figures show the impact of perturbing a single combination 
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(blue curves) in which lowering the probability of transition to 0 for Negotiating  Monitoring causes the 

proportion of tasks completed to also fall 0. In both the 8 h and 640 h cases, the Markov simulation 

predictions are borne out when the large-scale simulation, which is also altered to behave aberrantly (red 

curve) so that negotiations that would otherwise succeed instead fail and task execution is prevented. In these 

experiments, the large-scale simulation served as a proxy for a real-world system. 

 
                                    (a)                                                                                            (b) 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.7 (a,b). Perturbation of Negotiating State (r=4) in grid system Markov chain model to predict effect of reducing 

probability of transition from Negotiating  Monitoring in (a) the 8 h case and (b) the 640 h case for the grid computing system. 

Proportion of tasks completed in the large-scale (red curve) and Markov simulations (blue curves) is shown for (a) and (b). The 

probability of transition from Negotiating to Waiting is raised (c
↑
 = Waiting) and probability of transition from Negotiating to 

Monitoring lowered (c
↓
 = Monitoring, w = 0.8). The secondary perturbation row is s= Waiting. For (a) Lr=0.5 and vr = 0.01; for (b) 

Lr=1 and vr = 0.01. In both cases Ls=0.25 and vs = 0.0625.  

 

Although Fig. 3.7 shows that the decrease in proportion of tasks completed is a straight forward 

consequence of this perturbation, there is a less obvious persistence in the high rate of tasks completed as the 

probability of transition from Negotiating  Monitoring is steadily decreased. In the large-scale simulation, 

both figures show that the rate of tasks completed remains relatively high until the decrease in probability of 

transition nears 0; then the proportion of tasks completed declines sharply. This pattern is in fact predicted by 

the Markov simulation.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8. Perturbation of Connecting State (r=2) in the Abilene Markov chain model to predict effect of the reducing the 

probability of transition to 0 for Connecting Initial Slow Start (c
↓
 = 3, w = 1), while raising probability of Connecting self-

transition (c
↑
 = 2). No secondary perturbation row was chosen.  The effect of this perturbation on proportion of flows completed is 

shown.  Note: the probability of Connecting self-transition is increased to 1, making this a trap state situation as well.  
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For the Abilene network system, Fig. 3.8 shows a similar trend in the proportion of flows completed when 

the probability of transition from Connecting  Initial Slow Start is reduced to 0. Here, the perturbation also 

causes the proportion of flows completed to decline to 0. This scenario describes a somewhat obvious real-

world situation where flows are unable to connect.  As in the case of the grid system, the proportion of flows 

complete remains relatively high until the probability of transition from Connecting  Initial Slow Start 

approaches 0, then it drops sharply. 

 

3.4 Efficiency of the Perturbation Algorithm 

 

Using the perturbation algorithm, a complete perturbation of one matrix row r would require examining O 

(ab
2 
(b – 1)) perturbation combinations. In this formula, b is a constant that indicates the expected number of 

c
↑
 (or d

↑
) column in the row being perturbed, or the branching factor. The constant a is the number of weight 

values that the primary sink element may take on. If L/vr is the number of incremental increases for the 

primary row r and L/vs is the number increases for row s, then the number of executions, E, of the Markov 

simulation needed to explore all perturbation combinations for one row is  

 

                                            E = O (Lr/vr ∙ (Ls/vs + 1) ∙ a(b
3
 − b

2
)),                                       (3.3)                         

            

if one assumes that that there is no possibility of self-transition, so that c
↑
≠ s is always true. However, if c

↑
= s, 

then E is slightly smaller: 

 

                                          E = O (Lr/vr ∙ (Ls/vs + 1) ∙ a(b
3
 − 2b

2
 − b)).                                                     (3.4) 

 

The complete exploration of a TPM having a order d is thus O (d * E), which grows polynomially with 

respect to the branching factor but linearly with respect to matrix size, or the number of states. In practice, 

neither figure will be completely accurate since the branching factor is not constant for all states. 

The complete exploration of the grid system Markov chain in the 8 h scenario required approximately 56 

min, while the 640 h scenario required 15.4 h. This, however, is favorable in comparison with the running 

time of the large simulation which took 1 week and 5.2 weeks respectively. For the 8 h scenario, large-scale 

simulation needed about two orders of magnitude more time; in the 640 h case, large-scale simulation 

required 1.5 orders of magnitude more time, though it also included a number of extra runs to test extreme 

conditions (discussed further in Sec. 5). For the Abilene system problem, execution of the perturbation 

algorithm to completely perturb rows 2 to 6 of the related Markov chain TPMs required 27.3 h, an effort that 

involved 330 perturbation combinations and almost 100 000 executions of the Markov simulation.  Still, this 

is an impressive improvement over the Abilene system large-scale simulation where a single execution 

required 7.3 h! In Sec. 5, we provide a complete summary of the results of these simulations and their 

predictions of performance degradation in the systems they model. 

Despite these significant gains in comparative efficiency, it is clear that the running time of the Markov 

simulation would be very substantial for significantly larger matrices than those discussed above. Further, it 

might impose on the analyst (whether automated or human) quite a burden in analyzing large amounts of 

output to identify situations that predict performance degradations and other behavioral anomalies. Thus we 

seek more efficient methods to identify areas of the Markov chain TPM where perturbation leads to 

performance degradation.  This is the subject of the subsequent sections in this report, in which we describe 

our work on two methods for this purpose. In Secs. 4 and 5, we show how generation of minimal s-t cut sets 

that disconnect all paths between an initial state and a desired absorbing state can be used to identify critical 

state transitions, which if perturbed, can cause severe performance degradations. We show that generation of 

such minimal s-t cut sets finds all areas of the Markov chain problems described above where perturbation 

causes the proportion of tasks to fall to 0, but at a much smaller cost than the perturbation algorithm. We then 
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present preliminary results indicating that this approach can be effective for larger, more complex Markov 

chains and their TPMs. In Sec. 7, we show how the Spectral Expansion Theorem can be used as an 

alternative to Markov simulations described earlier by the evaluation of analytical formulae.  Further, we 

show that changes in the leading eigenvector of the transient part of the TPM correlates reasonably well with 

performance changes due to state transition perturbations.  While not perfect, we claim these changes can be 

used as to distinguish critical perturbations (i.e. those that lead to significant performance degradation) from 

non-critical. 
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4. Identifying Critical System Execution Paths and Minimal Cut Set Analysis 

 

In this section, we describe a method based on graph theory concepts for identifying minimal s-t cut sets 

between an initial state and desired absorbing state. The minimal s-t cut sets consist of critical state 

transitions, which if perturbed, are likely to lead to system performance degradations. In Sec. 5, we see that 

this method is capable of finding the same areas of performance degradation as the perturbation algorithm 

overviewed in Sec. 3, but at a small fraction of the computational cost. 

 

4.1 Finding State Transition that Disconnect Paths to Absorbing States  

 

In basic graph theory, a graph G (V, E) consists of a set of vertices V connected by edges from the set E. A 

path is a sequence of edges that connects two vertices in a graph. It is easy to see that a Markov chain can be 

represented as a directed graph, in which the set of vertices V corresponds to the set of states, while the set of 

directed edges E correspond to transitions between states that can occur in only one direction. A path is then a 

sequence of transitions that lead from one state to another. For our purposes, the most important paths are 

those which lead from the initial state to an absorbing state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. Two unique non-cyclic paths (numbered and denoted by thick arrows) from the Initial State to Tasks Completed state 

for grid computing system. Three single-transition s-t cuts appear as heavy bars over transitions. Trap states are denoted by T.  

 

In the Markov chain models for the grid system and the Abilene system, the paths of interest are those that 

lead from the Initial State to one of the two absorbing states: Tasks Completed or Tasks Failed. For the 

remainder of this analysis we will consider only the Tasks Completed absorbing state. To render the analysis 

tractable, we consider only paths that are non-cyclic. For example, Fig. 4.1 shows two paths through grid 

system Markov chain from the Initial State to the Tasks Completed state. For a small Markov chain, a well 

known algorithm for finding the shortest non-cyclic paths between two vertices in a graph, such as given in 

[38], can be modified to do a breadth-first search and enumerate all paths between the Initial and Tasks 

Completed state (we will return to the question of the tractability of this computation below). By finding one 

or more state transitions that are common to all paths from the Initial State to the Tasks Completed state, it is 

possible to disconnect, or block, all paths to the Tasks Completed state by removing these common 

transitions—a condition which could obviously adversely affect system performance. These common 

transitions identify areas of the Markov chain that are sensitive to perturbation. By reducing the transition 

probability values of these common transitions to 0, the flow of tasks to the Tasks Completed state is also 

reduced to 0. 
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In discrete mathematics, a set of one or more edges, which if removed, disconnects all paths between two 

vertices s and t is often referred to as an s-t cut set, as for example [32].  An s-t cut set is defined to be a 

minimal s-t cut set if removal of any edge from the cut set causes s and t to be reconnected. In Fig. 4.1, the 

state transition Initial  Discovering, by itself, constitutes a minimal s-t cut set consisting of one edge. This 

transition is common to all paths from the Initial State (s) to the Tasks Completed state (t). If the transition is 

removed, all paths to the Tasks Completed state would be disconnected. In this report, minimal s-t cut sets 

with a single member will be referred to as single-transition s-t cuts and are an important special case of 

interest, as illustrated further below. We will return to the topic of minimal s-t cut sets consisting of multiple 

transitions shortly. 

 

4.2 Using Single-Transition s-t Cuts to Analyze Markov Chain Models 

 

In Fig. 4.1, there are three single-transition s-t cuts: Initial  Discovering, Negotiating  Monitoring, and 

Monitoring  Tasks Completed. Figure 3.7 (a, b) shows graphically the result of reducing the probability of 

transition for Negotiating  Monitoring to 0 in both the 8 h and 640 h cases. When this occurs, the 

proportion of tasks that reaches the Tasks Completed state drops to 0 in both cases.  The same result occurs 

when the other two transitions identified as single-transition s-t cuts, Initial  Discovering and Monitoring 

 Tasks Completed, are similarly perturbed, as discussed further in [7]. As will be described in Sec. 5, an 

exhaustive application of the perturbation algorithm to the Waiting, Discovering, Negotiating, and 

Monitoring states corroborated that these three single-transition s-t cuts are the only state transitions, which if 

individually reduced to 0, also cause the proportion of tasks reaching the Tasks Completed state to fall to 0.  

   In the Abilene system, there are two single-transition s-t cuts: Initial  Connecting and Connecting  

Initial Slow Start, shown in Fig. 4.2. Figure 3.8 shows the result of reducing the probability of transition for 

Connecting  Initial Slow Start to 0, which results in the proportion of flows reaching the Flows Completed 

state to fall to 0. Again, Sec. 5 presents results to corroborate that these single-transition s-t cuts are the only 

state transitions, which if individually reduced to 0, also cause the proportion of flows completed to fall to 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2. An example of 4 unique non-cyclic paths (denoted by thick arrows) from the Initial State to the Flows Completed state 

for the Abilene network system. There are 16 possible paths, of which 4 are shown. Two single-transition s-t cuts appear as heavy 

bars over transitions. Trap states are denoted by T.  
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   Thus for both the grid system and the Abilene System, it was possible to use a simple algorithm for 

enumerating all paths derived from [38] to identify state transitions that were highly sensitive to perturbation 

and that would have a dramatic effect on system performance. Excluding transitions out of the initial state, 

the single-transition s-t cuts correspond to obvious critical real-world processes in both the grid and Abilene 

systems. In the grid system, the single-transition s-t cuts for Negotiating  Monitoring and Monitoring  

Tasks Completed are clearly related to critical steps in the process of allocating resources to, and executing, 

tasks.  More trivially in the Abilene network, the Connecting  Initial Slow Start single-transition s-t cut 

represents the obvious consequences of failing to establish a connection. We next proceed to the related topic 

of trap states, which like single-transition s-t cuts, lie on all paths between the initial state and a desired 

absorbing state, and can have similar impacts of system performance in Markov chains. 

 

4.3 Identifying Trap States as Potential Sources of Drastic Performance Degradation 

 

In the discussion of the perturbation algorithm, reducing probabilities of transition out of one state requires 

raising the sum of one or more probabilities of transition from that state to different states by an equal 

amount. The ―to state‖ state(s) which will receive increased probabilities of transition may be different from 

the ―from state‖ or may be the same. In the latter case, when the ―to‖ and ―from‖ states are the same, the 

process remains in the same state, or merely transitions back to itself–which we refer to as a self-transition
2
. 

If a self-transition probability is raised so that it approaches 1, or even equals 1, the process remains in the 

―from state‖ for a prolonged time. In this case, the ―from state‖ effectively becomes a trap state for processes. 

A trap state is distinguished from a permanent absorbing state, such as Tasks Completed, because the self-

transition probability of a trap state may vary, while the self-transition probability of an absorbing state is 

always 1.0. 

 
 (a)                                                                                                       (b)  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3 (a, b). Perturbation of Discovering State (r= Discovering) to predict effect of increasing probability of self-transition 

Discovering  Discovering (c
↑
 = Discovering) in (a) the 8 h case and (b) the 640 h case for the grid system model. Proportion of 

tasks completed in the large-scale and Markov simulations shown for (a) and (b). Probability of transition from Discovering to all 

other states lowered to 0. Secondary perturbation row, s=Monitoring (result is the same for all secondary perturbations). For (a) 

Lr=0.5, vr = 0.01, Ls=0.25 , and vs = 0.0625; for (b) Lr=0.75, vr = 0.01, Ls=0.4 and vs = 0.2.  

 

   An example of such a trap state and its impact on system performance for the grid system is shown in Fig. 

4.3 when the Discovering state is made a trap state in the 8 h and 640 h cases. Tasks never leave the 

Discovering state, so that they cannot proceed to other states and finish. The perturbation described for the 
                                                           
2
 Self-transition probabilities are determined using (1) by observing processes that remain in a state longer than one time step (85 s 

in the grid system case and 0.05 s in the Abilene case. That is, si  si, or fii is tabulated for processes whose duration in a state 

exceeds a time step. 
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Abilene system in Fig. 3.8 can also be accomplished by raising the Connecting self-transition to 1. Making 

the Connecting state a trap state prevents flows from reaching the data transmission phase (in which they 

enter congestion control states) and then finishing. Trap states may be easily identified as being states that are 

common to all paths between an initial state and an absorbing state. Hence, their removal also effectively 

disconnects all paths between the vertex s, initial state, and the vertex t, the absorbing state (Tasks Completed 

in the grid model or Flows Completed in the Abilene model). In the grid system model, the trap states are 

Initial, Discovering, Negotiating, and Monitoring, shown in Fig. 4.1; for the Abilene model, these are Initial, 

Connecting, and Initial Slow Start, shown in Fig. 4.2. 

   As Sec. 5 will show in more detail, the use of path enumeration to find single-transition s-t cuts and trap 

states achieves the same goal as our original perturbation algorithm [7] but at less cost. However, the 

approach is insufficient for analysis of substantially larger Markov chains, as we describe in Sec. 6.  

 

4.4 Minimal s-t Cut Sets With Multiple Transitions 

 

A minimal s-t cut set between the initial and absorbing states that consists of more than one state transition 

will be referred to in this report as a multiple-transition s-t cut.  In such a minimal s-t cut set on a Markov 

chain graph, it is necessary to lower probabilities of transitions to 0 for all state transitions that are members 

of the cut set in order to radically affect system performance. Figure 4.4 shows two multiple-transition s-t cuts 

for the grid computing system Markov chain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4. Two multiple-transition  s-t cuts for the grid computing system:  (a) Discovering  Negotiating and  Discovering  

Waiting; and (b) Discovering  Negotiating and Waiting  Negotiating. 

 

In the Abilene system Markov chain, there are 8 possible multiple-transition s-t cuts listed in Table 4.1, one 

of which is shown as an example in Fig. 4.5. As in Fig. 4.1 and Fig. 4.2 for single-transition s-t cuts, it is easy 

to see that the two multiple-transition, minimal s-t cut sets in Fig. 4.4 disconnect the Initial State from the 

Tasks Completed state, while in Fig. 4.5, the sample multiple-transition minimal s-t cut set also disconnects 

the Initial State from the Flows Completed state. 
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Table  4.1. Complete list of 10 minimal s-t cut sets for Abilene system Markov chain.  Two of these minimal s-t transition cut sets 

are single s-t transition cuts (1 and 2), while 8 are multiple-transition s-t cuts (3-10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5. Example of multiple-transition, minimal s-t cut set for the Abilene network system 

 

   The concept of an s-t cut set can be extended to include vertices whose removal disconnects all paths from s 

to t. Such a set of elements (edges and vertices) is sometimes known as an s-t separating set; if this set is 
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7
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minimal, then it is a minimal s-t separating set [44]. In the context of a discrete time Markov chain, vertices, 

whose removal results in disconnection of all paths to a desired absorbing state, correspond to trap states 

whose self-transition probability approaches 1. In the grid system Markov model, the trap states Initial, 

Discovering, Negotiating, and Monitoring are actually minimal s-t separating sets with a single vertex. In the 

Abilene network model, Initial, Connecting, and Initial Slow Start also fall into this category. In the grid 

system Markov chain graph, there is one combination of edges and vertices that disconnect all paths from the 

initial to the absorbing states, e.g. state transitions and states whose probabilities of self-transition go to 1: the 

state transition from Discovering  Negotiating and the state, Waiting. In the Abilene system model, 47 such 

combinations were found. 

   It is likely that multiple-transition s-t cuts and multiple-transition separating sets are more common in larger 

Markov chain problems. They cannot be easily found using simple approaches such as path enumeration and 

require more powerful algorithms. In Sec. 6, we provide an algorithm for finding multiple-transition s-t cuts 

that is appropriate for large Markov chains (which was actually used to compute the multiple-transition s-t 

cuts in Fig. 4.4 and Fig. 4.5). But first, in Sec. 5, we verify that minimal s-t cut sets, both single- and 

multiple-transition, can be used to identify areas in a Markov chain where perturbations lead to performance 

degradations.  
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5. Results of Minimal Cut Set Analysis 

 

This section shows that identification of minimal s-t cut sets, including single-transition and multiple-

transition s-t cuts, can be used to predict which state transitions, if perturbed, are most likely to adversely 

impact system performance. We first verify this conclusion by comparing minimal s-t cut sets for paths 

between the Initial State and Tasks Completed states in the grid system Markov chain model against both the 

results produced by the perturbation algorithm and the results of the large-scale grid simulations. We then 

verify this conclusion by comparing minimal s-t cut sets for paths between the Initial and Flows Completed 

states in the Abilene system Markov chain model against the results produced by the perturbation algorithm. 

