
 1

Improving the Efficiency of

Markov Chain Analysis of

Complex Distributed Systems

Christopher Dabrowski

Fern Hunt

Katherine Morrison

NISTIR 7744

 2

 3

NISTIR 7744

Improving Efficiency of

Markov Chain Analysis of

Complex Distributed Systems

Christopher Dabrowski
Advanced NetworkingTechnology Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-8530

Fern Hunt
Mathematical and Computational Sciences Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-8530

Katherine Morrison
University of Nebraska-Lincoln

Department of Mathematics

Avery Hall

Lincoln, NE 68588

November 2010

 U.S. Department of Commerce
Gary Locke, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Director

 4

 5

Improving Efficiency of Markov Chain Analysis

of Complex Distributed Systems

Abstract: In large-scale distributed systems, the interactions of many independent components may lead to

emergent global behaviors with unforeseen, often detrimental, outcomes. The increasing importance of

distributed systems such as clouds and computing grids will require analytical tools to understand and predict,

complex system behavior to ensure system reliability. In previous work, we described how a piecewise

homogeneous Discrete Time Markov chain representation of a computing grid can be systematically

perturbed to predict situations that lead to performance degradations. While the execution time of this

approach compared favorably with detailed large-scale simulation, a sizable number of perturbations of the

model were needed to identify scenarios in which system performance degraded. Here, we evolve our original

approach and describe two novel methods for quickly identifying portions of the Markov chain that are

sensitive to perturbation. The first method involves finding minimal s-t cut sets, consisting of state transitions

that disconnect all paths in a Markov chain from the initial to a desired end state. By perturbing state

transitions in the cut set, it is possible to quickly identify scenarios in which system performance is adversely

affected. We show this method can be applied to larger Markov models than the approach described in our

earlier work. We then present a second method, in which the Spectral Expansion Theorem is used to analyze

the eigensystem of a set of Markov transition probability matrices to predict which state transitions, if

perturbed, are likely to adversely affect system performance. Results are presented for both methods to show

that they can be used to identify the same failure scenarios presented in our earlier paper (as well as additional

scenarios, using the first method), while reducing the number of perturbations needed. We argue that these

methods provide a basis for creating practical tools for analysis of complex systems behavior in distributed

systems.

Keywords: complex systems; perturbation analysis; discrete time piecewise homogenous Markov chain; graph

theory; minimal s-t cut set; Spectral Expansion Theorem; eigenvector; eigenvalue; grid computing.

 6

Contents
1. Introduction .. 7
2. Previous Work .. 9
3. Review of Discrete Time Markov Chain Approach ... 11

3.1 The Markov Chain Model of a Grid Computing System ... 11
3.2 The Markov Chain Model the Abilene System .. 13
3.3 The Perturbation Algorithm for Predicting Performance Degradations ... 15
3.4 Efficiency of the Perturbation Algorithm ... 17

4. Identifying Critical System Execution Paths and Minimal Cut Set Analysis .. 19
4.1 Finding State Transition that Disconnect Paths to Absorbing States ... 19
4.2 Using Single-Transition s-t Cuts to Analyze Markov Chain Models ... 20
4.3 Identifying Trap States as Potential Sources of Drastic Performance Degradation 21
4.4 Minimal s-t Cut Sets With Multiple Transitions .. 22

5. Results of Minimal Cut Set Analysis ... 25
5.1 Grid System .. 25

5.1.1 Correspondence of Single-transition s-t Cuts to Perturbation Algorithm Results 25
5.1.2 Correspondence of Trap States to Perturbation Algorithm Results ... 27
5.1.3 Efficiency of Minimal s-t Cut Set Analysis in the Grid System Case .. 28

5.2 Abilene System ... 29
6. Application of Minimal s-t Cut Set Identification to Larger Markov Chain Problems 33

6.1 A Probabilistic Algorithm for Finding Minimal s-t Cut Sets in Larger Markov Chains 33
6.2 Examples of the Application of the Node Contraction Algorithm ... 34

6.2.1 Example Application to the Grid Computing and Abilene System Markov Chain Problems ... 34
6.2.2 Example Application to a Large Markov Chain TPM ... 35

6.3 Performance of the Node Contraction Algorithm on Four Larger Markov Chain Problems 37
6.4. Discussion and Future Work .. 39