The conclusions are verified by showing the correspondence between specific minimal s-t cut sets and state 

transitions which, if perturbed, cause dramatic declines in system performance. We assess the potential 

savings in computation time provided by this new method in analyzing both the grid and Abilene systems. 

For both problems, minimal s-t cut sets could be found either through the path enumeration algorithm 

adapted from [38] discussed earlier or through the node contraction algorithm, which will be described in 

Sec. 6. 

    In both cases, the perturbation algorithm is applied only to the primary row; no secondary row perturbation 

is used. This permits better focus on the perturbation algorithm results that involve states and state transitions 

of interest. Where appropriate, accentuating or mitigating effects of secondary row perturbation are discussed 

(see [7] for the full results). 
 

5.1 Grid System 

 

In this section, we verify that all minimal s-t cut sets for paths between the Initial State and Tasks Completed 

states in the grid system Markov chain correspond to state transitions, which if suitably perturbed using the 

perturbation algorithm described in Sec. 3, can adversely impact system performance. Table 5.1 shows the 

results of the application of the perturbation algorithm overviewed in Sec. 3.1 to the grid system Markov 

model for the 8 h grid system case, while Table 5.2 shows the same for the 640 h case. Specifically, the tables 

show the results of perturbing rows, r, corresponding to the states Waiting, Discovering, Negotiating, and 

Monitoring, by raising the probability of transition from the states designated as r to states that correspond to 

primary increase columns c
↑
, while lowering the probability of transition from, r, to other states that are 

designated as sink columns, c
↓
. Both tables show that in all cases where application of the perturbation 

algorithm causes declines in the proportion of tasks completed that approach 100% (i.e., the proportion of 

tasks completed approaches 0
3
), a correspondence can be drawn to the existence of a single-transition s-t cut. 

Perturbation algorithm results that were verified by the large-scale grid simulation are in shaded cells.  

 

5.1.1 Correspondence of Single-transition s-t Cuts to Perturbation Algorithm Results 

 

     We first consider how well single-transition s-t cuts for paths between the Initial State and Tasks 

Completed states in Fig. 4.1 correspond to results produced by the perturbation algorithm in which the 

proportion of tasks completed is reduced to 0. The first case occurs when r = Negotiating. Here, Tables 5.1 

(c) and 5.2 (c) show that designating Monitoring as the sink column c
↓
, i.e., lowering the probability of 

Negotiating  Monitoring to 0, resulted in the proportion of tasks completed approaching 0 (a percentage 

decline that approaches 100%), which was verified by the large-scale simulation. This result occurs 

regardless of whether the state transition probability for Waiting, Discovering, or Negotiating is raised, i.e., 

                                                           
3
 Note that the perturbation algorithm is designed with built-in tolerances by which perturbed values approach, but do not reach, 

limits of 0 or 1 within a specific number of significant digits. Hence, the actual proportion of tasks completed also approaches, but 

does not equal, 0 
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made the primary increase column, c
↑
. In this case, Fig. 4.1 shows that the state transition Negotiating  

Monitoring is a single-transition s-t cut.  

 
Table 5.1. Correspondence between cases where application of the perturbation algorithm results in the proportion of tasks 

completed approaching 0 and the existence of single-transition s-t cuts for 8 h grid system simulation. The table shows the 

proportion of tasks completed and percent change when perturbation algorithm is applied to rows, r, of the summary TPM in Fig. 

3.2 (a) to decrease the probability of transition to 0 for the sink column, c
↓
, or the state transition r  c

↓
, while increasing the 

probability of transition in the primary increase column, c
↑
, or r  c

↑
 with a sink weight = 1. Secondary perturbation is excluded. 

The right-most column indicates if single-transition s-t cut exists for r  c
↓ 

in Fig. 4.1. In all cases where perturbation causes 

proportion of tasks completed to approach 0, a positive correspondence exists with a single-transition s-t cut. Shaded cells represent 

perturbations where the change to the proportion of tasks completed was verified by large-scale simulation. Note: trap states are 

discussed separately below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

                                                                                                                      In Fig. 4.1, transition corresponds to 

                                                                                                                            aNegotiating to Monitoring single-transition s-t cut 

                                                                                                                            bMonitoring to Completed single-transition s-t cut 

                                                                                                                            cInitial to Discovering single-transition s-t cut  

 

 * Note that that the perturbation described in this row occurs even though the transition from Monitoring  Negotiating is not 

directly perturbed. See text above for the explanation.   

 

     Similarly, when r = Monitoring,  Tables 5.1 (d) and 5.2 (d) show that designating Tasks Completed as the 

sink column c
↓
, i.e., lowering the probability of Monitoring  Tasks Completed  to 0, creates the obvious 

result where the proportion of tasks completed also approaches 0 (a percentage decline that approaches 

100%). Large-scale simulation verified that this result occurs regardless of what state transition probability is 

raised, i.e., made the primary increase column, c
↑
. Again, Fig. 4.1 shows that the state transition Monitoring 

 Tasks Completed is a single-transition s-t cut. Note also that lowering the probability of Monitoring self-

transition (i.e., designating it the sink column c
↓
), while raising the transition Monitoring  Negotiating, also 

resulted in the proportion tasks completed approaching 0. This happens because the probability of transition 

for Monitoring  Tasks Completed is initially very low (0.008 for the 8 h case and 0.009 for the 640 h case. 

See Fig. 3.2. Thus, the probability of Monitoring self-transition must be very high (over 0.99 in both parts of 

Fig. 3.2) to ensure that all tasks remain in the Monitoring state long enough to have an opportunity to 

transition to Tasks Completed. Thus, a perturbation to reduce the probability of Monitoring self-transition to 

0 has the effect of preventing tasks from transitioning to Tasks Completed—and is equivalent to a reduction 

of the probability of transition for Monitoring  Tasks Completed. 

(c) r = Negotiating

Waiting Discovering 0.974 +1.83% No

Waiting Negotiating 0.985 +3.03% No

Waiting Monitoring 1.000 +4.53% No

Discovering Waiting 0.954 +0.09% No

Discovering Negotiating 0.957 +0.11% No

Discovering Monitoring 0.967 +1.22% No

Negotiating Waiting 0.923 -3.63% No

Negotiating Discovering 0.941 -1.48% No

Negotiating Monitoring 0.988 +3.23% No

Monitoring Waiting 0.000 -99.98% Yesa

Monitoring Discovering 0.000 -99.98% Yesa

Monitoring Negotiating 0.000 -99.98% Yesa

(d) r = Monitoring

Negotiating Monitoring 0.982 +2.94% No

Negotiating Tasks Comp 0.982 +3.04 No

Monitoring Negotiating 0.028 -97.04% Yesb, *

Monitoring Tasks Comp 0.980 +2.84 No

Tasks Comp Negotiating 0.001 -99.93% Yesb

Tasks Comp Monitoring 0.002 -99.83% Yesb

(b)  r = Waiting

Sink 
column (c↓)

Primary 
increase 
column (c↑)

Prop. Tasks Completed
and  % change when
prob. (r c↓) 0

Single-
transition 
s-t cut exists

Waiting Discovering 0.974 +2.05 No

Waiting Negotiating 0.981 +2.59 No

Discovering Waiting 0.937 -1.69 No

Discovering Negotiating 0.963 +0.59 No

Negotiating Waiting 0.818 -14.55 No

Negotiating Discovering 0.939 +1.70 No

(a) r = Discovering

Sink 
column (c↓)

Primary 
increase 
column c↑)

Prop. Tasks Completed
and  % change when
prob. (r c↓) 0

Single-
transition s-t 
cut exists

Waiting Discovering 0.957 +0.07 No

Waiting Negotiating 0.959 +0.42 No

Discovering Waiting 0.939 -1.50 No

Discovering Negotiating 0.963 +0.88 No

Negotiating Waiting 0.894 -6.39 No

Negotiating Discovering 0.651 -32.05 No

(e) r = Initial

Discovering Initial 0.0 -100.00 Yesc

Initial Discovering 0.970 +1.57 No



 27 

   
Table 5.2. Correspondence between cases where application of the perturbation algorithm results in the proportion of tasks 

completed falling to 0 and existence of single-transition s-t cuts in 640 h grid system simulation. The table shows the proportion of 

tasks completed and percent change when the perturbation algorithm is applied to rows, r, of the TPM in Fig. 3.2 (b) to decrease the 

probability of transition to 0 for the sink column, c
↓
, or the state transition r  c

↓
, while increasing the probability of transition in 

the primary increase column, c
↑
, or r  c

↑
 with a sink weight = 1. Secondary perturbation is excluded. The right-most column 

indicates if single-transition s-t cut exists for r  c
↓ 

in Fig. 4.1. In all cases where perturbation causes the proportion of tasks 

completed to approach 0, a positive correspondence exists with a single-transition s-t cut. Shaded cells represent perturbations 

where changes to the proportion of tasks completed were verified by large-scale simulation. Note: trap states are excluded. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 

                                                                                                                     In Fig. 4.1, corresponds to 

                                                                                                                           aNegotiating to Monitoring single-transition s-t cut 

                                                                                                                           bMonitoring to Completed single-transition s-t cut 

                                                                                                                            cInitial to Discovering single-transition s-t cut  

 

 * Note that that the perturbation described in this row occurs even though the transition from Monitoring  Negotiating is not 

directly perturbed. See text above for the explanation.   

 

Finally, there were situations where the proportion of tasks completed dropped significantly, but not near to 0. 

For example, this occurred in Tables 5.1 (b) and 5.2 (b) when Waiting was made the primary increase 

column, c
↑
, while Negotiating was made the sink column, c

↓
. Here the combined probabilities of transition of 

matrix elements c
↑
 and c

↓
 approached, but did, not equal 1. Hence raising c

↑
 to the limit while lowering c

↓
 to 

0 created conditions in which the flow of tasks to the Tasks Completed state was constrained but not stopped. 

These correspond to the state transitions of the 2 multiple-transition s-t cuts in Fig. 4.4. Note that these 

multiple-transition s-t cuts were identified by the node contraction algorithm to be described below, but not 

by the path enumeration algorithm or by the perturbation algorithm described in Sec. 3.1. 

 

5.1.2 Correspondence of Trap States to Perturbation Algorithm Results 

 

With regard to trap states in the grid system, Table 5.3 shows the results of the Markov and large-scale 

simulations for perturbations of self-transitions of individual states common to all paths between the Initial 

and Tasks Completed states in the grid 8 h and 640 h cases. This table shows the effect on tasks completed of 

raising the self-transition probability to 1 for four states, with the Initial State again omitted. These results 

confirm that as the self-transition probability of the three trap states, Discovering (mentioned above), 

Negotiating, and Monitoring, reaches 1, the proportion of tasks completed approaches 0. The fourth state, 

(c) r = Negotiating

Waiting Discovering 0.937 +0.19% No

Waiting Negotiating 0.938 +0.28% No

Waiting Monitoring 0.939 +0.37% No

Discovering Waiting 0.935 +0.00% No

Discovering Negotiating 0.935 +0.00% No

Discovering Monitoring 0.936 +0.07% No

Negotiating Waiting 0.931 -0.44% No

Negotiating Discovering 0.933 -0.27% No

Negotiating Monitoring 0.938 +0.35% No

Monitoring Waiting 0.000 -99.99% Yesa

Monitoring Discovering 0.000 -99.99% Yesa

Monitoring Negotiating 0.000 -99.98% Yesa

(d) r = Monitoring

Negotiating Monitoring 0.937 +0.24% No

Negotiating Tasks Compl’d 0.938 +0.27% No

Monitoring Negotiating 0.186 -80.13% Yesb, *

Monitoring Tasks Compl’d 0.949 +1.52% No

Tasks Compl’d Negotiating 0.006 -99.40% Yesb,

Tasks Compl’d Monitoring 0.016 -98.32% Yesb

(b)  r = Waiting

Sink 
column (c↓)

Primary 
increase 
column (c↑)

Prop. Tasks Completed
and  % change when
prob. (r c↓) 0

Single-
transition 
s-t cut exists

Waiting Discovering 0.937 +0.22% No

Waiting Negotiating 0.939 +0.38% No

Discovering Waiting 0.934 -0.13% No

Discovering Negotiating 0.936 +0.03% No

Negotiating Waiting 0.843 -9.82% No

Negotiating Discovering 0.932 -0.30% No

(a) r = Discovering

Sink 
column (c↓)

Primary 
increase 
column c↑)

Prop. Tasks Completed
and  % change when
prob. (r c↓) 0

Single-
transition s-t 
cut exists

Waiting Discovering 0.935 -0.04% No

Waiting Negotiating 0.935 +0.01% No

Discovering Waiting 0.935 -0.07% No

Discovering Negotiating 0.935 +0.03% No

Negotiating Waiting 0.933 -0.23% No

Negotiating Discovering 0.932 -0.31% No

(e) r = Initial

Discovering Initial 0.0 -100.00 Yesc

Initial Discovering 0.970 +1.96 No
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Waiting, is not a trap state; but it lies on one of only two paths to the Completed state. Hence if the self-

transition probability of Waiting is raised to 1, there is a partial downward effect on tasks completed, which 

also impacts the results in Tables 5.1 and 5.2, mentioned above.   

 
Table 5.3. Identification of trap states in 8 h and 640 h grid system. The table shows the proportion of tasks completed by the 

Markov simulation for states in Fig. 3.1 when their probability of self-transition is raised to 1. The states where the proportion of 

tasks completed falls to 0 correspond to trap states. Shaded cells indicate verification by the large-scale simulation.  

 

 

 

 

 

 

 

 

 

 

5.1.3 Efficiency of Minimal s-t Cut Set Analysis in the Grid System Case  

 

In summary, the data in Table 5.1, 5.2, and 5.3 shows that all single-transition s-t cuts and trap states 

identified in Fig. 4.1 correspond to cases where the perturbation algorithm found perturbation combinations 

that caused the proportion of tasks completed to approach 0. For all other perturbation combinations shown in 

Tables 5.1 and 5.2, the proportion of tasks completed remained relatively stable (i.e., did not decline 

significantly).   

Using path enumeration to find single-transition s-t cuts required less than 0.01 s second for both the grid 

system and Abilene problems. Having identified single-transition s-t cuts, trap states and minimal multiple-

transition s-t cut sets, it was then desirable to apply the perturbation algorithm to the corresponding TPM 

rows to verify these conditions and document the drop in the proportion of tasks completed. To do this for the 

three single-transition s-t cuts shown in Fig. 4.1 requires systematically lowering one transition probability in 

each row with a weight of 1.0—the transition probability for the single-transition cut itself–while raising at 

most  5  others: one in the row for Initial, 3 for Negotiating, and one for Monitoring. In the 8 h case, this 

entailed about 71 s of execution time. Reducing the two two-transition cut sets in Fig. 4.4 to approach 0 

requires an additional 40 s each, while perturbing the three traps states to raise probability of self-transition to 

1 as discussed above would add about 93 s execution time, or about 7% of the 56 min required for the 

original complete perturbation. For the 640 h case, the time to perform the same perturbations was about 230 

s, or about 1.4% of the total 4.5 h. All experiments were executed on a Dell PowerEdge 6950 with quad, 

dual-core 3.0GHz processors and 32GB memory, running under Windows 2003. The results described above 

for the grid system model (as well as the Abilene system described below) are summarized and compared to 

the times for the large-scale simulation in Table 5.4. The results show that path enumeration and minimal s-t 

cut set identification can lead to up to two orders of magnitude improvement in computational time over the 

use of the perturbation algorithm described in [7], which itself was found to constitute a two-order magnitude 

improvement over large-scale simulation [7]. 

State for which 
probability of self-
transition is raised to 1

Proportion Flows Complete Corresponds
to Trap State8-hour 640-hour

Waiting 0.400 0.756 No

Discovering 0.030 0.019 Yes

Negotiating 0.018 0.045 Yes

Monitoring 0.000 0.000 Yes
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Table 5.4. Comparison of execution times for grid computing system and Abilene network using  (a) Identification of minimal s-t 

cut sets followed by use of perturbation algorithm on state transitions identified as single-transition s-t cuts, with (b) Exhaustive 

search of the rows of a TPM using the perturbation algorithm as described in [7] and (c) large-scale simulation [1].  

 

 

 

 

 

 

 

 

 

 
a
Note: results achieved by path enumeration were also achieved using the node contraction algorithm to be described in the Sec. 6. 

 

Finally, it is important to point out that  incremental perturbation of transitions identified in cut sets and trap 

states can be avoided to save time; however if this is done, one loses information about the rate of 

degradation in tasks completed which may be vital in understanding system sensitivity and the existence of 

thresholds. For example, see Fig. 3.7 or Fig. 3.8. 

 

5.2 Abilene System 

 

In this section, we verify that all minimal s-t cut sets for paths between the Initial State and Flows Completed 

states in the Abilene system Markov chain model correspond to state transitions, which if perturbed using the 

perturbation algorithm as described in Sec. 3, can adversely impact system performance. Table 5.5 shows the 

results of applying the perturbation algorithm to the Abilene Markov chain model. As before, the 

probabilities of transition from the Connecting, Initial Slow Start (ISS), Normal Congestion Avoidance 

(NCA), Alternate Congestion Avoidance (ACA), and Slow Start (SS) to other states is lowered to 0 (i.e., 

designated as sink columns c
↓
). At the same time probabilities of transitions to other states are raised (i.e., 

designated as primary increase columns c
↑
). However, in contrast to the grid system case, we were unable to 

verify these results through the large-scale simulation due to the extreme cost in execution time (over 7 h for 

a single execution). As before, the transition from the Initial State is omitted from the analysis. 

With respect to single-transition s-t cuts for paths between the Initial and Flows Completed states, Table 

5.5 shows that only the probability of transition for Connecting  Initial Slow Start (i.e., r = Connecting and 

Initial Slow Start is made c
↓
), when lowered to 0, causes the proportion of flows completed to approach 0. 

Fig. 4.2 shows that the state transition Connecting  Initial Slow Start is indeed a single-transition s-t cut. 