7. Theoretical Model of a Markov Chain .. 41

 7.1 Eigendecomposition of an Absorbing Markov Chain………………………………………...…….41

7.2 Quantifying Perturbation Effects .. 46
8. Conclusions……………………………………………………………………………………………. 57
9. References .. 59
Appendix A. Node Contraction Algorithm………………………………………………………………. 63

Appendix B. Four Transition Test Probability Matrices………………………………………………….. 71

B.1 Matrix 1…………………………………………………………………………………………..... 71

B.2 Matrix 2……………………………………………………………………………………………. 73

B.3 Matrix 3……………………………………………………………………………………………. 75
B.4 Matrix 4 ... 77

 Appendix C. Perturbation Method for the Theoretical Model…………………………………………….. 79

 7

1. Introduction

In recent years, the advent of large-scale distributed systems, such as computing grids and commercial cloud

systems
1
 has enabled mass computing services to be made available to large numbers of users on demand. In

large-scale heterogeneous, dynamic systems such as these, the interactions of many independent components

will likely lead to emergent system-wide behaviors with unforeseen, often detrimental, outcomes [1]. The

rapid growth and increasing economic importance of these systems [2, 3] argues for developing analytical

tools to understand, and predict, complex system behavior in order to ensure availability and reliability of

computing services.

In particular, tools that can predict how system performance is impacted by changes to workload, system

design, and key operational parameters will be of great importance. Studies of alternative economic strategies

[4–6] and failure scenarios [1] have shown that small variations in key system variables can lead to large

differences in overall system performance. While large-scale simulations are more practical than operational

testbeds, computational expense can increase dramatically with model size, a critical factor for studying

large-scale systems such as the Internet.

To remedy this situation, we presented an approach in earlier work [7] in which discrete time Markov chain

analysis was used to model dynamics of large-scale grid systems. In this approach, we developed a succinct

Markov chain representation of a grid computing system that included a set of transition probability matrices

(TPMs) that described system dynamics over different time periods. The TPMs could be perturbed to

represent different system execution paths by changing values of individual transition probabilities. A

perturbation algorithm was developed to systematically identify execution paths that led to degradations of

grid system performance and to system-wide failures. This allowed Markov chain analysis to be used to

predict how an operational system might react over time under different conditions. The approach could be

used in cases where transition probabilities changed with (e.g., were non-homogenous with respect to) time

and workload. We showed that the computational cost of this approach was reduced in comparison with

detailed large-scale simulation or testbeds. One reason for this was that the stochastic characteristics of

Markov chains allow model size to be unaffected by the scale of the system being modeled, as expressed in

terms of number of components or workload. Another reason was that the perturbation algorithm was

designed to enumerate alternative paths only within defined sub-areas of the Markov chain. Despite these

gains in efficiency, computational effort could increase significantly as the number of model states increased,

making it expensive to apply the perturbation algorithm to larger Markov chains. This in turn made it

difficult to quickly discover those parts of a large Markov chain where changes could lead to declines in

system performance.

To address this problem, here we expand on our previous work by adding capabilities that allow fast

identification of portions of a Markov chain where perturbation is most likely to affect system performance.

We describe two methods that represent different approaches to do this. First, we employ efficient algorithms

based on graph theory concepts to identify minimal s-t cut sets that disconnect all paths between two vertices

in a graph. These algorithms can be used to identify states and state transitions, which if removed or blocked,

would disconnect all paths from an initial state to desired end states and thus prevent processes from entering

them. This allows specific state transitions to be directly perturbed to determine impact on performance. We

show that this approach can be used to find the same parts of the grid system Markov chain where the

perturbation algorithm also predicted marked performance degradation as reported in [7], but with a much

lower computational cost. Using the large-scale simulation as a real-world proxy, we also apply the method to

the grid computing system under near steady state conditions and then extend the procedure to a new

domain—the modeling of the impact of different congestion control regimes on data flows in a network.

1
Any mention of commercial products in this document is for information only; it does not imply recommendation or endorsement

by NIST.

 8

Finally, we show that the method can be used on much larger Markov chains to identify areas of performance

degradation. To our knowledge, graph theory concepts have not previously been used in this manner to

identify perturbations of Markov chains that predict drastic changes in system performance.

We then present a second method, called the theoretical method, in which the Spectral Expansion Theorem

is used to analyze the eigensystem of a set of Markov transition probability matrices (TPMs) in order to

identify eigenvectors that are critical for predicting system performance. We show that changes in the leading

eigenvector of the transient part of the TPM correlate reasonably well with performance changes discovered

through Markov simulation. We describe how this second approach can also be used to indicate which state

transitions, if perturbed, are likely to adversely affect system performance. Examples are provided of the use

of the theoretical method to identify the same parts of the grid system Markov chain that were identified by

the perturbation algorithm in [7], and by the first method, as being sensitive to perturbation. In this way, we

show that the theoretical method can also provide a viable alternative to the perturbation algorithm at reduced

computation cost. Results from application of both methods are detailed for all cases and corroborated by

earlier results obtained by applying the perturbation algorithm. We show that the two general approaches

presented in this report can be equally effective, but more efficient, than our previous Markov chain analysis

using the perturbation algorithm. We also present results indicating scalability of the graph-theoretic method.

 The plan of this report is as follows. Section 2 discusses previous work by other authors on using Markov

chain analysis including previous uses of Graph theory for Markov chains. Section 3 overviews the most

important results in our previous work [7], focusing on use of Markov chain concepts to model dynamic

systems. Most importantly, Sec. 3 describes the perturbation algorithm for critical transitions in Markov

chains where changes are likely to affect performance, which while effective, still requires a large

expenditure of computational effort. This sets the stage for the contributions of this report. Section 4

describes how minimal s-t cut sets on paths through the graph of a Markov chain can be used to directly

identify critical state transitions where perturbation causes performance degradations. In Sec. 4, a simple

method for identifying minimal s-t cut sets is discussed and examples are provided. Section 5 presents the

results of using the methods described in Sec. 4 to predict areas of the Markov chain that are sensitive to

perturbation. Section 5 compares these results with those produced by the perturbation algorithm described in

Sec. 3 as well as with more detailed large-scale simulation. The comparison shows that identification of

minimal s-t cut sets is equally effective as the perturbation algorithm in finding areas of the Markov chain

that are sensitive to perturbation. Section 6 addresses the issue of using this approach on large Markov chains

and presents an algorithm for finding minimal s-t cut sets that is intended to work on larger problems.

Preliminary results are then presented on the application of the new algorithm to larger problems. Section 7

presents the theoretical method describe above together with examples of its application. Section 8 concludes.

Table 1.1. Summary of sections of report.

Section Topics

Section 2 Review of previous work on use of Markov chain analysis to study dynamic systems.

Section 3 Use of Markov chain models to represent dynamic systems. Review of perturbation algorithm
in [7] for finding areas of Markov chains that are sensitive to perturbation.

Section 4 Use of minimal cut set analysis to find state transitions in Markov chains that are sensitive to
perturbation.

Section 5 Comparison of results of minimal cut set analysis with results from perturbation algorithm
described in Section 3. Verification that minimal cut set analysis finds areas of Markov chains
that are sensitive to perturbation.

Section 6 Description of minimal cut set analysis method for large, complex Markov chains and
presentation of preliminary results

Section 7 Presentation of theoretical method, in which the Spectral Expansion Theorem is used to
analyze the eigensystem of a Markov chain.

 9

2. Previous Work

The methods described in this report should be distinguished from the well-known use of Discrete Time

Markov chains (DTMCs) for providing quantitative measures of system performance and reliability, which

we review in [7]. Of this work, most closely related are [8, 9], in which a feedback control loop process is

used to moderate delay in a network, where delay characteristics are modeled using a Markov chain. Instead

of measuring reliability, we use Markov chain models to understand system-wide behaviors that occur as a

consequence of significant events or decisions that affect the system as a whole. This section summarizes

previous work on using Markov chains to study dynamic system behavior that focus on the main topic of this

report—methods to reduce problem size and, more specifically, perturbation analysis techniques that reduce

the size of the perturbation space.

The combinatorial increase of the number of states in large DTMC problems has long been recognized as a

significant barrier. On solution approach is to combine, or lump, states with similar characteristics into larger

aggregated units, first introduced in [10]. Since then, various lumping approaches have been proposed,

including [11, 12] who use model structure and symmetry to reduce size, [13] who rely on group-theoretic

concepts for size reduction. Other approaches for reducing model size have been based on stochastic activity

nets [14], stochastic colored nets [15], use of reward variable structures to identify symmetries [16], and use

of eigenvector equivalence classes to partition a Markov state space into lumps [17]. While these approaches

have merit, their reliance on existence of specific structural characteristics limits use in many cases.