Table 5.5 shows no other cases where lowering one transition probability, by itself, causes flows completed to 

approach 0, except the transition out of the Initial State. Figure 4.2 shows no other single-transition s-t cuts, 

other than the cut from the Initial State. Hence, in the case of the Abilene system as in the grid system, all 

single-transition s-t cuts found (there was 1) correspond to state transitions that adversely impact system 

performance, when probability of transition is perturbed to fall to 0.  

Minimal s-t cut set Identification Exhaustive 

search of TPM 

rows with 

perturbation 

algorithm

Large-scale 

simulation
Path 

Enumeration

Algorithma

Perturbation of 

individual state 

transitions only

Grid 

Computing

System

8-hour <0.01 s 244 s 56 minutes 205 hours

640-

hour

<0.01 s 230 s 4.5 hours 870 hours

Abilene 

Network

<0.01 s 450 s 27.3 hours Not available
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Table 5.5. Correspondence between cases where perturbation algorithm results in proportion of tasks completed falling to 0 and 

existence of single-transition s-t cuts in the Abilene system Markov chain model. The table shows the proportion of tasks completed 

and percent change when perturbation algorithm is applied to rows, r, of the TPM in Fig. 3.5 to decrease the probability of 

transition to 0 for the sink column, c
↓
, or the state transition r  c

↓
, while increasing the probability of transition in the primary 

increase column, c
↑
, or r  c

↑
 with a sink weight = 1. Secondary perturbation is excluded. The right-most column indicates if a 

single-transition s-t cut exists for r  c
↓ 

in Fig. 4.2. In all cases where perturbation causes proportion of tasks completed to 

approach 0, a positive correspondence exists with a single-transition s-t cut. Note: trap states are discussed separately below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                        

                                                                                                                                             

 
   

  aIn Figure 4.2, corresponds to Connected  Initial Slow Start single-transition s-t cut and Connected trap state  

 

 

For the Abilene model, Table 5.6 shows that the perturbation algorithm found that two trap states, 

Connecting and Initial Slow Start. These are the only states that result in the proportion of flows completed 

approaching 0 when their self-transition probabilities are raised to 1.0. Figure 4.2 shows that Connecting and 

Initial Slow Start are the only trap states in the Abilene Markov chain model, and their existence is also 

predicted through path enumeration. As in the case of the grid system, the perturbation algorithm revealed no 

additional states for which raising the probability of self-transition to 1 caused the proportion of flows 

completed to approach 0. As Table 5.6 shows, when the probability of self-transition is raised to 1 for the 

other three states—Normal Congestion Avoidance, Alternate Congestion Avoidance, and Slow Start—a 

smaller reduction in flows completed occurs that is relatively proportional to the chances that a flow enters 

the particular state. This suggests that if a system fault occurs that causes flows to remain in one of these 

three states, use of an alternative congestion control regime is a possible remedy that would allow the system 

to function without a disastrous decline in performance.                           

(a) r = Initial Slow Start (ISS)

Sink 
column (c↓)

Primary 
increase 
column (c↑)

Prop. Tasks Complete
and  % change when
prob. (r c↓) 0

single-
transition s-t 
cut exists

ISS NCA 0.997 -0.20 No

ISS ACA 0.998 -0.10 No

ISS SS 0.997 -0.20 No

NCA ISS 0.999 0.00 No

NCA ACA 0.998 -0.10 No

NCA SS 0.998 -0.10 No

ACA ISS 0.999 0.00 No

ACA NCA 0.998 -0.10 No

ACA SS 0.998 -0.10 No

SS ISS 0.999 0.00 No

SS NCA 0.998 -0.10 No

SS ACA 0.998 -0.10 No

(d) d = Slow Start (SS)

Sink 
column (c↓)

Primary 
increase 
column (c↑)

Prop. Tasks Complete
and  % change when
prob. (r c↓) 0

single-
transition s-t 
cut exists

NCA ACA 0.999 0.00 No

NCA SS 0.999 0.00 No

ACA NCA 0.998 -0.10 No

ACA SS 0.998 -0.10 No

SS NCA 0.998 -0.10 No

SS ACA 0.999 0.00 No

(c)  r = Alternate Congestion Avoidance (ACA)

Sink 
column (c↓)

Primary 
increase 
column (c↑)

Prop. Tasks Complete
and  % change when
prob. (r c↓) 0

single-
transition s-t 
cut exists

NCA ACA 0.999 0.00 No

NCA SS 0.999 0.00 No

ACA NCA 0.998 -0.10 No

ACA SS 0.998 -0.10 No

SS NCA 0.998 -0.10 No

SS ACA 0.999 0.00 No

(b) r = Normal Congestion Avoidance (NCA)

Sink 
column (c↓)

Primary 
increase 
column (c↑)

Prop. Tasks Complete
and  % change when
prob. (r c↓) 0

single-
transition s-t 
cut exists

NCA ACA 0.999 0.00 No

NCA SS 0.999 0.00 No

ACA NCA 0.999 0.00 No

ACA SS 0.999 0.00 No

SS NCA 0.999 0.00 No

SS ACA 0.999 0.00 No

(e) d = Connected (Conn)

Sink 
column (c↓)

Primary 
increase 
column (c↑)

Prop. Tasks Complete
and  % change when
prob. (r c↓) 0

single-
transition s-t 
cut exists

ISS
Connected

Connected
ISS

0.071 -92.89 Yesa

No0.999 -0.10
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Table 5.6. Identification of trap states in Abilene system Markov simulation. The table shows proportion of flows completed by the 

simulation for states in the Abilene model when their probability of self-transition is raised to 1. The states where the proportion of 

flows completed approaches 0 correspond to trap states.  

 

 

 

 

 

 

 

 

 

 

The path enumeration algorithm identified 8 minimal s-t cut sets that were multiple-transition s-t cuts in the 

Abilene model. These are listed in Table 4.1, one of which is shown in Fig. 4.5. Simultaneously lowering the 

transition probabilities to 0 of all state transitions identified by these cut sets does indeed cause the proportion 

of flows completed to approach 0. However, each of these cases represents situations that are less likely than 

the case of a single-transition s-t cut. For all multiple-transition s-t cuts in Table 4.1, the perturbation 

algorithm results showed that if the probability of transition of any single member of the cut set was not 

lowered, the proportion of flows completed remained high. This result suggests that the Abilene system 

possesses a relative degree of robustness as long as at least one path to a congestion control regime exists that 

can lead to completion of flows. Further experimentation would be necessary to determine if this conjecture 

actually holds in all cases for the large-scale Abilene simulation. 

Finally, it is necessary to consider the relative efficiency of the minimal s-t cut set generation approach 

when compared to the perturbation algorithm overviewed in Sec. 3.1. As in the grid system case, it is 

desirable to apply the perturbation algorithm to the limited areas of the Abilene system TPM that were 

identified by the minimal s-t cut sets and trap states. For the single-transition s-t cut ConnectingInitial Slow 

Start, this involves just one perturbation combination, which ran about 13 s. With regard to the two trap 

states, Connecting involved one perturbation combination that ran 90 s, while Initial Slow Start required an 

additional three, for about 260 s. Simultaneously lowering the transition probabilities to 0 in the any of the 

minimal s-t cut sets shown in Table 4.1 involved roughly 10-20 s each. These results are summarized in 

Table 5.4. As in the case of the grid system, these computations required a very small fraction of the 27.3 h 

that were needed to apply the perturbation algorithm to all rows of the Abilene Markov chain TPMs. 

State for which probability of 
self-transition is raised to 1

Proportion
Flows Complete

Corresponds
to Trap State

Connected 0.008 Yes

Initial Slow Start 0.007 Yes

Normal Congestion Avoidance 0.824 No

Alternate Congestion Avoidance 0.967 No

Slow Start 0.918 No
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6. Application of Minimal s-t Cut Set Identification to Larger Markov Chain Problems 

 

Section 5 showed the feasibility of using minimal s-t cut sets on paths from the initial to the absorbing state to 

predict which state transitions, if perturbed, are most likely to adversely impact system performance.  

However, the path enumeration algorithm for finding minimal s-t cut sets discussed in earlier sections is not 

scalable for two reasons. First, in the worst-case situation of a complete graph (a graph where each pair of 

vertices is connected by an edge), enumeration of all non-cyclic paths between two vertices has a complexity 

that is factorial with respect to the number of vertices [45, 46].  This makes a path enumeration algorithm 

impractical for larger Markov chains. Second, in larger Markov chains, it may be that all paths leading to an 

absorbing state cannot be disconnected by cutting a single state transition.  Therefore, it is necessary to find 

an algorithm that can (1) work efficiently on larger Markov chain problems; and (2) identify minimal s-t cut 

sets consisting of multiple state transition that disconnect all paths leading from the initial to the absorbing 

state.  

   In this section we address the question of how an approach based on minimal s-t cut set analysis might 

work for larger Markov chains models. We first introduce an algorithm, known as the node contraction 

algorithm, which fulfills the two requirements identified in the preceding paragraph. The algorithm finds 

minimal s-t cut sets probabilistically and can be bounded to run for a limited amount of time, though it is not 

guaranteed to find all cut sets. We then provide examples of algorithm’s use for Markov chain problems and 

assess its potential for Markov problems of significant size and complexity. We find that while these 

investigations into the feasibility of use of non-exhaustive techniques to generate minimal s-t cut sets are not 

complete and more work remains to be done, they do provide evidence that this approach will work for larger 

problems. Finally, we compare the different approaches presented in this report to finding minimal s-t cut sets 

and describe the circumstances under which each should be used. 

 

6.1 A Probabilistic Algorithm for Finding Minimal s-t Cut Sets in Larger Markov Chains 

 

This section describes an algorithm for finding minimal s-t cut sets that also has the potential to be effective 

for larger Markov chain models. As before, this algorithm identifies single-transition s-t cuts and trap states. 

However, the algorithm also identifies minimal s-t cut sets with multiple edges, which correspond to sets of 

state transitions in a Markov chain, which if perturbed together, cause degradations in performance (as 

measured by the proportion of tasks that enter the Tasks Completed state or proportion of flows that enter 

Flows Completed). The set of state transitions in such a minimal s-t cut set will represent related 

circumstances in the domain being modeled, or may represent unrelated events which could randomly occur 

together. We assume that in most large domains, the most critical cut sets will have a small number of 

transitions, since small combinations are more likely, as discussed in [47]. Therefore, a reasonable goal would 

be to generate minimal s-t cut sets consisting of a limited number of state transitions. It is also desirable that 

these cut sets should contain the minimum number of state transitions needed to disconnect the initial state 

from the absorbing state, or be slightly larger.  

A number of algorithms have been developed for enumerating all minimal s-t cut sets between two vertices 

in directed graphs [33, 35, 48]. All require considerable computational effort for large graphs. For instance, in 

[33], enumeration of all s-t cut sets was found to have a complexity of O |E| per cut set listed.  However, this 

algorithm can be computationally expensive as well, since Markov chains with as few as fifty states can 

contain over 10
8
 minimal s-t cut sets on paths between the initial and absorbing states, as we will show 

below. An interesting alternative to enumeration is the node contraction algorithm, which while not 

guaranteed to find all minimal s-t cut sets, can be controlled to bound computational cost. Efficient 

implementations of this algorithm for undirected graphs run in O (n
2
) time [34]. However, computational 

characteristics for directed graphs have not been determined and remain a topic for future work.  Below we 
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show that this algorithm can find a large proportion of minimal and near minimal s-t cut sets in a sample of 

larger Markov chain problems. Section 6.4 returns to the subject of other minimal s-t cut set algorithms 

which could be explored in future work.  

The node contraction algorithm operates by randomly choosing two vertices connected by an edge and 

replacing these vertices with a single, new vertex. The new vertex assumes the edges by which the two 

replaced vertices were connected to the remainder of the graph (i.e., the edges of replaced vertices become the 

edges of the new vertex) and takes up the edges that connected the two replaced vertices. The process of 

randomly selecting pairs of vertices repeats until only two large, mega-vertices remain. The directed edges 

between the two remaining mega-vertices c1 and c2, and the directed edges between vertices <v1, v2>, v1≠ v2, 

in which v1 was replaced by c1 and v2 was replaced by c2, constitute a minimal s-t cut set of the graph. We 

apply this algorithm to the Markov chain, modifying it to prevent the two vertices representing the Initial 

State and desired absorbing state (Tasks or Flows Completed) from being replaced by the same vertex. This 

ensures that the Initial State, s, and Tasks Completed state, t, will not both end up in either c1 or c2. In this 

way, the edges between the two remaining mega-vertices, c1 and c2, together with the vertices each has 

absorbed, yield an s-t cut set of state transitions, which if removed, disconnect the Initial State and absorbing 

state (Tasks or Flows Completed).  

Since the algorithm randomly selects two connected vertices to combine, repeated applications produce 

different cut sets. The more the algorithm is repeated, the greater the chances that a large proportion, if not 

all, of the minimal s-t cut sets of interest will be obtained. Hence, the operation of the algorithm can be said 

to be probabilistic. Because the number of repetitions can be controlled, computation cost can be bounded. 

Further, cut sets can identify potential trap states, which exist when all transitions in the cut set emanate from 

the same state. Lastly, Markov simulation need be applied only to the transitions in the s-t cut sets, in order to 

generate curves for the proportion of tasks completed, such as are shown in Fig. 3.7 and 3.8, and to identify 

performance thresholds. However, to be scalable, the algorithm must be effective in producing the most 

critical minimal s-t cut sets in a relatively limited number of repetitions. In the next section, we describe 

examples of the operation of this algorithm. Pseudo-code for one repetition of the algorithm is given in 

Appendix A. 
 

6.2 Examples of the Application of the Node Contraction Algorithm 

 

In this section we provide two examples of the application of the node contraction algorithm so that the 

reader can see more clearly how the algorithm operates. First, we apply the node contraction algorithm to the 

grid computing system and Abilene system Markov models and compare the results of these small problems 

to the results provided in Secs. 4 and 5. Then we apply the node contraction algorithm to a much larger 

example problem to see what these results look like. In Sec. 6.3, we provide a more extended analysis of the 

application of the algorithm to a set of larger problems and provide some quantitative results. 
 

6.2.1 Example Application to the Grid Computing and Abilene System Markov Chain Problems 

 

The node contraction algorithm produced 5 minimal s-t cut sets for the grid computing system Markov 

chain. These are the three single-transition s-t cuts that appear in Fig. 4.1 and two multiple-transition s-t cuts 

that appear in Fig. 4.4. This algorithm also found 10 minimal s-t cut sets for the Abilene system, shown in 

Table 4.1. Both are the complete sets of minimal s-t cut sets from the initial to absorbing states for both 

Markov chain problems. Both sets required 100 repetitions of this algorithm, which consumed less than a 

0.01 s of CPU time. In both cases, the algorithm identified all single-transition s-t cuts—in other words, all 

minimal s-t cut sets that with a single state transition–that were also obtained through path enumeration.  In 

Sec. 5, the single- and multiple-transition cuts were shown to correspond exactly to state transitions in 

Markov chain graphs that could be perturbed to produce large performance degradations. 
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6.2.2 Example Application to a Large Markov Chain TPM 

 

This section illustrates an example of the use of the node contraction algorithm on a larger Markov Chain 

matrix with 136 states. Unlike the grid or Abilene system problems, this Markov chain was generated by a 

matrix generation program as a test problem [49]. Hence, it does not model a real-world system in which 

states can be given concrete interpretations; instead, states are numbered from 1 to 136. This Markov chain is 

homogeneous with respect to time, and provides no time step information. Though originally an ergodic 

chain, it has been modified to substitute a single absorbing state (state 134) to allow it to behave as an 

absorbing chain for our purposes.  A compressed visualization of the TPM appears in Fig. 6.1 (with a more 

detailed view of the first 50 states of the TPM in Appendix B.3).  This TPM is a sparse matrix in which 

processes proceed by following state transitions roughly along the matrix diagonal (dark gray cells) to the 

introduced absorbing state 134. However, most states also provide transitions that lead backwards toward 

states with lower numbers, which greatly increases the number of potential paths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.1. Compressed view of TPM rw136 for a Markov chain of 136 states from [49]. The horizontal axis represents the 

numbered states in ascending order from left to right; the vertical axis represents the states in descending order from bottom to top. 

Dark gray cells represent non-zero values. The pattern of shaded cells clearly shows a sparse diagonal matrix. For a more detailed 

view of the first 50 states of this TPM, see Appendix B.3. 

 

This problem is of sufficient size and complexity that it effectively prohibits enumeration of all paths from 

the initial state to the single absorbing state, making it a good test problem for our purposes as well. An 

application of the path enumeration algorithm quickly confirms that there are at least two paths having no 

common states (other than the initial state or the single absorbing state); hence, no single-transition s-t cuts or 

individual trap states will be found.  However, an application of the node contraction algorithm does find a 

number of minimal s-t cut sets consisting of 2–5 state transitions—as well as larger cut sets. Table 6.1 shows 

a sample from a total produced by 200 repetitions of the cut-set algorithm, which were generated in 491 

seconds. The sample is chosen on the basis of a low total transition probability for cut set members. A much 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

1 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0.50 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 0 0.47 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

4 0 0 0.43 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

5 0 0 0 0.40 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

6 0 0 0 0 0.37 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

7 0 0 0 0 0 0.33 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

8 0 0 0 0 0 0 0.30 0 0.53 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

9 0 0 0 0 0 0 0 0.27 0 0.60 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

10 0 0 0 0 0 0 0 0 0.23 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

11 0 0 0 0 0 0 0 0 0 0.20 0 0.73 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11

12 0 0 0 0 0 0 0 0 0 0 0.17 0 0.80 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

13 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.87 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13

14 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.93 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

17 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17

18 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18

19 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19

20 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

21 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21

22 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

23 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23

24 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24

25 0 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25

26 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26

27 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27

28 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28

29 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37
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longer execution of 2500 repetitions produced only two cut sets having lower total transition probabilities. 

The time needed to generate the sample in Table 6.1 is no doubt a small fraction of time needed to completely 

perturb this large matrix using the perturbation algorithm described in [7] and overviewed in Sec. 3.1 (which 

we did not even attempt). Each of the minimal s-t cut sets in Table 6.1 was also verified by removing its 

transitions (edges) from the 136-state graph and executing the path search algorithm, which is then unable to 

find any paths.   

 
Table 6.1. Selected minimal s-t cut sets between the initial state and the absorbing state in a Markov chain of 136 states produced 

by executing the node contraction algorithm for 200 repetitions. These cut sets represent low combinations of number of from states 

and state transitions, and low sums of transition probabilities for cut set members. Each was verified as a minimal s-t cut set using 

the Markov simulation program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this example, the identification of a moderate number of small minimal s-t cut sets in a reasonable 

amount of time provides a tractable means for identifying where performance degradations can occur within a 

larger Markov chain. To verify that implementing the cut sets in Table 6.1 would actually disconnect the 

graph and cause the proportion of processes that reach the absorbing state to fall to 0, we first executed the 

Markov simulation program on the 136 × 136 TPM and modeled the evolution of the 136-element state 

vector, using the procedure overviewed in Sec. 3 and described in detail in [7]. By modifying the Markov 

perturbation algorithm to simultaneously lower a set of transition probabilities for state transitions to 0 in any 

of the cut sets in Table 6.1, it was possible to model the effect of these reductions on the flow of processes 

into the designated absorbing state, state 134.  

Number 
from states/
transitions

List of transitions
Sum of
transition 
probabilities

1 3 / 4
131 134, 128132, 129133,  
131132 

0.233

2 3 / 4
128132, 129131, 129133, 
127131 

0.233

3 4 / 5 
123128, 124129, 125130, 
125127, 122127

0.367

4 4 / 5 
125130, 124129, 123128, 
127131, 127128 

0.400

5 5 / 6
123128, 124125, 124129 , 
119125, 120126, 122127

0.467

6 6 / 7
114116, 109116, 110117, 111
118, 112119, 113120, 114121

0.733

7 3 / 4
131134,  131132,  128132, 
133132

0.700

8 1 / 2
12,  117 1.0

9 2 / 3
2 18, 23, 117 1.43
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6.3 Performance of the Node Contraction Algorithm on Four Larger Markov Chain Problems 
 

In this section we apply minimal s-t cut set analysis using node contraction to a set of large Markov chain 

problems. In doing this, we hope to provide a preliminary evaluation of the effectiveness of minimal s-t cut 

set analysis using this algorithm on a set of large, complex problems. As pointed out above, this algorithm 

generates minimal s-t cut sets probabilistically, but does not enumerate all possible cut sets. Therefore, the 

question naturally arises as to whether it either misses critical minimal s-t cut sets in larger Markov chains, or 

if it requires too many repetitions to generate the most critical ones.  

Investigation of these questions required that the node contraction algorithm be applied to a large absorbing 

Markov chain for which, ideally, all critical minimal s-t cut sets between the initial and absorbing states could 

be obtained by other means to provide a baseline for purposes of comparison. To accomplish this, we 

implemented the minimal s-t cut set enumeration algorithm of [33], which enumerates all s-t cut sets in a 

directed graph. We obtained four large Markov chain matrices for which most, if not all, minimal s-t cut sets 

between initial and absorbing state could be generated using the algorithm described in [33], though it might 

take many hours or even days. These matrices, which appear in Appendix B, are sparse matrices. Matrices 1 

and 2 were generated using [50] and are based on [51] and [52] respectively. Matrix 3 was a 50 × 50 subset of 

a very large 136 ×136 Markov chain matrix described in [49]. Matrix 4 was generated using [50] and is based 

on [53]. Each of these matrices was originally an ergodic Markov chain that was modified to become an 

absorbing chain by designating a single absorbing state.  

To identify which minimal s-t cut sets between the initial and absorbing states were critical, we developed 

selection criteria that might conceivably be used in a real-world situation.  These criteria are based on the idea 

that in an actual real-world system, it is likely that expert guidance will be required to select which cut sets 

represent circumstances of interest. A domain expert might consider various criteria for selecting minimal s-t 

cut sets to examine further. For example, one possible selection criterion would be minimal s-t cut sets that 

have few edges (state transitions). The justification for this criterion might be that the most critical minimal s-

t cut sets will consist of a small number of transitions, since small cut sets represent combinations of 

circumstances that are more likely to occur together and thus more likely to severely impact a system. (Note: 

in [47], this intuition is partially corroborated for the case of undirected graphs by the finding that small cut 

sets are more likely to lead to disconnection of undirected graphs, if the edges in the cut set fail independently 

with a known probability.) Another criterion might be cut sets for which the total probability of transition of 

all member state transitions is low. Minimal s-t cut sets with total transition probability near 0 are likely to be 

sensitive to small perturbations, which quickly drive down system performance. On the other hand, cut sets 

with high total transition probabilities consist of state transitions that are more likely to be taken. Hence, they 

may be good candidates as well.  

We defined three such criteria for ordering minimal s-t cut sets that are based on such considerations and 

that we believe are sufficient for the purposes of this experiment. Therefore, we chose the first criterion, Sort 

A, to rank minimal s-t cut sets by the fewest number of edges as a primary sorting criterion and lowest total 

transition probability of edges as the secondary criterion. The second, Sort B, uses only the lowest total 

transition probability of edges in the cut set as a sorting criterion (which also tends to rank cut sets with fewer 

transitions higher). Hence, Sorts A and B are likely to identify minimal s-t cut sets in which smaller 

perturbations to the fewest number of state transitions are likely to produce the largest changes. The third 

ranking criteria, Sort C, uses least number of edges as a primary sorting criterion and highest total transition 

probability of edges as a secondary criterion. Sort C identifies cut sets consisting of state transitions more 

likely to be taken and therefore, if perturbed, could have greater impact on system behavior.  No doubt further 

research is necessary to investigate criteria for choosing minimal s-t cut sets for larger Markov chains in order 

to decide which are likely to be important. Nevertheless, having found a means to determine the critical 

minimal s-t cut sets between the initial and absorbing states in a sufficiently large Markov chain, it was then 
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possible to run the node contraction algorithm to see if it could also find the critical cut sets in a reasonable 

amount of time. 

Table 6.2 shows the results of the enumeration algorithm of [33] and the node contraction algorithm to all 

four matrices. Both algorithms were parameterized to rank minimal s-t cut sets generated by three sorting 

criteria described above. Table 6.2 lists the total number of enumerated minimal s-t cut sets and the time 

required to compute the enumeration. The table then compares the performance of the node contraction 

algorithm. The table shows what proportion of the top-ranked 100 cut sets, as ordered by the three sorting 

criteria described above, that the node contraction algorithm was able to produce in a specified number of 

repetitions and the time required. We examined the performance of the node contraction algorithm at three 

levels of effort: 1000, 10 000, and 100 000 repetitions. Note that the number of minimal s-t cut sets generated 

and time required did not always grow linearly with the matrix order (number of rows and columns). This 

was due to differences in topology and interconnectedness in the Markov chains; in some cases, a few states 

with large numbers of transitions can drastically increase the number of possible cut sets and thus increase the 

level of effort needed to enumerate all transitions.   
 

Table 6.2. Comparison of minimal s-t cut sets for paths between the initial and absorbing states enumerated by the algorithm of [33] 

and the node contraction algorithm. Both algorithms were applied to the four matrices reproduced in Appendix B. The node 

contraction algorithm was executed a three levels of effort: 1000, 10 000, and 100 000 repetitions. Minimal s-t cut sets generated 

were sorted by: (Sort A) fewest number of edges as a primary sorting criteria with lowest total transition probability of edges as a 

secondary sorting criteria; (Sort B) lowest total transition probability of all edges in the cut set; and (Sort C) fewest number of edges 

as a primary sorting criteria with highest total transition probability of edges as a secondary criterion. At 10 000 repetitions, the node 

contraction generated 77.2% (variance 555.2) of the top 100 ranked cut sets in 0.14% of the time for Sorts A-C. At 100 000 repetitions, node 

contraction generated 91.4% (variance 432.0) in 1.3% of the time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the exception of Matrix 1, Table 6.2 shows that the node contraction algorithm generated as much as 

91.4% of the top 100 ranked cut sets that were generated by the enumeration algorithm of [33] in 1.3% of the 

time needed (for 100 000 repetitions under all three sorts).For instance, for Matrices 2 and 3, the algorithm 

was able to find almost all top 100 minimal s-t cut sets in a relatively small fraction of the number of hours 

required by the enumeration algorithm of [33]. For matrix 4, the node contraction algorithm could find all the 

top 100 minimal s-t cut sets under sort criteria A and C in about 15 min (as opposed to 156.1 h by the 

algorithm of [33]). However, the algorithm found only 37 of 100 high ranked minimal s-t cut sets under Sort 

B. Moreover, for Matrix 1, Table 6.2 shows that the node contraction algorithm had to run longer than the 

algorithm of [33], before it began to produce a large percentage of highly-ranked cut sets (hence, we did not 

attempt to use the node contraction algorithm at the highest level of effort). The differences in performance 

are attributable in part to large problem size, as for instance, Matrix 4 which has 422,060,801 minimal s-t cut 

sets. The differences in performance may also be attributable to topological characteristics such as vertices 

Matrix Minimal s-t cut sets 
enumerated using 
algorithm of [33]

Proportion (in %) of 100 top-ranked minimal s-t cut sets ranked by 
criteria A, B and C, which were found by the node contraction algorithm

Number of 
minimal 
s-t cut sets

Time After 1000 repetitions After 10,000 repetitions After 100,000 repetitions

Time Sort A Sort B Sort C Time Sort A Sort B Sort C Time Sort A Sort B Sort C

1 50 530,432 332.1 s 63 s 56 67 22 640 s 80 100 96 --- --- --- ---

2 50 28,230,288 21.6 
hours

17 s 49 58 36 171 s 93 98 65 1710 s 99 100 99

3 50 27,242,634 36 hours 22 s 48 86 87 218 s 67 100 100 2288 s 88 100 100

4 40 422,060,801 156.1
hours

11s 15 30 22 106 s 30 80 62 1051 s 37 100 100
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(states) with large numbers of edges (state transitions), which increase the amount of interconnectivity, as in 

Matrices 1 and 4 (see Appendix B). Matrix characteristics such as high interconnectivity may possibly serve 

as impediments to the operation of the node contraction algorithm, causing it to run longer to find all highly-

ranked cut sets. In the case of Matrix 1 which has only 530,432 minimal s-t cut sets, it may actually be more 

efficient to enumerate cut sets rather than to generate them probabilistically. 

   Despite these significant exceptions, the data shows that it is possible to use the node contraction algorithm 

to find a high proportion of critical minimal s-t cut sets between the initial and absorbing states in larger 

Markov chains.  However, further work is necessary on a wide variety of problems to fully demonstrate 

scalability and the ability to handle large, complex Markov chain problems. In addition, further research is 

needed to find more effective minimal s-t cut set generation methods that employ probabilistic or heuristic 

approaches. 

 

6.4. Discussion and Future Work 
 

In Secs. 3–6, we have discussed four methods of discovering areas of sensitivity within an absorbing Markov 

chain representation of a dynamic system.  These four approaches are based on use of:  

 

1. A perturbation algorithm of the type described in [7, 42] and overviewed Sec. 3.1 (note: a second 

perturbation algorithm is discussed in the next section and presented in Appendix C), 

2. A algorithm, such as discussed in Sec. 4 to enumerate all paths between an initial state and an absorbing 

state of interest and select state transitions common to all paths,  

3. An algorithm that enumerates all minimal s-t cut sets between an initial state and an absorbing state of 

interest [33, 35, 48],  

4. A robust, probabilistic approach, such as the node contraction algorithm, that generates a high proportion 

of the most critical minimal s-t cut sets in significantly less time than cut set enumeration.  

 

The choice of which of the four approaches to use may depend on problem size and circumstances. If the 

problem is very small, a perturbation algorithm such as that described in Sec. 3 can be used directly as in [7]. 

For larger problems, one might apply a path enumeration algorithm to identify all paths to the absorbing state 

and then determine if cutting one transition can disconnect all paths. Then one may apply the perturbation 

algorithm to a limited number of perturbation combinations determined by the ―from‖ and ―to‖ states of the 

single-transition s-t cut(s). For a problem of moderate size for which sufficient time and computational 

resources exist, it may be desirable to enumerate all minimal s-t cut sets that disconnect the initial state and 

the desired absorbing state. If the problem is larger, or one state transition is insufficient to disconnect all 

paths to the absorbing state, a more robust approach, such as the node contraction algorithm, can be applied 

to find minimal s-t cut sets with multiple transitions. The perturbation algorithm can then be applied in 

parallel to the related TPM rows as was described above to learn the rate of degradation in system 

performance. In the next section, we will present an additional approach in which eigendecomposition is used 

to identify areas on a Markov chain TPM that are sensitive to perturbation. This fifth approach is intended to 

be used in a complementary way with the four methods discussed above. 

   With regards to future work on graph-theoretic approaches, methods will be needed to better determine 

which of possibly many minimal s-t cut sets are most likely to be important in affecting system performance. 

For instance, one may explore different criteria for ranking alternative cut sets, in addition to the criteria 

provided in Sec. 6.3. It will also be important to understand how domain expertise might be leveraged in 

combination with various criteria for ranking cut sets.  

    Another area of future work is the investigation of other scalable methods for finding minimal s-t cut sets 

in directed graphs, such as, for instance, adapting alternative approaches to probabilistic node contraction 

[34]. Along these lines, it may be possible to combine node contraction with lumping techniques, mentioned 
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earlier in the section on previous work [10–12], to reduce problem size.  By selectively lumping vertices 

(states) into clusters, in such a way as to eliminate non-critical state transitions, it may be possible to reduce 

the complexity of finding minimal s-t cut sets. Related strategies for simplifying large Markov chains involve 

partitioning the graphs into clusters of closely related vertices and exploring cluster connections as possible 

minimal s-t cut sets. For this, we may consider adapting the node contraction algorithm or such as that of [54] 

and others on graph division. As mentioned earlier, it is also important to extend the analysis to minimal s-t 

separating sets, consisting of combinations of multiple trap states and state transitions (even though doing so 

will have the effect of increasing problem size rather than reducing it). Separating sets may correspond to 

important real-world circumstances that impact system performance.  

    Finally, one may also explore other approaches that can be used to generate minimum weight cut sets 

between two vertices in a directed graph which do not involve Markov chain analysis. These include, for 

instance, adaptation of methods for analysis of network flows [37–39], as mentioned earlier. Here, network 

flow theory is used to rank cut sets by their nearness to maximum flow and minimum capacity, rather than the 

criteria discussed earlier. To enable such rankings, the work of [55, 56] could be adapted.  
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7. Theoretical Model of a Markov Chain 
 

The compressed representation of the large-scale grid system as a 7-state Markov chain makes it possible to 

search for critical pathways to system failure by examining the paths in the graph induced by the state 

transitions. In this section we will discuss an approach based on direct examination of the elements of the 

transition probability matrices. Our discussion will yield methods that produce results that are consistent with 

results of the methods in the previous sections and thus are, in some sense, complimentary to them. In 

particular, we will derive a very good approximation of the proportion of tasks completed based on the 

eigendecomposition of the TPMs. We will call this approximation the theoretical model.  

 

7.1 Eigendecomposition of an Absorbing Markov Chain 

 

As mentioned in Sec. 3.1, the state of the system at time step m can be described in terms of a row vector vm 

of length seven, where the entry vi gives the proportion of tasks in state si at that time step. Now since there 

are 85 time steps per time period, at time step m, the system is in time period tp(m) := [(m − 1) /85 + 1]. Then 

the following equation determines the evolution of the Markov system at time period m, 
                  

                                                                 vm = vm-1 ∙                                                                                (7.1) 

 

where               is the TPM corresponding to time period tp(m). Recall that row i in this matrix corresponds to 

the probabilities of transition of tasks from state si to some state sj. Note that at every time step, the tasks in 

state si must transition to some state and thus, the transition probabilities given in row i must sum to 1 for all 

i. In other words, the TPMs are stochastic.  

     In an absorbing Markov chain, one can classify each of the states of the chain as either transient or 

absorbing. A state is termed transient if it is possible to leave that state and is called absorbing otherwise. In 

the model of the large-scale grid system, the states Initial, Waiting, Discovering, Negotiating, and Monitoring 

are all transient, while the states Tasks Completed and Tasks Failed are absorbing, so called because once the 

system arrives in that state, there is zero probability of leaving it. Notice that the transition probability matrix 

associated with an absorbing Markov chain can always be taken to have the following form 

 

 

 

where Q gives the probabilities of transitioning between transient states, R gives the probabilities of 

transitioning from a transient state to an absorbing state, and the zero submatrix represents the fact that it is 

impossible to transition from an absorbing state to a transient state [57]. The submatrix I is the l × l identity 

matrix where l is the number of absorbing states, which represents the fact that the only transitions from the l 

absorbing states are self-transitions. Observe that the transition probability matrices for the grid system 

Markov model are already in this form; as we can see from Fig. 3.2(b), the first 5 × 5 submatrix corresponds 

to transitions among the transient states, the next 5 × 2 submatrix corresponds to transitions from transient to 

absorbing states, the lower left 2 × 5 submatrix is zeros, and the lower right 2 × 2 submatrix is the identity 

matrix. This is shown in Fig. 7.1. 
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Figure 7.1. Canonical form of summary TPM in Fig. 3.2 (b). In this form, Q gives the probabilities of transitioning between 

transient states, R gives the probabilities of transitioning from a transient state to an absorbing state, the zero submatrix indicates 

that it is impossible to transition from an absorbing state to a transient state, and I is the l × l identity matrix where l is the number of 

absorbing states, where the only transitions are self-transitions.  

 

Now, using this special form of the TPM, it is possible to express powers of the matrix    in terms of the 

submatrices. It follows easily by induction that 
S
 is given by 

 

 

 

Furthermore, it is possible to express a product of powers of different TPMs again in terms of these 

submatrices. Let         represent the TPM for the ith time period with submatrices Qi and Ri. Then to calculate 

the product of the matrices corresponding to the first m=kS+t time steps, where S is the number of time steps 

per time period and t is the number of time steps elapsed in the current (k+1)th period, one may use the 

following equation 

 

 

 

The submatrix Am is given by 

 

                                                                                                                                                       (7.2)           

 

 

Here l is the index for the lth time period. Plugging this product of matrices into Eq. (7.2) gives a closed form 

equation for the value of the state vector vm with m = kS + t: 

 

  

 

Finally, since v0 consists of simply a 1 in the first entry and 0s elsewhere, it follows that the proportion of 

tasks completed at time step m is given by the (1, 6) entry of                         or the (1, 1) entry of the 

submatrix Am. Thus, it is vital to examine alternative methods of expressing the submatrix Am. 