Moreover, the process of lumping could eliminate critical states and related state transitions that crucially

impact overall system performance and need be explicitly identified (as we show in this report).

In the last three decades, perturbation analysis of discrete time Markov chains has been the topic of

significant theoretical [18, 19] and computational study [20, 21]. However, much of this work has focused on

ergodic Markov chains and computation of the stationary vectors. In contrast, our work focuses on

identifying perturbations that have a significant effect on the behavior of an absorbing Markov chain.

Like the problem of model size, the size of a typical perturbation space may quickly become

computationally intractable, if there are many combinations of alternative system variable values to consider.

To attack this problem, some researchers [22, 23] have advanced the idea of perturbation analysis of discrete

event systems by calculating system performance gradients that are based on key decision parameters. This

approach estimated the sensitivity of changes to decision parameters in order to optimize system

performance. In some cases, gradient-based approaches needed to observe as few as one execution path of a

system to reduce the size of the perturbation space. This approach was adapted for Markov chains by

estimating gradients for alternative execution paths [23, 24] and extended by [25, 26] who reduced problem

size by grouping state transitions on the basis of related events. This approach was believed to scale with the

number of events and size of the system. However, not all problems were found to be reducible to a form

which allowed tractable calculation of gradients. While gradient-based perturbation algorithms have

demonstrated potential as efficient tools for analysis of some complex systems, they also introduced

significant computational issues and were found not to be applicable to all Markov problems. Perhaps more

importantly, the gradient-based approaches appeared more geared to optimization problems, rather than the

more general problem of assessing alternative execution paths in dynamic systems and identifying areas of

potential drastic performance reduction. While gradient-based methods merit, they did not appear of direct

use for large DTMC problems where it is desirable to identify specific states and state transitions that affect

performance; hence, we turned to graph theory.

Graph-theoretic methods have previously been applied to Markov chains. Graph decomposition has also

been used to calculate stationary probability distributions of Markov chains [27–29] including large-scale

models [30]. In [29], the authors developed methods for computing approximations for first passage times

and number of visits in a fixed state before absorption in cases where the size of perturbation was small. In

 10

[31], distances between stationary distributions of perturbed Markov chains were calculated using graph-

theoretic techniques. In the preceding works, graph-theoretic methods were used to measure distance between

individual perturbations, a measurement that could be used to aid in finding parts of a Markov chain that were

sensitive to perturbation. In contrast, we seek to provide a more direct means to determine where perturbation

of the probability of transitions between states leads to large system performance degradations. To do this, we

leverage previous work on minimal s-t cut set identification [32–35] described below. Minimal cut set

identification methods have long been used for analysis of VLSI designs, network systems, and design of

various other distributed systems. For example, in [36], minimal cut sets of avionics system component

graphs were used to identify the shortest sequence of individual component failures. However, to our

knowledge, minimal cut set analysis has not yet been used to analyze Markov chain representations of the

evolution of a system through a sequence of states. The approach we describe here appears to be novel.

Finally, we mention maximum flow algorithms [37–39], which identify minimum cut sets between two

vertices in a graph on the basis of maximum flow and minimum capacity. These algorithms have also been

used for many practical problems and could potentially be used to identify critical state transitions, as the

approach described here does. However, we regard maximum flow algorithms as a distinct approach from

Markov chains which do not employ flows. Therefore, flow-based algorithms merit separate treatment,

perhaps as future work.

 11

3. Review of Discrete Time Markov Chain Approach

In this section, we review previous work on our approach to modeling a dynamic system as a piecewise

homogenous discrete time Markov chain. We show the application of this approach to the grid computing

system and Abilene network models [40], both of which were developed by observing the operation of large-

scale simulations. We then present an overview of the perturbation algorithm described in [7] that does a

limited brute-force search of selected parts of a Markov chain to identify areas where changes to state

transitions probabilities lead to significant performance degradations. Finally, we provide an analysis of the

efficiency and computational cost of the algorithm. The success of this perturbation algorithm and its

relatively high computational cost for large problems provide the motivation for the development of more

efficient methods. These are described in Secs. 4–7.