   First, we examine alternative formulations for the matrices Qi. For the Markov models considered here, we 

verified that the eigenvalues of the Qi matrices are distinct. Thus, by the Spectral Theorem, it is possible to 

express each Qi  in terms of its projections onto each of its eigenspaces [58]. To be more precise, consider the 

equation 

RQ

I0

Initial Wait Disc Ngt Mon Compl Fail

Initial 0.9997 0 0.0003 0 0 0 0

Wait 0 0.6292 0.0252 0.3441 0 0 0.0015

Disc 0 0.0766 0.6133 0.3101 0 0 0

Ngt 0 0.0378 0.0015 0.0637 0.8710 0 0.0259

Mon 0 0 0 0.0004 0.9883 0.0113 0

Compl 0 0 0 0 0 1.0 0

Fail 0 0 0 0 0 0 1.0
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                                                                                                                                                                  (7.3) 

 

Suppose the Qi are 5 × 5 matrices with distinct eigenvalues. Thus, there are five distinct values of λ; for the 

purposes of this report, the eigenvalues will always be ordered according to their absolute value (or modulus) 

of λ that satisfy Eq. (7.3), i.e.,                                   .   Then, associated with each eigenvalue, there is a 

distinct one-dimensional family of vectors y that satisfy the equation, i.e. for a given y that satisfies the 

equation for a given λ, every scalar multiple of y will also satisfy the equation for that λ. A column vector y 

that satisfies Eq. (7.3) for a given value of λ is known as a right eigenvector corresponding to the eigenvalue 

λ.   For each of these eigenvalues, there also exists a one-dimensional family of row vectors x that satisfy the 

following equation 

 

                                                                                                                                                                 (7.4) 

 

The vector x is a left eigenvector corresponding to the eigenvalue λ. Then by the Spectral Theorem [57], since 

the eigenvalues of Qi are distinct for all i, it is possible to find a set of left eigenvectors, {x
(j)

}, and a set of 

right eigenvectors, {y
(k)

}, such that 

 

 

 

 

Then for each j, the matrix P
(j)

 = y
(j)

x
(j)

 is known as the jth eigenprojection of Q. Notice that due to the 

biorthogonality of the eigenvectors, the product of P
(j)

 and P
(k)

 is the zero matrix for j ≠ k. Another 

consequence of the Spectral Theorem is that it is then possible to write each matrix Qi in terms of these 

eigenprojections: 
 

 

 

 

 

Furthermore, as a result of the biorthogonality of the eigenvectors, there is a simple expression for any power 

of Qi, in particular, 

 

                                                                                                                                                                (7.5) 

 

 

Since there are 85 time steps per time period in the large-scale grid system, each TPM will be raised to the 

85th power by the end of its time period. Observe also that for small values of       , this value raised to the 

85th power will become negligible; specifically any       < 0.88 will contribute a negligible amount to the 

calculation of         for S = 85. Thus it is sufficient to express        using only the leading terms of the sum. 

The Qi in the Markov model for the 8 h simulation have three eigenvalues with an absolute value greater than 

0.88, so in this case,         is approximated as the first three terms of the sum in Eq. (7.5). Meanwhile, the Qi 

in the Markov model for the 640 h simulation with load level 75% has only two eigenvalues greater than 0.88 

(after the first 6 time periods), and thus the         may be approximated with only the first two terms of the 

sum. 

   Next, we turn to alternative means of representing the submatrix Ri for each of the TPMs      . In general, let 

     be any transition probability matrix of an absorbing Markov chain. Consider the long-term proportion of 

tasks in a given absorbing state sj assuming that all the tasks began in a transient state si. The matrix B = {bij} 

with bij equal to the probability of being absorbed into state sj given a beginning in transient state si precisely 

(5)(2)(1) λλλ ....

(j)λ
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describes these proportions. The formula for this matrix B is then given in terms of the N fundamental matrix 

of     and the submatrix R: 
 

 

 

where N = (I − Q)
−1

  [10]. Additionally, it is well-known that the long-term proportion of tasks in a particular 

absorbing state, given that all the tasks began in state i, is equal to the ith entry of one of the leading two 

eigenvectors of the matrix     that correspond to the eigenvalue 1, where two eigenvectors are being 

considered because there are two absorbing states [10]. In particular, let V be a matrix consisting of the first 

two eigenvectors, but with the rows corresponding to the absorbing states removed. It is clear that the entries 

of V give exactly the long-term proportion of tasks in a particular absorbing state for each of the different 

possible transient starting states, and thus, V = B. Finally, one may solve for R, to find that 

 

 

 

 

 

Now it is possible to plug the approximation for         in terms of its largest eigenvalues and the formula for Ri 

into Eq. (7.2). For the 640 h simulation these are the two largest eigenvalues, and for the 8 h simulation they 

are the three largest eigenvalues. We will restrict our discussion to the 640 h case because the 8 h case is very 

similar. Further simplification is obtained when we make use of the fact that within a given time step, the 

product of distinct eigenprojections is zero and each eigenprojection is idempotent, i.e., each eigenprojection 

squared is equal to the original eigenprojection. We can then rewrite                   as: 

 

 

 

 

 

 

 

 

 

where the final equation comes from the fact that the sums in the second line are telescoping. Now employing 

this reduction, the following formula for Am is obtained:  
 

 

 

 

 

                                                                                                                                                                                                (7.6) 
 

 

 

 

 

 

Although this formula appears particularly cumbersome, there is much insight to be gained upon closer 

examination. This formulation for Am illustrates that the primary quantities that affect Am, and thus affect the 

proportion of tasks completed, are                                             and {Vi}, where i ranges from 1 to the number 

of time periods; in other words, the leading eigenvalues and associated eigenvectors and projections of the 

≈ 
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transient part of the TPM for each period. These quantities largely determine the job completion rate as a 

function of time. We can demonstrate this by observing that an approximation of the proportion of completed 

tasks using Eq. (7.6) compares very favorably with the results of a large-scale grid simulation or Markov 

simulation. Indeed Figs. 7.2–7.5 illustrate the results of approximating the probability of completion using the 

(1, 1) entry of Am from Eq. (7.6) plotted against the results of the large-scale simulation and the Markov 

model for different lengths of observation time and different system load levels. The effect of perturbations of 

the performance of the large-scale grid system can be modeled with good qualitative agreement by 

appropriate perturbations of the Markov chain as demonstrated in [7] and in Figs. 7.6–7.9. The discussion in 

this section shows that we should be able to use the analytical formula given in Eq. (7.6) instead of the 

Markov simulation, as long as the eigenvalues of the perturbed system are distinct and well separated from 

the boundary of the unit circle, which is the case in these models. Evaluating the effect of the degree of 

perturbation on the proportion of tasks completed is thus substantially faster and easier because this involves 

the calculation of eigenvalues and eigenvectors. Moreover, as the discussion of the next subsections will 

show, there is a correlation between changes in the eigenvalues and decrease in performance. Thus there is 

evidence that they can play a useful role in the development of a methodology for predicting deleterious 

perturbations. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: A comparison of the evolution of the proportion of tasks completed over time for the large-scale simulation, the Markov 

model, and the theoretical approximation for a simulated 8 h day with two hours of overtime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: A comparison of the evolution of the proportion of tasks completed over time for the large-scale simulation, the Markov 

model, and the theoretical approximation for a simulated 640 h duration at a load level of 75%. 
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7.2 Quantifying Perturbation Effects  

 

The perturbation method employed in the development of the Theoretical Method is similar to that described 

in [7]. A number of important differences exist, though, so the precise perturbation procedure for this report 

is described in Appendix C. Like the method in [7], this perturbation method is designed to determine the 

long-term effects of decreasing (or increasing) certain transition probabilities from a particular state while 

proportionally increasing (decreasing) other transition probabilities from that state. The development of the 

method described in Appendix C serves to demonstrate that more than one approach to systematic 

perturbation of a set to TPMs is possible. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: A comparison of the evolution of the proportion of tasks completed over time for the large-scale simulation, the Markov 

model, and the theoretical approximation for a simulated 640 h duration at a load level of 50%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 7.5: A comparison of the evolution of the proportion of tasks completed over time for the large-scale simulation, the Markov 

model, and the theoretical approximation for a simulated 640 h duration at a load level of 100%. 
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Figure 7.6: A comparison of the large-scale simulation, the Markov model, and the theoretical approximation for the proportion of 

tasks completed given an increase in the transition probability from Monitoring to Negotiating and a decrease of weight 0.2 in the 

transition from Monitoring to Completion. These results are for a simulated 640 h duration at a load level of 75%. 
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Figure 7.7. A comparison of the large-scale simulation, the Markov model, and the theoretical approximation for the proportion of 

tasks completed given an increase in the self-transition probability for Discovering and a decrease of weight 0.2 in the transition 

from Discovering to Negotiating. These results are for a simulated 640 h duration with a load level of 75%. 
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Figure 7.8: A comparison of the large-scale simulation, the Markov model, and the theoretical approximation for the proportion of 

tasks completed given a decrease in the transition probability from Negotiating to Monitoring and an increase of weight 1.0 in the 

self-transition for Negotiating. These results are for a simulated 640 h duration at a load level of 75%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9: A comparison of the large-scale simulation, the Markov model, and the theoretical approximation for the proportion of 

tasks completed given a decrease in the transition probability from Monitoring to Completion and an increase of weight 1.0 in the 

transition from Monitoring to Negotiating. These results are for a simulated 640 h duration at a load level of 75%. 

 

We will now discuss the use of measuring and predicting performance deterioration in the 640 h simulation. 

As shown in Sec. 7.1, the primary quantities that impact the proportion of tasks completed are         and          

 , the first and second leading eigenvalues of the submatrices {Qi },            and            , the first and second 

leading eigenprojections of the {Qi}, and finally {Vi}, the leading right eigenvector of {Qi }. Here i  is the 

index of the ith time period. By appropriately quantifying the changes in these quantities caused by a 

perturbation, we are able to demonstrate their usefulness in identifying those perturbations that lead to 

significant decrease in performance. This section examines some means for quantifying the changes                

                                            and {Vi}, and examines the predictive power of these quantities.  
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   To quantify the change in the leading two eigenvalues of the Qi submatrices, the mean value of the percent 

change in the sum of the first two eigenvalues was calculated. To be more precise, the quantity examined was 

given by 

 

                                                                             (7.7) 
 

                                                                                                                                                                              

 

where        and         are the leading eigenvalues of the perturbed submatrices       and N is the number of time 

periods. This method for quantifying the change in the leading eigenvalues was chosen because it captured 

the magnitude of the change over all the time periods. A similar formula was used to quantify the change in 

the leading two eigenprojections of the Qi; for the eigenprojections, the mean value of the percent change in 

the norm of the sum of the first two eigenprojections was calculated. In other words, the quantity of interest 

was 

 

 

                                                                                                                                                                                    (7.8) 
 

 

where the 2-norm was used, i.e., the norm function calculated the square root of the sum of the squares of the 

entries of the matrix. Next, to measure the change in the leading right eigenvector of the      , the mean value 

of the percent change in the norm of the eigenvector was used, i.e., 

 

 

                                                                                                                                                                   (7.9) 

 

 

Additional attempts were made to quantify the total change across the quantities                                           

and {Vi}. One formula considered was the product of the mean percent change in the norm of the 

eigenprojections and the mean percent change in the norm of the leading right eigenvector, in other words, 

 

 

                                                                                                                                                                  (7.10) 

 

 

 

Another quantity investigated is given by the formula below 

 

 

                                                                                                                                                                  (7.11) 

 
 

 

Recall that the quantities               and                 appear throughout Eq. (7.6), which approximates the 

proportion of tasks completed. Thus, the value from Eq. (7.11) should be a good measurement of changes in 

the proportion of tasks completed. 
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Table 7.1. Changes in the leading eigenvalues, eigenprojections, eigenvectors, and proportion of tasks completed caused by various 

perturbation combinations using the primary decrease perturbation method described in Appendix C.  The perturbation 

combinations are defined by the choice of sink and primary increase columns with v = 1 and w = 0.5. The table shows the 

proportion of tasks completed by the Markov simulation program and indicates whether the perturbation combination corresponded 

to a single-transition s-t cut (see sec. 5).  The system was simulated over 640 h at a load level of 75%. 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*In this perturbation, assigning a weight of 1.0, rather than 0.5, to the primary increase column would ensure no tasks transition to 

Monitoring, which corresponds to a single-transition s-t cut along Negotiating  Monitoring.  In Sec. 5.1 results are reported for 

this perturbation with a weight of 1.0. 

 

(a)  r = Waiting

Sink 
Column
(c↓)

Primary 
increase 
column
(c↑)

Diff  λi

Eq. (7)
Diff  Pi

Eq. (8)
Diff  Vi

Eq. (9)
Prod Diff  
Pi,Vi 

Eq. (10)

Prod Diff  
λi * Pi *Vi 

Eq (11)

Percent change in 
prop. Tasks  
Completed 

Single-
transition s-t 
cut exists

Waiting Discovering 0.00 0.59 0.03 0.02 0.50 +0.06 No

Waiting Negotiating 0.00 1.14 0.23 0.26 1.10 -0.06 No

Discovering Waiting 0.00 0.13 0.07 0.01 0.14 -0.03 No

Discovering Negotiating 0.00 0.07 0.03 0.00 0.08 -0.01 No

Negotiating Waiting 0.59 97.68 40.50 3995.66 87.24 -7.94 No

Negotiating Discovering 0.04 3.84 0.15 0.57 3.48 -0.13 No

(b)  r = Discovering

Waiting Discovering 0.01 0.16 0.02 0.00 0.08 +0.04 No

Waiting Negotiating 0.01 0.16 0.02 0.00 0.08 +0.04 No

Discovering Waiting 0.02 0.92 0.04 0.04 0.68 -0.04 No

Discovering Negotiating 0.02 0.93 0.04 0.03 0.70 -0.03 No

Negotiating Waiting 0.03 2.18 0.18 0.38 2.06 -0.27 No

Negotiating Discovering 0.03 2.26 0.40 0.90 2.20 -0.31 No

(c)  r = Negotiating

Waiting Discovering 0.00 0.28 0.16 0.05 0.31 +0.09 No

Waiting Negotiating 0.00 0.33 0.17 0.06 0.36 +0.09 No

Waiting Monitoring 0.00 0.37 0.41 0.15 0.45 -0.01 No

Discovering Waiting 0.00 0.02 0.00 0.00 0.02 0.00 No

Discovering Negotiating 0.00 0.01 0.00 0.00 0.02 0.00 No

Discovering Monitoring 0.00 0.13 0.05 0.01 0.15 +0.02 No

Negotiating Waiting 0.00 0.31 0.07 0.02 0.29 +0.04 No

Negotiating Discovering 0.00 0.10 0.00 0.00 0.05 -0.01 No

Negotiating Monitoring 0.00 1.54 1.71 2.64 1.82 -1.66 No

Monitoring Waiting 0.08 76.12 86.00 6546.52 87.04 -100.00 Yes

Monitoring Discovering 0.09 76.21 86.00 6554.38 87.13 -100.00 Yes

Monitoring Negotiating 0.04 76.43 86.00 6572.95 87.04 -100.00 Yes

(d)  r = Monitoring

Negotiating Monitoring 0.01 0.48 0.13 0.06 0.52 +0.13 No

Negotiating Tasks Comp 0.01 0.48 0.13 0.06 0.52 -0.13 No

Monitoring Negotiating 14.19 127.40 3.01 383.42 159.05 -2.67* Yes*

Monitoring Tasks Comp 14.37 126.61 2.86 362.30 157.99 -2.58 No

Tasks Comp Negotiating 0.56 3.94 97.51 383.81 97.51 -100.00 Yes

Tasks Comp Monitoring 0.57 3.92 97.51 382.51 97.51 -100.00 Yes

(e)  r = Initial

Initial Discovering 18.28 150.91 0.15 22.49 3.39 +2.14 No

Discovering Initial 0.01 0.05 42.75 2.11 42.28 -100.00 Yes
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   The values from each of these equations were calculated for each of the possible perturbation combinations 

r, c
↓
, and c

↑
. The primary decrease perturbation method was used for these combinations with a value of v = 

1, in other words, the (r, c
↓
) entry was perturbed to equal zero in each of the TPMs and the appropriate 

increase was then proportionally distributed among the other entries in row r. The values for Eqs. (7.7–7.11) 

were only calculated for the TPMs derived from this extreme of the perturbations. The rationale for using the 

extreme value of the perturbation was that if decreasing the value of a particular transition probability would 

affect the proportion of tasks completed, then cutting off that transition entirely would produce the largest 

effect on the proportion of tasks completed. Thus, to predict if decreasing a particular transition probability 

will have any effect on the long-term behavior of the grid system, it should suffice to predict if eliminating 

that transition will affect long-term behavior. Table 7.1 below summarizes the values obtained from Eqs. 

(7.7–7.11) for each of the perturbations along with the absolute value of the percent change in the proportion 

of tasks completed. For comparative purposes, the table also shows the results of the minimal s-t cut set 

analysis from Sec. 5.  

   Performing a multivariable linear regression on the decrease in proportion of tasks completed (shown in 

column 8) with the quantities in Eqs. (7.7–7.11) as predictor variables, is a useful way to conceptualize the 

results of Table 7.1. The regression coefficients can be used to determine which variables are most 

consequential in accounting for these performance drops. We calculated the coefficients, their 95% 

confidence intervals, residuals and some goodness of fit statistics. All computations were carried out using 

MATLAB 7.4.0 (2007a).  Using the data contained in the rows of Table 7.1 we obtained the regression 

coefficients shown in Table 7.2, together with the endpoints of the related confidence intervals. 

 
Table 7.2. Coefficients of regression. 

 

 

 

 

 

 

 

 

 

 

    Clearly the coefficient corresponding to Diff λi has the largest magnitude, and therefore we conclude that 

the change in eigenvalues has the largest influence in predicting the decrease in system performance. 

Although a high accuracy fit of the data is of secondary importance here, we used residuals and the 

coefficient of determination, r
2
, as evidence to test the strength of our conclusion.  The residuals (see Fig. 

7.10) do not show any obvious systematic variation that would undermine the linear regression hypothesis. 

The residual values are circled and the vertical lines through them indicate the confidence intervals.  Fig. 7.10 

shows there are 2 outliers (indicated in red) and the estimated variance is 116.55. The coefficient of 

determination for this calculation is r
2
=0.9373, thus the fit is very good but more importantly it suggests that 

our conclusion is a reasonable one. We then performed a second computation using just the first three 

quantities (Eq. (7.7), (7.8) and (7.9)) as predictor variables. The corresponding coefficients were –1.41383 

(for Eq. (7.7)), 0.1863 (for Eq. (7.8)), and −1.2039 (for Eq. (7.9)). Based on the magnitude of the coefficients, 

we see that the change in both eigenvalues and eigenvectors are influential. Here the number of outliers 

increased to 4, as shown in Fig. 7.11. However, the value of r
2 
remained stable at 0.9205, while the estimated 

variance rose to 137.19.  

Diff  λi

Eq. (7)
Diff  Pi

Eq. (8)
Diff  Vi

Eq. (9)
Prod Diff  Pi, Vi 

Eq. (10)
Prod Diff  λi * Pi *Vi 

Eq. (11)

Coefficients of multivariable 
linear regression 

-6.6057      0.8297 -1.0580        -0.0102      -0.0287

Confidence interval 
left Endpoint

-11.0377 0.2799 -1.2970 -0.0181 -0.1871 

Confidence interval 
right Endpoint

-2.1738 1.3796 -0.8190 -0.0022 0.1296
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Figure 7.10. Plot of the residuals and confidence intervals for multilinear regression analysis on the change in proportion of tasks 

completed in scenarios shown in Table 7.1, which resulted from perturbation using the primary decrease  method. This calculation  

was done for 5 predictor variables corresponding to Eqs. (7.7–7.11). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11. Plot of the residuals and confidence intervals for multilinear regression analysis on the change in proportion of tasks 

completed in scenarios shown in Table 7.1, which resulted from perturbation using the primary decrease method. This calculation 

was done for 3 predictor variables corresponding to Eqs. (7.7–7.9). 
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Table 7.3 Changes in the leading eigenvalues, eigenprojections, eigenvectors, and proportion of tasks completed caused by various 

perturbation combinations using the primary increase method described in Appendix C.  The perturbation combinations are defined 

by the choice of sink and primary increase columns with w = 0.5. The table shows the proportion of tasks completed by the Markov 

simulation program and indicates whether the perturbation combination corresponded to a single-transition s-t cut (see Sec. 5).  The 

system was simulated over 640 h at a load level of 75%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
1
This perturbation is equivalent to a single-transition s-t cut. This is because as the probability of transition to the state 

corresponding to the primary increase column approaches 1, the probability of transition to all other columns goes to 0 – including 

the state transition from Negotiating to Monitoring, which is a single-transition s-t cut. 
2
As probability of transition from Monitoring to Negotiating approaches 1, all tasks are redirected out of the Monitoring state.  This 

is the reverse of the Negotiating to Monitoring single-transition s-t cut and is effectively equivalent to it. See Table 7.1 and Sec. 5.1.  

(c)  r = Negotiating

Waiting Discovering 0.61 103.11 111.189 11465.00 119.05 -100.00 s-t cut1

Waiting Negotiating 0.61 103.11 111.03 11448.00 118.79 -100.00 s-t cut1

Waiting Monitoring 0.61 103.11 111.24 11470.00 118.96 -100.00 s-t cut1

Discovering Waiting 0.63 101.67 104.54 10628.00 113.31 -100.00 s-t cut1

Discovering Negotiating 0.63 101.67 104.52 10626.00 113.21 -100.00 s-t cut1

Discovering Monitoring 0.63 101.67 104.60 10635.00 113.27 -100.00 s-t cut1

Negotiating Waiting 0.95 114.45 115.48 13218.00 123.12 -100.00 trap state

Negotiating Discovering 0.95 114.45 115.00 13163.00 122.76 -100.00 trap state

Negotiating Monitoring 0.95 114.45 114.50 13105.00 122.06 -100.00 trap state

Monitoring Waiting 0.00 2.86 3.39 10.00 3.33 +3.13 No

Monitoring Discovering 0.00 2.84 3.37 10.00 3.31 +3.16 No

Monitoring Negotiating 0.009 2.71 3.20 9.00 3.15 +2.94 No

(d)  r = Monitoring

Negotiating Monitoring 0.94 64.96 97.20 6314.00 97.20 -100.00 s-t cut2

Negotiating Tasks Comp s-t cut
Monitoring Negotiating 0.58 2.98 96.35 287.00 96.4007 -100.09 trap state

Monitoring Tasks Comp trap state

Tasks Comp Negotiating 18.46 113.44 0.13 15.00 110.65 +0.13 No

Tasks Comp Monitoring 18.46 113.44 0.13 15.00 110.65 +0.13 No

(e)  r = Initial

Initial Discovering 0.01 0.06 43.13 2.00 42.68 -100.00 trap state

Discovering Initial 18.28 251.34 0.57 143.00 3.70 +2.14 No

(a)  r = Waiting

Primary 
increase 
column

(c↑)

Sink 
Column
(c↓)

Diff  λi

Eq. (7)
Diff  Pi

Eq. (8)
Diff  Vi

Eq. (9)
Prod Diff  
Pi,Vi 

Eq. (10)

Prod Diff  
λi * Pi *Vi 

Eq (11)

Percent change in 
prop. Tasks  
Completed

Corresponds 
to Single-
transition s-t 
cut or trap 
state

Waiting Discovering 0.63 103.27 44.26 4571.00 92.57 -21.29 No

Waiting Negotiating 0.62 103.27 44.37 4582.00 92.61 -21.29 No

Discovering Waiting 0.02 9.06 8.43 76.00 9.10 -3.58 No

Discovering Negotiating 0.01 13.87 13.59 189.00 13.97 -5.89 No

Negotiating Waiting 0.00 0.87 0.25 0.00 0.82 +0.19 No

Negotiating Discovering 0.00 0.87 0.25 0.00 0.82 +0.19 No

(b)  r = Discovering

Waiting Discovering 0.02 0.79 0.18 0.00 0.30 -0.2369 No

Waiting Negotiating 0.02 0.79 0.18 0.00 0.30 -0.2369 No

Discovering Waiting 0.63 96.80 72.01 6970.00 99.17 -100.05 trap state

Discovering Negotiating 0.63 96.80 71.76 6946.00 99.25 -100.05 trap state

Negotiating Waiting 0.02 1.50 0.09 0.00 1.07 +0.05 No

Negotiating Discovering 0.02 1.50 0.09 0.00 1.07 +0.05 No
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    A similar analysis was carried out for perturbations generated by the primary increase method with w=0.5. 

With this method, the value of transition probability in the (r, c
↑
) entry was increased in increments of 0.01 

and the summary value of (r, c
↑
) was recorded. These increases were performed until the last point at which 

the summing value of the (r, c
↑
) entry was strictly less than 1. For these perturbations the values of the 

quantities from Eqs. (7.7–7.11) are given in Table 7.3 along with the mean percent change in the proportion 

of tasks completed for each perturbation combination. As in Table 7.2, a multilinear regression calculation 

was carried out on change in proportion of tasks completed for each of the 30 perturbation scenarios indicated 

in the rows. The predictor variables are again the values from Eqs. (7.7–7.11). For the 5 variables, the 

corresponding regression coefficients were: –0.3038 (for Eq. (7.7)), 0.0284 (for Eq. (7.8)), –1.3038 (for Eq. 

(7.9)), 0.003 (for Eq. (7.10)), and 0.0189 (for Eq. (7.11)). The r
2 

value or coefficient of determination was 

0.9212 while the variance was 236.0. Thus, the linear fit was very good and roughly comparable to that 

obtained for the primary decrease method. Fig. 7.12 shows a plot of the residuals together with the confidence 

intervals. There are 4 outliers.  Thus in the primary increase method, the change in the leading eigenvectors 

was most predictive of the drop in tasks completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.12. Plot of the residuals and confidence intervals for multilinear regression analysis on change in proportion of tasks 

completed in scenarios shown in Table 7.3, which resulted from perturbation using the primary increase method. This calculation 

was done for 5 predictor variables corresponding to Eqs. (7.7–7.11). 

 

Using just the values from Eqs. (7.7–7.9) (i.e., eliminating the Eq. 7.10 and Eq. 7.11 that are derived from 

them), the regression coefficients are: –1.0482 (for Eq. (7.7)), 0.1374 (for Eq. (7.8)), –1.0712 (for Eq. (7.9)). 

In the residual plot, the number of outliers (shown in Fig. 7.13) was 3. Here the r
2 
value was 0.9106 while the 

variance was 247.13.  
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Figure 7.13. Plot of the residuals and confidence intervals for multilinear regression analysis on the change in proportion of tasks 

completed in scenarios shown in Table 7.3, which resulted from perturbation using the primary increase method. This calculation  

was done for 3 predictor variables corresponding to Eqs. (7.7–7.9). 

 

    In summary we evaluated how predictive the changes in the leading eigenvalues, leading eigenvectors and 

eigenprojections of the matrices Qi (see Eq. (7.3) and Sec. 7.1) are of changes in the proportion of tasks 

completed by constructing a regression on changes in task completion proportion using the quantities in Eqs. 

(7.7–7.11) as independent variables. The regression fit was good as measured by the coefficient of 

determination, r
2
, for both the perturbation decrease and the perturbation increase methods. It is reasonable 

therefore to consider the use of quantities defined by Eqs. (7.7–7.11), that is, changes in the leading 

eigenvalue and eigenvectors of Qi as signals of large deterioration in system performance. In Sec. 5.1 we 

demonstrated the predictive power of minimal s-t cut sets in forecasting decreases in the number of task 

completions. Indeed, single s-t cut transitions, i.e., single transitions that cut off all paths joining the initial 

state to the completion state, are exactly associated with decreases of 100%. Inspection of Tables 7.1 and 7.3 

shows that large values for the quantities in Eqs. (7.7–7.11) occur when a single-transition s-t cut or trap state 

is present in all cases except one. In the third row of Table 7.1(d), the particular perturbation chosen here 

prevents a drop in the proportion of tasks completed by distributing half of the increase weight to the 

transition from the state Monitoring to the state Task Completed. This has a compensating effect. Note that 

the predictive power is somewhat weaker than that provided by the minimal s-t cut sets in the sense that 

elevated values of Eqs. (7.7 –7.11) are necessary but not sufficient conditions for inferring performance loss. 

One can see examples in the tables of cases where values are elevated but there is no decrease in the 

proportion of tasks completed. Nevertheless, by comparing them with the results of cut set analysis we have 

provided additional evidence that the eigenvalue based quantities are effective signals. The existence of 

elevated values by themselves indicates that further analysis of the system is warranted. Alternatively, 

elevated values can be used as part a suite of measurements of system performance, which include cut set 

analysis and fast simulation of the Markov chain model based on the theoretical model. In this chapter we can 

see that the results of all three methodologies are largely consistent. 
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8. Conclusions 

 

This work presents an advance in our efforts to develop analytical and computational tools for analyzing 

dynamic behavior in large-scale distributed computing systems. Building on earlier work in [7, 42] on the 

piecewise homogeneous approximation of the large-scale grid computing simulation, we showed how the 

application of existing methods in graph theory and the spectral theory of Markov chains can be used to 

predict system qualitative behavior by comparing it to a discrete event simulation of the full system. 

Furthermore, we demonstrated that the methods discussed in this report greatly reduce the time and effort 

required to identify failure scenarios discussed in these earlier papers. 

   Our first technique, minimal cut set analysis, is based on the graph topology induced by the Markov chains 

that constitute the pieces of the approximation. In our earlier work [7], critical transitions that lead to system 

degradation or failure were identified by a perturbation algorithm, which conducted a restricted exhaustive 

search based on the systematic perturbation of TPM elements (see Sec. 3.1). The effect of any single 

perturbation of a critical transition could be determined by finding the proportion of tasks completed at the 

end of an observed time interval. In minimal cut set analysis, described in Secs. 4 and 5 of this report, key 

concepts from graph theory are used as a basis to define more efficient methods for finding critical transitions 

where perturbation can lead to large performance degradation. In this approach, minimal s-t cut sets are 

computed that disconnect all paths through the Markov chain graph from the initial state to a desired 

absorbing state. The edges in these cut sets reliably identify the critical state transitions which lead to drastic 

performance declines when perturbed. When applied to the Markov chain for the grid system and that of a 

second problem, the Abilene network, minimal s-t cut set analysis could be used to find the same critical 

transitions as those found by the perturbation algorithm. These critical transitions can then be perturbed 

directly to test for performance thresholds. Overall, the minimal cut set analysis approach resulted in a two-

order of magnitude savings in computational cost over the perturbation algorithm. 

    To investigate the scalability of this new approach, one method that can be used to find minimal s-t cut 

sets—the node contraction algorithm—was applied to graph topologies induced by significantly larger 

stochastic matrices than the ones derived from the grid computing system or Abilene network. The results 

(Sec. 6) show that, with some exceptions, the node contraction algorithm was able to find a large proportion 

of minimal s-t cut sets that contained the most critical transitions in two orders of magnitude less time (20 

min or less) than by using a well-known algorithm that was guaranteed to enumerate all minimal s-t cut sets 

[33]. Further, the node contraction algorithm was able to find minimal s-t cut sets that consisted of more than 

one critical state transition, which the earlier perturbation algorithm [7] was unable to find. The ability to 

efficiently analyze large, complex Markov chain problems in which combinations of critical state transitions 

can affect system performance is a significant improvement over the earlier perturbation algorithm. This 

ability is also likely to be an important factor in the potential use of this approach as a tool for predicting 

dynamic behavior in real-world distributed systems.  

   The second technique, the ―theoretical method‖ is based on the fact that the total observation time is much 

larger than the duration of a single Markov chain step. We developed an accurate approximation of the 

probability of task completion (or more generally reaching a desired end state), in terms of the eigenvalues 

and eigenvectors associated with the transient part of the Markov chain. Like minimal cut set analysis, this 

analysis eliminates much of the computation required by earlier perturbation algorithm described in [7]. This 

technique is complementary to the minimal s-t cut set identification methods in the sense that the effect of 

any system perturbation (as modeled by a perturbation in the elements of the transition probability matrices) 

can be assessed by computing the approximation of the probability of task completion using the theoretical 

method. While the methods for identifying minimal s-t cut sets provide a qualitative approach to the 

identification of critical transitions in the system, the quantitative effect of perturbing these transitions at a 

specific level can be approximated by the theoretical method. Moreover the theoretical method can be used to 

test for threshold effects that would not be captured by examining the graph topology alone. In the latter case, 
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a minimum amount of Markov simulation is applied to critical transitions to obtain quantitative effects and 

test for thresholds. The analysis in Sec. 7 shows good comparisons with the results obtained by large-scale 

simulation or Markov chain iteration. The analysis also suggests that the theoretical method and minimal s-t 

cut set analysis methods are substantially in agreement in identifying single state transitions that may 

critically affect system performance. 

   Given the existence of rapid and efficient methods for computing the leading eigenvalues and 

corresponding eigenvectors of matrices, a natural question arises about how tight a connection there is 

between the degree of perturbation of the eigen-elements and degree of performance degradation. Indeed a 

very strong correlation would imply that eigen-elements are predictors of system failure and could be used to 

identify critical perturbations without using any other method. We found there is a positive but moderate 

correlation. However in some cases, large changes in the eigen-elements are not necessarily associated with a 

large change in the task completion rate. Thus each critical transition candidate identified by this method 

must be subjected to further investigation. Nevertheless, the theoretical method can be used to determine the 

effect of these perturbations, once they are identified without resorting to a calculation based on iteration of 

the transition probability matrices. 

   In summary, we have presented two methods—minimal cut set analysis and the theoretical method—that 

exhibit potential for efficient analysis of Markov chain representations of dynamic systems. We have shown 

that there is a large degree of consistency between the predictions these methods make, which may argue for 

their use as complementary tools in operational settings. While this work is in its beginning stages, the results 

to date show promise that both methods can be evolved into practical tools for analysis of complex, large-

scale distributed systems and prediction of dynamic behavior. 
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Appendix A. Node Contraction Algorithm  
 

/* Procedure for generating minimal s-t cut set of a directed graph. Procedure accepts a TPM and identifiers 

for the start state and absorbing state. It randomly selects two vertices, combines them into one vertex whose 

out arcs are the combined out arcs of the two combined vertices.  It ensures start and absorbing vertices are 

never in the same combined vertex. Procedure repeats until two vertices are left, and minimal s-t cut sets are 

then generated. */ 
 

Procedure PerformContraction (float TPM[*][*], integer startState, absorbingState, matrixOrder) 

     returning set (cut set members) 

 

boolean notContractible [matrixOrder];                /* if TRUE, vertex has already been contracted or has been 

                                                                                              denoted as being not contractible */ 

integer contractionRecord [matrixOrder];              /* Array in which vertex denoted by index value has been 

                                                                                              contracted into vertex denoted by value in array element */ 

integer toBeContracted                                             /* Vertex that is to be contracted into intoVertex */ 

integer intoVertex                                                       /* Vertex that toBeContracted is contracted into */ 

integer verticesLeft;                                                    /* Number vertices left to be contracted */     

 

 /* Begin by initializing */ 

verticesLeft = matrixOrder; 

notContractible [startState] = TRUE; 

notContractible [absorbingState] = TRUE; 

 

 forever  /* Loop repeats contractions until only two vertices are left */ 

 {    

     forever  /* Loop to select eligible pair of vertices to contract */ 

           { 

             /* Randomly select next proposed vertex from 1..matrixOrder to contract */ 

              toBeContracted = selectRandom (1,  matrixOrder);   

 

             /* If this vertex has already been contracted, retry (continue to next iteration of forever loop)*/ 

              if (  notContractible [ toBeContracted]) continue;       

 

             /* Otherwise, mark vertex to be contracted and select vertex into which to contract BeContracted. */ 

               notContractible [ toBeContracted] = TRUE; 

               intoVertex = getContractedInto (toBeContracted, notContractible, TPM); 

 

             /* Check if proposed contraction causes start and absorbing states to be contracted into same vertex. 