3.1 The Markov Chain Model of a Grid Computing System

The Markov chain model is derived from a previous large-scale grid computing system model [1, 6] that

simulates the progress of a large number of computing tasks from the time they are submitted to the grid for

execution by an end user to the time they either complete or fail. Figure 3.1 shows this Markov model as a

state diagram for a single task. The state diagram has 7 states: an Initial State, where the task remains prior to

submission; a Discovering state, during which service discovery middleware locates candidate grid service

providers to execute the task; a Negotiating state during which a Service Level Agreement (SLA) to execute

the task is negotiated with one of the discovered providers; a Waiting state for tasks that are temporarily

unsuccessful in discovery or negotiation; a Monitoring phase in which a task is executed by a contracted

provider; and the Tasks Completed or Tasks Failed states. Transitions between states, illustrated by the

arrows in Fig. 3.1, represent actions taken by the grid system to process a task as described in [7]. The model

is considered an absorbing chain because all tasks ultimately must enter one of two absorbing states, Tasks

Completed or Tasks Failed, from which they cannot leave.

Figure 3.1. State model of grid computing system.

To convert the state model in Fig. 3.1 into a Markov chain, we observed the large-scale grid simulation and

counted the frequency of transitions between states over a simulated duration. Each probability of transition

from state i to state j, written as si  sj, was considered separately. The probability of transitioning between

any two states si, sj, written as pij, was estimated by calculating the frequency of si  sj, or fij, divided by the

Negotiating

Tasks Failed

Tasks Completed

Waiting

MonitoringDiscovering

Initial

State

 12

sum of the frequencies of transitions from si to all other states sk that si could transition to, where k ranges

from 1..n and n is the number of states (7).

 (3.1)

Repeating computation (1) for all i, j = 1…n resulted in an n × n transition probability matrix (TPM) that

succinctly summarized the dynamics of the grid system. Extensive simulation of the large-scale grid system

revealed that system dynamics change over time, and for this reason we subdivided the simulated time

duration into equal time periods and computed Eq. (3.1) for each period. This subdivision enabled the

Markov model to capture changes in system behavior over time, or to be considered as piecewise

homogenous [41]. A time period duration of 2 h, or 7200 s was chosen as the duration of a subdivided time

period. Thus, a simulated 8 h duration had 4 time periods, plus a fifth for clean-up operations. For each time

period, (1) was used to compute a separate TPM. The weighted average of these five TPMs, or the summary

matrix, is shown in Fig. 3.2(a). Following this, we repeated these observations for the large-scale grid

simulation over a 640 h period, which resulted in 321 time period TPMs, summarized in Fig. 3.2(b). (Note:

The complete set of 5 time period TPMs for the 8 h duration appear in [42], while the complete set of 321

TPMs can be obtained from [43] or upon request from the authors.)
(a) (b)

Figure 3.2 (a, b). Summary TPM for the grid computing system: (a) over 8 h duration (plus a 2 h clean-up period), and (b) over 640

h duration in near steady-state conditions. Both summary TPMs were computed as weighted averages of 5 (a) and 321 (b) TPMs

for equal time period divisions of 2 h each (7200 s). To compute the summary TPMs, the individual pij from the time period

matrices are weighted by the relative number of transitions in their respective period.

A well-known use of Discrete Time Markov chain is to simulate change in a dynamic system over time in

discrete time steps. To do this, the system state is represented as a vector v, where each element represents the

proportion of tasks in one of the seven states. A discrete time step represents a fixed time duration, which in

our experiments was chosen to be 85 s, or h = 85 (thus, a time period of duration dperiod = 7200 s has G=

dperiod /h or 85 time steps). To advance the system state one time step, a vector vm-1, which represents the

system state at time step m-1, is multiplied by the TPM for the applicable time period tp(m) =integral

value ((m-1)/G) + 1 to produce a new system state vm. This operation is represented by Eq. (3.2) below,

 vm = vm-1 ∙ . (3.2)

To perform this operation over a simulated duration consisting of many time steps, we start with state v0,

which represents an initial system state with a value of 1.0 for the Initial State and 0 for all others (e.g, all

tasks are in the Initial State). Assuming k time periods, Eq. (3.2) is repeated for G × k time steps until the end

n

k ik

ij

ij

f

f
p

1

1.0000000Fail

01.000000Comp

00.00800.99170.0003000Mon

0.000100.19610.28820.01820.49740Ngt

0000.29310.67140.03550Disc

0.0046000.09180.06730.83630Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00800.99170.0003000Mon