                  If so, unmark proposed vertex, and select again */ 

               contractionConflict = checkContractionConflict ( toBeContracted,  intoVertex, contractionRecord,  

                                                                                                       startState, AbsorbingState);      

               if (contractionConflict) 

                       { notContractible [ toBeContracted] = FALSE; 

                         continue ;  } 

           } /* end of forever loop to select pair of vertices to contract */ 

 

 

 

 

/* procedure continues on next page */ 
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    /* Procedure PerformContraction continued */ 

 

      /* Perform contraction operation */ 

       contractVertices (toBeContracted, intoVertex, contractedMatrix, matrixOrder); 

      contractionRecord [toBeContracted] = intoVertex;   

 

     /* Decrement number of vertices left that can be contracted. If number left = 2, break from loop */ 

         verticesLeft = verticesLeft – 1; 

         if (verticesLeft == 2) break; 

     } /*   End of forever loop that repeats contractions until only two vertices are left */ 

 

  /* Retrieve cut set that exists between two remaining vertices. */ 

    NewCutSet = getCutSet (notContractible, contractionRecord); 

 

/* ensure cut set disconnects that graph and that it is minimal */ 

  If (verifyCutSet (NewCutSet, TPM)  

      {minimalizeCutSet (newCutSet) 

        return NewCutSet; 

      } 

 else  

        return NULL; 

END 

} /* end Procedure PerformContraction () */ 
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/* Procedure that randomly select of adjoining vertex that toBeContracted will be contracted into 

     and with which toBeContracted has a state transition. */ 

 
procedure getContractedInto (integer toBeContracted, boolean notContractible[*], float TPM [*][*]) 

     returning integer 

{   integer   proposedVertex;                          /* Candidate vertex selected for contraction into. */                                                       

      

    integer linked [matrixOrder];    /* Identifies candidate vertices to contract into: i.e., vertices  

                                                                                 that are yet uncontracted with which vertex  

                                                                                 toBeContracted has arcs. */      

    float numLinks;                                            /* Number of vertices in linked */                                       

    integer state, k, nthState;                         /*  Counters and index variables*/ 

 

/* Populate linked array with candidate vertices with arcs that indicate transitions with state 

     toBeContracted and that have not previously been contracted. */ 

   for (state = 1 to matrixOrder) 

       if (((TPM [state, toBeContracted] > 0) or (TPM [toBeContracted, state] > 0)) and  

            (not notContractible [state]) and  

            (not (state == toBeContracted))) 

                   { k = k + 1; 

                     linked [k] = state; 

                     numLinks = numLinks + 1; 

                    } 

 

   /* Randomly pick nth state from 1..numLinks to be proposed state that toBeContracted will be  

        contracted into. Proposed state to be returned is nth value of linked array. */ 

      nthState = random ( 1,  numLinks);  

      proposedState = linked [nthState]; 

     

     return proposedState; 

 

} // procedure getContractedInto 
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/* Checks to see record of contraction indicates that StartState and Absorbing State have been contracted into 

the same vertex. If so, returns TRUE.  Accepts identifier of vertex toBeContracted, vertex into which 

contraction  occurs (intoVertex), and start and target states for s-t cut set. Current contraction record 

(contractionRecord) is an array for which index value identifies vertex that has been contracted and array 

element value identifies what which vertex the contracted vertex has been taken up into. */ 
 

procedure checkContractionConflict ( integer toBeContracted, intoVertex,  StartState,  TargetState,  

                                                                     integer contractionRecord [*])  

     returning  boolean 

{ 

 integer followVertex;                                                 // next vertex in chain of contractions 

 integer vStartState,                                                    //  previous (last) vertex that was contracted into for start state    

 integer vTargetState;                                                //  previous (last) vertex that was contracted into for target state    

 integer pContractionRecord [matrixOrder];         // proposed contraction record if toBeContracted is contracted 

 

/* First, create proposed contraction record in which toBeContracted is contracted into intoVertex. */ 

 for (i = 1; i <= matrixOrder)   pContractionRecord [i] =  contractionRecord [i]; 

 draftContractionRecord [toBeContracted] =  intoVertex; 

 

/* Follows chain of contraction for start state to find vertex into which start state in currently contracted */ 

 followVertex=StartState;  

 forever 

  { vStartState=followVertex; 

    if (pContractionRecord [followVertex] == 0) break; 

    followVertex = draftContractionRecord [followVertex]; 

  } 

 

/* Follows chain of contraction for start state to find vertex into which start state in currently contracted */ 

 followVertex= TargetState;  

  forever 

  { vTargetState=followVertex; 

    if (pContractionRecord [followVertex] == 0) break; 

    followVertex = draftContractionRecord [followVertex]; 

  } 

   

/* return value of boolean proposition that vertex into which Start State and Target State  

     were contracted into are equal */ 

return (vTargetState == vStartState); 

  

} // procedure checkContractionConflict  
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/* Procedure to modify TPM so that arcs going into and out of vertex   toBeContracted now go into and out 

of  vertex intoVertex . */ 
 

 procedure contractVertices (integer toBeContracted, intoVertex,   

                                                       inout float TPM [*][*], integer matrixOrder) 

  {  

    float probabilityOfTransition; 

 

    /* Modify TPM to connect arcs going into toBeContracted so that they go into intoVertex */ 

    for ( i =1; i <= matrixOrder) 

        if ( TPM [toBeContracted, i] > 0) 

               { probabilityOfTransition = TPM [toBeContracted , i]; 

                TPM [intoVertex, i] = TPM [intoVertex, i] + probabilityOfTransition; 

                TPM [toBeContracted, i]=0; 

               }    

 

/* Modify TPM to connect arcs going from toBeContracted so that they go from intoVertex */ 

    for ( i =1; i <= matrixOrder) 

       if ( TPM [i, toBeContracted] > 0) 

               {TPM [i, intoVertex] = TPM [i, intoVertex] + TPM [i, toBeContracted]; 

                TPM [i, toBeContracted]=0; 

               }   

 

/* Zero out self-transition probability */ 

    TPM [intoVertex, intoVertex] = 0; 

 

  } // procedure contractVertices   
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/* Retrieves and returns cut set that exists between two remaining vertexs. */ 

 
procedure getCutSet (boolean notContractible [*], integer contractionRecord) 

        returning cutSet 

{ 

   integer vertex1, vertex2;                         /* two remaining vertices in contracted graph */ 

 

  /* Identify two remaining vertices in contracted graph */ 

     for ( i =1 to matrixOrder)  

          if (not notContractible [i])  

            {   vertex1 = i; 

                break; 

            } 

 

     for ( j =i to matrixOrder)  

          if (not notContractible [j])  

            {   vertex2 = j; 

                break; 

            } 

 

arcSet1 = retrieveLinks (vertex1, vertex2, TPM, contractionRecord); 

arcSet2 = retrieveLinks (vertex2, vertex1, TPM, contractionRecord); 

cutSet = mergeArcSets (arcSet1, arcSet2); 

 

return cutSet; 

 

} // procedure getCutSet 
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/* Recursive procedure to retrieve vertices that were contracted into vertex2 via vertex1 and  

     store their cumulative arcs in the cut set that is returned */ 

 
procedure retrieveLinks (integer vertex1, vertex2, float TPM [*][*], integer contractionRecord [*]) 

           returning arcSet 

 

{   integer state; 

     set arcSet, arcSetA, arcSetB; 

 

/* Add all non-duplicate arcs from vertex2 to vertex1 into cut set */ 

  if (TPM [vertex1, vertex2] > 0) 

           { if (not duplicateArc (vertex2  vertex1)) 

                     place (vertex2  vertex1) into arcSet; 

           }  

 

/* Add all non-duplicate arcs from vertex1 to vertex2 into cut set */ 

  if (TPM [vertex2, vertex1]  > 0) 

           { if (not duplicateArc (vertex1  vertex2)) 

                  place (vertex1  vertex2) into arcSet; 

           }  

 

  /* Recurse on vertex2 and vertex1 to follow chain of vertex contractions */  

   for (state = 1; state <=matrixOrder) 

        {   if (contractionRecord [state] = vertex1)      

                    arcSetA = retrieveLinks (state, vertex2, TPM, contractionRecord);   

            if (contractionRecord [state] ==vertex2)      

                    arcSetB = retrieveLinks (vertex1, state, TPM, contractionRecord);    

        } 

    

   arcSet = mergeArcSets (arcSetA, arcSetB); 

   return arcSet; 

 

} // procedure retrieveLinks 
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Appendix B. Four Transition Test Probability Matrices  

 

For all matrices, row and column numbers are provided in margins. Non-zero elements represent state 

transitions and are shaded. In a state transition, the from state is read along the row, and the to state is read 

along the column. 

 

B.1 Matrix 1  

 

A matrix of order 50 generated from [51] using [50]. State 50 has been made the absorbing state. Note that 

four states, 2, 3, 25, and 26 each have at least 10 transitions to other states, state 24 has 7 transitions to other 

states, while all other states have a single-transition to either state 1 or the absorbing state, state 50. Thus, this 

TPM exhibits a high degree of interconnectivity. Only 530, 432 minimal s-t cut sets were found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 0.68 0.02 0 0.02 0.02 0.04 0.04 0 0.02 0 0.02 0 0.04 0.04 0.02 0 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.02 0 0 0.02 0.02 0 0.02 0 0 0.02 0.02 0.02 0 0.02 0 0 0.02 0.02 0.02 0.02 0.04 0 0.06 0.02 0 0.6 2

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 18

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 19

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 21

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 22

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 23

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.04 0 0.04 0 0 0.02 0.02 0.02 0.84 24

25 0.36 0 0.04 0 0 0.04 0.04 0.04 0.02 0 0.04 0 0.04 0.02 0.02 0.06 0 0.02 0.06 0.02 0.02 0 0.02 0 0.02 0 0.02 0.04 0 0 0 0 0.02 0.02 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0 0 0 25

26 0.64 0.02 0 0.02 0.04 0 0.02 0 0 0.04 0.02 0.04 0 0 0.04 0.02 0 0 0.02 0 0.06 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26

27 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27

28 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28

29 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29

30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30

31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

32 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32

33 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33

34 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34

35 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35

36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36

37 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37

38 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38

39 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39

40 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40

41 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41

42 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42

43 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43

44 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44

45 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45

46 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46

47 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47

48 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48

49 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
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Non-zero TPM elements are listed below. 

 (1,1)    0.680000  
(1,2)    0.020000  

(1,4)    0.020000  

(1,5)    0.020000  

(1,6)    0.040000  

(1,7)    0.040000  

(1,9)    0.020000  

(1,11)   0.020000  

(1,13)   0.040000  

(1,14)   0.040000  

(1,15)   0.020000  

(1,17)   0.020000  

(1,18)   0.020000  

(2,24)   0.040000  

(2,25)   0.020000  

(2,28)   0.020000  

(2,29)   0.020000  

(2,31)   0.020000  

(2,34)   0.020000  

(2,35)   0.020000  

(2,36)   0.020000  

(2,38)   0.020000  

(2,41)   0.020000  

(2,42)   0.020000  

(2,43)   0.020000  

(2,44)   0.020000  

(2,45)   0.040000  

(2,47)   0.060000  

(2,48)   0.020000  

(2,50)   0.600000  

(3,50)   1.000000  

(4,50)   1.000000  

(5,50)   1.000000  

(6,50)   1.000000  

(7,50)   1.000000  

(8,50)   1.000000  

(9,50)   1.000000  

(10,50)  1.000000  

(11,50)  1.000000  

(12,50)  1.000000  

(13,50)  1.000000  

(14,50)  1.000000  

(15,50)  1.000000  

(16,50)  1.000000  

(17,50)  1.000000  

(18,50)  1.000000  

(19,50)  1.000000  

(20,50)  1.000000  

(21,50)  1.000000  

(22,50)  1.000000  

(23,50)  1.000000  

(24,41)  0.020000  

(24,42)  0.040000  

(24,44)  0.040000  

(24,47)  0.020000  

(24,48)  0.020000  

(24,49)  0.020000  

(24,50)  0.840000  

(25,1)   0.360000  

(25,3)   0.040000  

(25,6)   0.040000  

(25,7 )  0.040000  

(25,8)   0.040000  

(25,9)   0.020000  

(25,11)  0.040000  

(25,13)  0.040000  

(25,14)  0.020000  

(25,15)  0.020000  

(25,16)  0.060000  

(25,18)  0.020000  

(25,19)  0.060000  

(25,20)  0.020000  

(25,21)  0.020000  

(25,23)  0.020000  

(25,25)  0.020000  

(25,27)  0.020000  

(25,28)  0.040000  

(25,33)  0.020000  

(25,34)  0.020000  

(25,40)  0.020000  

(26,1)   0.640000  

(26,2)   0.020000  

(26,4)   0.020000  

(26,5)   0.040000  

(26,7)   0.020000  

(26,10)  0.040000  

(26,11)  0.020000  

(26,12)  0.040000  

(26,15)  0.040000  

(26,16)  0.020000  

(26,19)  0.020000  

(26,21)  0.060000  

(26,22)  0.020000  

(27,1)   1.000000  

(28,1)   1.000000  

(29,1)   1.000000  

(30,1)   1.000000  

(31,1)   1.000000  

(32,1)   1.000000  

(33,1)   1.000000  

(34,1)   1.000000  

(35,1)   1.000000  

(36,1)   1.000000  

(37,1)   1.000000  

(38,1)   1.000000  

(39,1)   1.000000  

(40,1)   1.000000  

(41,1)   1.000000  

(42,1)   1.000000  

(43,1)   1.000000  

(44,1)   1.000000  

(45,1)   1.000000  

(46,1)   1.000000  

(47,1)   1.000000  

(48,1)  1.000000  

(49,1)  1.000000  

(50,50) 1.000000  
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B.2 Matrix 2 

 

A matrix of order 50 generated from [52] using [50]. State 50 has been made the absorbing state. In this case, 

no state has more than 3 transitions to any other state. There were 28,230,288 minimal s-t cut sets found. 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.56 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.46 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.46 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.58 0.42 0 0 0 0 0 0 0 0 0 0 0 0 0 6

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.58 0.42 0 0 0 0 0 0 0 0 0 0 0 7

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0.46 0 0 0 0 0 0 0 0 0 8

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0.46 0 0 0 0 0 0 0 9

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 10

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.64 0.36 0 0 0 11

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0.46 0 12

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.6 14

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 0.62 0 15

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.52 0 0 16

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0.46 0 0 0 17

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0.58 0 0 0 0 18

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 19

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.58 0.42 0 0 0 0 0 0 20

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0.58 0 0 0 0 0 0 0 21

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.52 0 0 0 0 0 0 0 0 22

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 23

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 24

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.46 0.54 0 0 0 0 0 0 0 0 0 0 0 25

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.6 0.2 0 0 0 0 0 0 0 0 0 0 0 0 26

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22 0.58 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22 0.58 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36 0.5 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22 0.56 0.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36 0.42 0.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.26 0.5 0.24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22 0.44 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.26 0.44 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.64 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34 0.46 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0.26 0.5 0.24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37

38 0 0 0 0 0 0 0 0 0 0 0 0 0.66 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38

39 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39

40 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40

41 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41

42 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42

43 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43

44 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44

45 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45

46 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46

47 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47

48 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48

49 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
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Non-zero TPM elements are listed below. 

 
(1,26)  0.480000  

(1,27)  0.520000  

(2,28)  0.560000  

(2,29)  0.440000  

(3,30)  0.460000  

(3,31)  0.540000  

(4,32)  0.400000  

(4,33)  0.600000  

(5,34)  0.460000  

(5,35)  0.540000  

(6,36)  0.580000  

(6,37)  0.420000  

(7,38)  0.580000  

(7,39)  0.420000  

(8,40)  0.540000  

(8,41)  0.460000  

(9,42)  0.540000  

(9,43)  0.460000  

(10,44) 0.500000  

(10,45) 0.500000  

(11,46) 0.640000  

(11,47) 0.360000  

(12,48) 0.540000  

(12,49) 0.460000  

(13,50) 1.000000  

(14,49) 0.400000  

(14,50) 0.600000  

(15,48) 0.380000  

(15,49) 0.620000  

(16,47) 0.480000  

(16,48) 0.520000  

(17,46) 0.540000  

(17,47) 0.460000  

(18,45) 0.420000  

(18,46) 0.580000  

(19,44) 0.500000  

(19,45) 0.500000  

(20,43) 0.580000  

(20,44) 0.420000  

(21,42) 0.420000  

(21,43) 0.580000  

(22,41) 0.480000  

(22,42) 0.520000  

(23,40) 0.500000  

(23,41) 0.500000  

(24,39) 0.500000  

(24,40) 0.500000  

(25,38) 0.460000  

(25,39) 0.540000  

(26,36) 0.200000  

(26,37) 0.600000  

(26,38) 0.200000  

(27,34) 0.220000  

(27,35) 0.580000  

(27,36) 0.200000  

(28,32) 0.220000  

(28,33) 0.580000  

(28,34) 0.200000  

(29,30) 0.360000  

(29,31) 0.500000  

(29,32) 0.140000  

(30,28) 0.220000  

(30,29) 0.560000  

(30,30) 0.220000  

(31,26) 0.360000  

(31,27) 0.420000  

(31,28) 0.220000  

(32,24) 0.260000  

(32,25) 0.500000  

(32,26) 0.240000  

(33,22) 0.220000  

(33,23) 0.440000  

(33,24) 0.340000  

(34,20) 0.260000  

(34,21) 0.440000  

(34,22) 0.300000  

(35,18) 0.200000  

(35,19) 0.640000  

(35,20) 0.160000  

(36,16) 0.340000  

(36,17) 0.460000  

(36,18) 0.200000  

(37,14) 0.260000  

(37,15) 0.500000  

(37,16) 0.240000  

(38,13) 0.660000  

(38,14) 0.340000  

(39,12) 1.000000  

(40,11) 1.000000  

(41,10) 1.000000  

(42,9)  1.000000  

(43,8)  1.000000  

(44,7)  1.000000  

(45,6)  1.000000  

(46,5)  1.000000  

(47,4)  1.000000  

(48,3)  1.000000  

(49,2)  1.000000  

(50,50) 1.000000  
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B.3 Matrix 3 

 

This matrix of order 50 is a subset of the 136 × 136 [49] described in Sec. 6.2.2. It was obtained by taking the 

first 50 states of that matrix. State 50 has been made the absorbing state. In this case, no state has more than 4 

transitions to any other state. There were 27,242,634 minimal s-t cut sets found. 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0.07 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 0 0.13 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

4 0 0 0.20 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

5 0 0 0 0.27 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

6 0 0 0 0 0.33 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

7 0 0 0 0 0 0.40 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

8 0 0 0 0 0 0 0.47 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

9 0 0 0 0 0 0 0 0.53 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

10 0 0 0 0 0 0 0 0 0.60 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

11 0 0 0 0 0 0 0 0 0 0.67 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11

12 0 0 0 0 0 0 0 0 0 0 0.73 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

13 0 0 0 0 0 0 0 0 0 0 0 0.80 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13

14 0 0 0 0 0 0 0 0 0 0 0 0 0.87 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.93 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

17 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17

18 0 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18

19 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19

20 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

21 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21

22 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 22

23 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 23

24 0 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 24

25 0 0 0 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 25

26 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 26

27 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 27

28 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 28

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0 0 0 29

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0 0 0 30

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 32

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 33

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 34

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 35

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0.30 36

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0 0.36 0 0 0 0 0 0 0 0 0 0 0 0 37

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.35 0 0 0 0 0 0 0 0 0 0 0 0 0.35 0 0.30 0 0 0 0 0 0 0 0 0 0 0 38

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 0 0 0 0 0 0 0 0 0 0 0 0 0.38 0 0.25 0 0 0 0 0 0 0 0 0 0 39

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0.20 0 0 0 0 0 0 0 0 0 40

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0 0.15 0 0 0 0 0 0 0 0 41

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0.44 0 0.11 0 0 0 0 0 0 0 42

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.46 0 0 0 0 0 0 0 0 0 0 0 0 0.46 0 0.07 0 0 0 0 0 0 43

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0 0 0.03 0 0 0 0 44

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 45

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 46

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.21 0 0 0 0 0 0 0 0 0 0 0 0.21 0 0.58 0 0 47

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0.50 0 48

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.29 0 0 0 0 0 0 0 0 0 0 0 0.29 0 0.43 49

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
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Non-zero TPM elements are listed below. 