0.000100.19610.28820.01820.49740Ngt

0000.29310.67140.03550Disc

0.0046000.09180.06730.83630Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial Initial Wait Disc Ngt Mon Comp Fail

Initial 0.9997 0 0.0003 0 0 0 0

Wait 0 0.6292 0.0252 0.3441 0 0 0.0015

Disc 0 0.0766 0.6133 0.3101 0 0 0

Ngt 0 0.0378 0.0015 0.0637 0.8710 0 0.0259

Mon 0 0 0 0.0004 0.9883 0.0113 0

Comp 0 0 0 0 0 1.0 0

Fail 0 0 0 0 0 0 1.0

 13

of the total simulated duration to produce the end state vector v(G x k). The result of this process, which we

refer to as a Markov simulation is shown in Fig. 3.3(a) for the 8h simulated duration and in Fig. 3.3(b) for 640

h duration which approached steady-state conditions. In Fig. 3.3 (a, b), the progress of tasks completed and

tasks failed is compared to the results in the large-scale simulation. As these figures show, the Markov

simulations provide reasonable approximations of the large-scale simulations that they are models of.
 (a) (b)

Figure 3.3 (a, b). Comparison between large-scale and Markov simulations of the change in the proportion of tasks completed and

tasks failed in grid computing system for: (a) 8 h time duration (plus a 2 h clean-up period) in which Markov simulation covered

421, 85 s time steps; and (b) 640 h duration in which Markov simulation covered > 27000 time steps.

3.2 The Markov Chain Model the Abilene System

The Abilene system Markov model is derived from a large-scale model of the Abilene network [40] that

simulates the performance of a network using alternative congestion control algorithms. The large-scale

model simulates in detail how different congestion control algorithms affect the transmission of data flows

from the time the flows are submitted to the network to the time they either complete or fail. The procedures

used in deriving the Abilene system Markov model were the same as those described in Sec. 3.1 for the grid

system Markov model. Figure 3.4 shows the Abilene system Markov model as a state diagram for a single

data flow. This state model describes how a single flow may progress through different congestion control

regimes. This state model consists of 8 states. As in the grid system, prior to submission, flows reside in an

Initial State. Flow submission results in entering a Connecting state, during which a source to sink

connection is established. Once connected, flows enter an Initial Slow Start (ISS) state from which they may

either complete or enter states representing three additional congestion control regimes: Normal Congestion

Avoidance (NCA), Alternate Congestion Avoidance (ACA), and Slow Start (SS). Flows may re-enter any of

these three states according to criteria described in [40] until they complete (or fail). Flows may fail from the

Connecting state, NCA, or SS, which we do not show in the figure for the sake of simplicity. Like the grid

system model, the Abilene system Markov model is an absorbing chain.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s
k
s
 i
n

 S
ta

te

Time Step

Tasks complete (large-scale simulation)

Tasks complete (Markov simulation)

Tasks failed (large-scale simulation)

Tasks failed (Markov simulation)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 o

f T
a

k
s

in
 S

ta
te

Time Step

Tasks complete (Markov simulation)

Tasks Complete (large-scale simulation)

Tasks failed (Markov simulation)

Tasks failed (large-scale simulation)

 14

Figure 3.4. State model of Abilene network system

To obtain probabilities of transition, the procedure described in Sec. 3.1 was repeated using a large-scale

simulation of the Abilene system which, in this case, executed for a simulated 1500 s. Again, the Markov

model was made to be piecewise homogenous by subdividing the 1500 s duration into 5 equal time periods of

300 s each. Here, a much smaller time step of 0.05 s was chosen. The resulting summary TPM is shown in

Fig. 3.5. The Markov simulation of the Abilene system and its comparison with the related large-scale

simulation is shown in Fig. 3.6.

Figure 3.6 shows that, as before, the Markov simulation is able to closely approximate the large-scale

simulation.

Initial Conn ISS NCA ACA SS Comp Fail

Initial 0.999834 0.000167 0 0 0 0 0 0

Conn 0 0.816360 0.183574 0 0 0 0 0.000067

ISS 0 0 0.887686 0.029721 0.005570 0.006451 0.070572 0

NCA 0 0 0 0.963576 0.000132 0.014755 0.021526 0.000014

ACA 0 0 0 0.009739 0.853708 0.033566 0.102988 0

SS 0 0 0 0.096942 0.003969 0.794193 0.104896 0.000002

Comp 0 0 0 0 0 0 1.0 0

Fail 0 0 0 0 0 0 0 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 F

lo
w

s
C

o
m

p
le

te

Time Step

Abilene large-scale simulation

Markov chain simulation

0

0.0001

0.0002

0.0003

0.0004

0.0005

P
ro

p
o

rt
io

n
 F

lo
w

s
F
a

il
e

d

Time Step

Figure 3.5. Summary stochastic TPM for Abilene network

Markov chain. This TPM is a weighted average of 5 TPMs

for equal time period divisions of 300 s duration. Individual

pij from the five periods are weighted as described for Figure

3.2 (a).

Figure 3.6. Comparison between Abilene network large-scale

simulation and Markov simulation of comparative progress of

flows completed and flows failed (see inset) over 1500 s

duration. Results show that the Markov simulation provides a

very close approximation of the large-scale simulation.

Initial Slow Start (ISS)

Normal Congestion Avoidance (NCA)

Alternate Congestion Avoidance (ACA)

Slow Start (SS)

Connecting (CONN)

Initial

State

Flows Completed

 15

3.3 The Perturbation Algorithm for Predicting Performance Degradations

Our work in [7] demonstrates that a suitably perturbed Markov chain model can replicate (with good

agreement) specific scenarios in the large-scale grid computing system simulation in which performance

degrades significantly. However, we also found that it is difficult to identify a set of state transitions and their

respective perturbations that capture such a scenario. We found that some form of search must be undertaken

of a large space of possible perturbations in order to find the state transitions and perturbations that represent

scenarios in which system performance degrades. In this section, we provide an overview of the algorithm

described in [7].

The perturbation algorithm executes a limited, brute-force search that is restricted in order to conserve

resources while exploring a reasonable range of alternatives. The algorithm predicts approximate changes in

system performance that occur as specific state transition probabilities are gradually altered. The output of the

algorithm is a set of Markov simulation results that identify, or predict, situations where system performance

degrades in response to changes to a specific set of transition probabilities. These predictions can be tested by

comparing them with large-scale grid simulations.

The algorithm permits simultaneous perturbation of combinations of two rows in a TPM for a Markov

chain in order to capture situations where inter-row, i.e., inter-state, dependencies exist. The algorithm

proceeds by incrementally raising and lowering all feasible combinations of non-zero state transitions in these

rows. To begin, a user must first select a state to perturb, which is represented by the primary row, r. Each

row element, or column, in this row with a probability of transition greater than zero is selected in turn for

incremental increase and designated as a primary increase column c
↑
. The primary increase column c

↑

corresponds to a state being transitioned into from the state corresponding to the row r. During the

procedure, the transition probability of c
↑

is incrementally raised. To offset this increase, a row element

corresponding to a different state is selected as a primary sink column, c
↓
. The row element c

↓
is decreased by

a portion of the increase to c
↑
, where the portion is determined by the weight w ≤ 1. The remainder of the

increase to c
↑
 is offset by decreasing any remaining non-zero elements of r by amounts that are proportional

to their non-zero values. In this way the changes c
↑
, c

↓
, and the non-zero elements of row r are made to

ensure that the individual transition probabilities of all elements in the r still sum to 1.

The second row to be perturbed, or secondary row s, is determined on the basis of which c
↑
 has been

selected. The procedure for perturbing the secondary row s is simpler than the procedure for the primary row,

and the secondary row elements are perturbed by larger amounts. In s, each row element with a value greater

than 0 is in turn designated as a secondary increase column, d
↑
. The row element d

↑
 is raised by the amount

msec to a predetermined maximum. In the perturbation of the secondary row, the decrease is distributed

proportionally to all other row elements having non-zero transition probabilities. A set of values {r, c
↑
, c

↓
, w,

s, d
↑
, msec} is considered a perturbation combination, which represents a set of state transition probabilities to

be altered in order to explore alternative execution paths in the Markov simulation.

To investigate the various perturbation combinations, the user also selects the perturbation limit L to limit

how far transition probabilities can be perturbed (a separate Lr and Ls may be chosen for r and s, if desired).