 
(1,2)   0.500000  

(1,17)  0.500000  

(2,1)   0.066667  

(2,3)   0.466667  

(2,18)  0.466667  

(3,2)   0.133333  

(3,4)   0.433333  

(3,19)  0.433333  

(4,3)   0.200000  

(4,5)   0.400000  

(4,20)  0.400000  

(5,4)   0.266667  

(5,6)   0.366667  

(5,21)  0.366667  

(6,5)   0.333333  

(6,7)   0.333333  

(6,22)  0.333333  

(7,6)   0.400000  

(7,8)   0.300000  

(7,23)  0.300000  

(8,7)   0.466667  

(8,9)   0.266667  

(8,24)  0.266667  

(9,8)   0.533333  

(9,10)  0.233333  

(9,25)  0.233333  

(10,9)  0.600000  

(10,11) 0.200000  

(10,26) 0.200000  

(11,10) 0.666667  

(11,12) 0.166667  

(11,27) 0.166667  

(12,11) 0.733333  

(12,13) 0.133333  

(12,28) 0.133333  

(13,12) 0.800000  

(13,14) 0.100000  

(13,29) 0.100000  

(14,13) 0.866667  

(14,15) 0.066667  

(14,30) 0.066667  

(15,14) 0.933333  

(15,17) 0.033333  

(15,31) 0.033333  

(16,15) 1.000000  

(17,2)  0.066667  

(17,18) 0.466667  

(17,32) 0.466667  

(18,3)  0.066667  

(18,17) 0.066667  

(18,19) 0.433333  

(18,33) 0.433333  

(19,4)  0.100000  

(19,18) 0.100000  

(19,20) 0.400000  

(19,34) 0.400000  

(20,5)  0.133333  

(20,19) 0.133333  

(20,21) 0.366667  

(20,35) 0.366667  

(21,6)  0.166667  

(21,20) 0.166667  

(21,22) 0.333333  

(21,36) 0.333333  

(22,7)  0.200000  

(22,21) 0.200000  

(22,23) 0.300000  

(22,37) 0.300000  

(23,8)  0.233333  

(23,22) 0.233333  

(23,24) 0.266667  

(23,38) 0.266667  

(24,9)  0.266667  

(24,23) 0.266667  

(24,25) 0.233333  

(24,39) 0.233333  

(25,10) 0.300000  

(25,24) 0.300000  

(25,26) 0.200000  

(25,40) 0.200000  

(26,11) 0.333333  

(26,25) 0.333333  

(26,27) 0.166667  

(26,41) 0.166667  

(27,12) 0.366667  

(27,26) 0.366667  

(27,28) 0.133333  

(27,42) 0.133333  

(28,13) 0.400000  

(28,27) 0.400000  

(28,29) 0.100000  

(28,43) 0.100000  

(29,14) 0.433333  

(29,28) 0.433333  

(29,30) 0.066667  

(29,44) 0.066667  

(30,15) 0.466667  

(30,29) 0.466667  

(30,32) 0.033333  

(30,45) 0.033333  

(31,16) 0.500000  

(31,30) 0.500000  

(32,18) 0.133333  

(32,33) 0.433333  

(32,46) 0.433333  

(33,19) 0.100000  

(33,32) 0.100000  

(33,34) 0.400000  

(33,47) 0.400000  

(34,20) 0.133333  

(34,33) 0.133333  

(34,35) 0.366667  

(34,48) 0.366667  

(35,21) 0.166667  

(35,34) 0.166667  

(35,36) 0.333333  

(35,49) 0.333333  

(36,22) 0.200000  

(36,35) 0.200000  

(36,37) 0.300000  

(36,50) 0.300000  

(37,23) 0.318182  

(37,36) 0.318182  

(37,38) 0.363636  

(38,24) 0.347826  

(38,37) 0.347826  

(38,39) 0.304348  

(39,25) 0.375000  

(39,38) 0.375000  

(39,40) 0.250000  

(40,26) 0.400000  

(40,39) 0.400000  

(40,41) 0.200000  

(41,27) 0.423077  

(41,40) 0.423077  

(41,42) 0.153846  

(42,28) 0.444444  

(42,41) 0.444444  

(42,43) 0.111111  

(43,29) 0.464286  

(43,42) 0.464286  

(43,44) 0.071429  

(44,30) 0.482759  

(44,43) 0.482759  

(44,46) 0.034483  

(45,31) 0.500000  

(45,44) 0.500000  

(46,33) 0.333333  

(46,47) 0.666667  

(47,34) 0.210526  

(47,46) 0.210526  

(47,48) 0.578947  

(48,35) 0.250000  

(48,47) 0.250000  

(48,49) 0.500000  

(49,36) 0.285714  

(49,48) 0.285714  

(49,50) 0.428571  

(50,50) 1.000000  
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B.4 Matrix 4 

 

A matrix of order 50 generated from [53] using [50]. State 40 has been made the absorbing state. Note that 

three states, 4, 5, 36, and 37 each have at least 7 transitions to other states. Like Matrix 1, this matrix is highly 

connected, but 422,060,801 minimal s-t cut sets were found. 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0.51 0.48 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0.38 0.43 0.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 0 0 0 0 0.13 0.30 0.38 0.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

4 0 0 0 0 0 0 0 0.10 0.22 0.17 0.23 0.15 0.08 0.06 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.04 0.02 0 0 0 0 0 0.01 0.04 0.03 0.08 0.06 0.13 0.16 0.24 0.15 0 0 0 0 0 0 0 0 0 5

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0.27 0.38 0.26 0 0 0 0 0 0 6

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.21 0.60 0.19 0 0 0 0 7

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.55 0.45 0 0 0 8

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.58 0.42 0 0 9

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.69 0.31 0 10

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 11

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.66 0.34 12

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 18

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 19

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 21

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 22

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 23

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 24

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 25

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 26

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 27

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 28

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63 0.37 29

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 30

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.65 0.35 0 31

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.53 0 0 32

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.52 0 0 0 33

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0.52 0.33 0 0 0 0 34

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0.32 0.37 0.23 0 0 0 0 0 0 35

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0.02 0.03 0.02 0.01 0 0.01 0 0 0.02 0.03 0.05 0.05 0.10 0.16 0.22 0.23 0 0 0 0 0 0 0 0 0 36

37 0 0 0 0 0 0 0 0.07 0.33 0.13 0.18 0.12 0.08 0.07 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37

38 0 0 0 0 0.09 0.37 0.38 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38

39 0 0 0.37 0.43 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
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Non-zero TPM elements are listed below. 

 
(1,1)   0.508333  

(1,2)   0.483333  

(1,3)   0.008333  

(2,3)   0.383333  

(2,4)   0.425000  

(2,5)   0.191667  

(3,5)   0.133333  

(3,6)   0.300000  

(3,7)   0.375000  

(3,8)   0.191667  

(4,8)   0.100000  

(4,9)   0.216667  

(4,10)  0.166667  

(4,11)  0.225000  

(4,12)  0.150000  

(4,13)  0.075000  

(4,14)  0.058333  

(4,15)  0.008333  

(5,15)  0.050000  

(5,16)  0.041667  

(5,17)  0.016667  

(5,23)  0.008333  

(5,24)  0.041667  

(5,25)  0.033333  

(5,26)  0.075000  

(5,27)  0.058333  

(5,28)  0.125000  

(5,29)  0.158333  

(5,30)  0.241667  

(5,31)  0.150000  

(6,31)  0.091667  

(6,32)  0.266667  

(6,33)  0.383333  

(6,34)  0.258333  

(7,34)  0.208333  

(7,35)  0.600000  

(7,36)  0.191667  

(8,36)  0.550000  

(8,37)  0.450000  

(9,37)  0.583333  

(9,38)  0.416667  

(10,38) 0.691667  

(10,39) 0.308333  

(11,39) 1.000000  

(12,39) 0.658333  

(12,40) 0.341667  

(13,40) 1.000000  

(14,40) 1.000000  

(15,40) 1.000000  

(16,40) 1.000000  

(17,40) 1.000000  

(18,40) 1.000000  

(19,40) 1.000000  

(20,40) 1.000000  

(21,40) 1.000000  

(22,40) 1.000000  

(23,40) 1.000000  

(24,40) 1.000000  

(25,40) 1.000000  

(26,40) 1.000000  

(27,40) 1.000000  

(28,40) 1.000000  

(29,39) 0.633333  

(29,40) 0.366667  

(30,39) 1.000000  

(31,38) 0.650000  

(31,39) 0.350000  

(32,37) 0.475000  

(32,38) 0.525000  

(33,36) 0.483333  

(33,37) 0.516667  

(34,34) 0.158333  

(34,35) 0.516667  

(34,36) 0.325000  

(35,31) 0.083333  

(35,32) 0.316667  

(35,33) 0.366667  

(35,34) 0.233333  

(36,15) 0.058333  

(36,16) 0.016667  

(36,17) 0.033333  

(36,18) 0.016667  

(36,19) 0.008333  

(36,21) 0.008333  

(36,24) 0.016667  

(36,25) 0.033333  

(36,26) 0.050000  

(36,27) 0.050000  

(36,28) 0.100000  

(36,29) 0.158333  

(36,30) 0.216667  

(36,31) 0.233333  

(37,8)  0.066667  

(37,9)  0.333333  

(37,10) 0.125000  

(37,11) 0.175000  

(37,12) 0.116667  

(37,13) 0.083333  

(37,14) 0.066667  

(37,15) 0.033333  

(38,5)  0.091667  

(38,6)  0.366667  

(38,7)  0.383333  

(38,8)  0.158333  

(39,3)  0.366667  

(39,4)  0.433333  

(39,5)  0.200000  

(40,40) 1.000000  

 



APPENDIX C. Perturbation Method for the Theoretical Model

The perturbation method employed in this paper is similar to that of [7]. A number of important
differences exist, though, so the precise perturbation procedure for this paper will be described
below. This perturbation method is designed to determine the long-term effects of decreasing (or
increasing) certain transition probabilities from a particular state while proportionally increasing
(decreasing) other transition probabilities from that state. This proportional increase (decrease)
is necessary to preserve the stochasticity of the TPMs. The work of [7] examines perturbations of
combinations of two rows, but for the purposes of this paper, only perturbations affecting a single
row, i.e. affecting transitions out of a single state, will be considered for the sake of simplicity.
Restricting to these single perturbations makes it somewhat more difficult to precisely model the
behavior of the large-scale grid system since inducing different execution paths in the large-scale
system often results in changes to the transition probabilities for multiple states. Despite this
shortcoming, though, the perturbation method used here does appear to at least qualitatively
predict the effect of key changes to the large-scale system.

With this perturbation method, each of the transient states will be selected to have transitions
from that state perturbed. The perturbation algorithm iterates through each of the different
rows corresponding to the transient states, and the current state to be perturbed is given by the
perturbation row, r. Within that row, the algorithm iteratively selects an entry to decrease, known
as the decrease column, c↓, as well as an entry to increase, known as the increase column, c↑. Here,
c↓ and c↑ are required to be allowable transitions for the grid system, i.e. the entries (r, c↓) and
(r, c↑) must be non-zero in at least one of the TPMs.

In the primary decrease perturbation method, the (r, c↓) entry will be decreased down to zero
by an increment v in all of the TPMs. Meanwhile, each decrease by v must be accompanied by an
increase of v distributed across the other entries in row r so that the row sum will still equal 1. A
weighted portion of that increase will be added to the entry in the increase column, (r, c↑). The
weight, w, for the increase was varied between 0.1 and 0.9, but a weight of 0.5 was predominantly
used. The entry (r, c↑) was then increased by w∗v at each step of the perturbation. The remainder
of the increase was then distributed to the other entries in row r in an amount proportional to
the original value of the entry. The new transition probabilities derived from these incremental
perturbations are summarized below

p
(new)
rj =


p
(old)
rj − v if j = c↓

p
(old)
rj + w ∗ v if j = c↑

p
(old)
rj + (1 − w) ∗ p

(old)
rj∑

k 6=c↓,c↑ p
(old)
rk

else

There are a couple of important situations, though, where the values of p
(new)
rj slightly deviate from

those described above. The first case is when p
(old)

rc↓
− v is negative for some TPM. In this event,

the value of v used for that TPM is set to equal the old transition probability, p
(old)

rc↓
, and this new

value for v is distributed as an increase among the other entries in the row as described previously.
The other special case occurs when there are only two non-zero entries in a particular row, e.g.
the only allowable transitions from the state Initial are the self-transition and the transition to
Discovering. In this event, the increase column will be increased by v rather than by w ∗ v since
there are no other non-zero entries to distribute the increase among. Notice that there is never a
special case of increasing the increase column by too much, i.e. of making that entry greater than
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1. This is not an issue because the increase to the entry (r, c↑) is equal to w ∗ v for w ≤ 1 and v is
capped by the value of the (r, c↓) entry, where the sum of the entries (r, c↓) and (r, c↑) is less than
or equal to 1 since the TPMs are stochastic.

A second type of perturbation method, the primary increase perturbation method, was also
used where the primary focus was on increasing a particular transition up to be just less than 1 by
increments of v while distributing a weighted decrease to the other non-zero entries in that row.1

For this perturbation method, the new transition probabilities are as follows

p
(new)
rj =


p
(old)
rj + v if j = c↑

p
(old)
rj − w ∗ v if j = c↓

p
(old)
rj − (1 − w) ∗ p

(old)
rj∑

k 6=c↓,c↑ p
(old)
rk

else

Similar to the first type of perturbation, there are a few situations where the values of p
(new)
rj slightly

deviate from those described. The first case occurs when p
(old)

rc↑
+v is greater than 1 for some TPM.

In this case, the value for v is set to 1− p
(old)

rc↑
so that p

(new)

rc↑
will equal 1 and the decrease by v will

be distributed across the other entries in that row in the same manner described previously. The
special case when there are only two non-zero entries in the perturbation row is handled in the
same fashion as outlined above. Finally, there is an additional situation to consider for this type
of perturbation. For this type of perturbation, it is possible for w ∗ v to be greater than the (r, c↓)
entry so that the weighted decrease would perturb that entry to be negative for a particular TPM.
In this event, the weight w is modified for that specific TPM so that w ∗ v = p

(old)

rc↓
; then, the (r, c↓)

entry is perturbed down to zero while the other entries in that row take on a larger proportion
of the decrease by v. Additionally, it is possible that (1 − w) ∗ v, the amount of decrease to be
distributed throughout the rest of the row, is greater than the total values in that row; thus, the
standard method for perturbing those entries would cause them to become negative. To remedy
this situation, each of the entries in the row other than (r, c↑) and (r, c↓) are perturbed to zero

resulting in a decrease by
∑

k 6=c↓,c↑ p
(old)
rk . Then the remainder of the decrease is distributed to prc↓

so that p
(new)

rc↓
= p

(old)

rc↓
− v +

∑
k 6=c↓,c↑ p

(old)
rk .

Now, using the perturbed matrices created by the appropriate perturbation algorithm, the
resulting Markov chain was utilized to determine the proportion of tasks completed by this new
system. Additionally, the perturbed matrices were used to find the theoretical approximation to
the proportion of tasks completed using Equation 6. The value for proportion of tasks completed
for the Markov model and the theoretical model were then recorded together with a summary value
for the entry (r, c↓) (or (r, c↑), depending on the perturbation method used) from the perturbed
TPMs. This summary value was calculated as a weighted average of the (r, c↓) (or (r, c↑)) entries
across all the TPMs, using the formula described by [7] for creating a summary matrix. Pertur-
bations were performed using both the primary decrease and primary increase methods for every
allowable combination of r, c↓, and c↑ where r ranged among the transient states. For each of these
perturbations, the proportion of tasks completed was then plotted against the varying summary
values for the perturbed entry. The figures shown in section 6 of this report show examples of
these plots together with large-scale simulation data for these perturbations.

1The transition probabilities were not perturbed to equal one because this often caused a drastic change in the
proportion of tasks completed that was not reflective of the change that occurred when the transition probability
was just fractionally smaller.
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It is important to note that the large-scale simulation data was obtained by manually adjusting
different aspects of the grid simulation such as the length of time required to negotiate an SLA,
etc. in order to mimic the effect of decreasing (or increasing) a particular transition. As mentioned
earlier, these changes often affected transition probabilities other than the particular transitions to
be perturbed, and thus the perturbed TPMs are not an exact reflection of the TPMs that would
be derived for the altered large-scale simulation. As a result, with the simple perturbation method
used here, the data from the perturbed Markov model does not match that of the perturbed
large-scale simulation as well as in the unperturbed case. The qualitative behavior does appear
to match, however, and thus the perturbed Markov model provides a useful tool for determining
which state transitions have the greatest deleterious effects on the proportion of tasks completed
by the grid system.
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