The user must also select the incremental amounts, vr and vs, by which c
↑
and d

↑
 are raised respectively. These

decisions define the extent and granularity of the perturbation (note, vs is used to determine msec mentioned

above). The algorithm proceeds by enumerating all feasible perturbation combinations. For each combination,

an iteration is performed to raise c
↑
and d

↑
 by the designated increments (and correspondingly lower the other

elements) across all time-period matrices until L is reached in each time period matrix. The Markov

simulation is executed for each incremental perturbation of each perturbation combination, and the result is

recorded. This set of results can then be examined to identify those perturbation combinations for which

systematic changes to transition probabilities lead to performance degradations.

Fig. 3.7 illustrates an example of one such drastic performance degradation identified by the perturbation

algorithm in both the 8 h and 640 h cases. These figures show the impact of perturbing a single combination

 16

(blue curves) in which lowering the probability of transition to 0 for Negotiating  Monitoring causes the

proportion of tasks completed to also fall 0. In both the 8 h and 640 h cases, the Markov simulation

predictions are borne out when the large-scale simulation, which is also altered to behave aberrantly (red

curve) so that negotiations that would otherwise succeed instead fail and task execution is prevented. In these

experiments, the large-scale simulation served as a proxy for a real-world system.

 (a) (b)

Figure 3.7 (a,b). Perturbation of Negotiating State (r=4) in grid system Markov chain model to predict effect of reducing

probability of transition from Negotiating  Monitoring in (a) the 8 h case and (b) the 640 h case for the grid computing system.

Proportion of tasks completed in the large-scale (red curve) and Markov simulations (blue curves) is shown for (a) and (b). The

probability of transition from Negotiating to Waiting is raised (c
↑
 = Waiting) and probability of transition from Negotiating to

Monitoring lowered (c
↓
 = Monitoring, w = 0.8). The secondary perturbation row is s= Waiting. For (a) Lr=0.5 and vr = 0.01; for (b)

Lr=1 and vr = 0.01. In both cases Ls=0.25 and vs = 0.0625.

Although Fig. 3.7 shows that the decrease in proportion of tasks completed is a straight forward

consequence of this perturbation, there is a less obvious persistence in the high rate of tasks completed as the

probability of transition from Negotiating  Monitoring is steadily decreased. In the large-scale simulation,

both figures show that the rate of tasks completed remains relatively high until the decrease in probability of

transition nears 0; then the proportion of tasks completed declines sharply. This pattern is in fact predicted by

the Markov simulation.

Figure 3.8. Perturbation of Connecting State (r=2) in the Abilene Markov chain model to predict effect of the reducing the

probability of transition to 0 for Connecting Initial Slow Start (c
↓
 = 3, w = 1), while raising probability of Connecting self-

transition (c
↑
 = 2). No secondary perturbation row was chosen. The effect of this perturbation on proportion of flows completed is

shown. Note: the probability of Connecting self-transition is increased to 1, making this a trap state situation as well.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.82
0.84

0.86
0.88

0.9
0.92

0.94
0.96

0.98
1

Decrease in probability of transition from Connecting to Initial Slow Start

P
ro

p
o

rt
io

n
 F

lo
w

s
 C

o
m

p
le

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s
k
s
 C

o
m

p
le

te

Decrease in Probability of Transition from Negotiating to Monitoring

Large-scale Simulation

Secondary row perturbation of Waiting to Discovery

increase of 0.063

increase of 0.125

increase of 0.188

increase of 0.25

Secondary row perturbation of Waiting to Negotiating

increase of 0.063

increase of 0.125

increase of 0.188

increase of 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s

k
s

 C
o

m
p

le
te

Decrease in Probability of Transition from Negotiating to Monitoring

 17

For the Abilene network system, Fig. 3.8 shows a similar trend in the proportion of flows completed when

the probability of transition from Connecting  Initial Slow Start is reduced to 0. Here, the perturbation also

causes the proportion of flows completed to decline to 0. This scenario describes a somewhat obvious real-

world situation where flows are unable to connect. As in the case of the grid system, the proportion of flows

complete remains relatively high until the probability of transition from Connecting  Initial Slow Start

approaches 0, then it drops sharply.

3.4 Efficiency of the Perturbation Algorithm

Using the perturbation algorithm, a complete perturbation of one matrix row r would require examining O

(ab
2
(b – 1)) perturbation combinations. In this formula, b is a constant that indicates the expected number of

c
↑
 (or d

↑
) column in the row being perturbed, or the branching factor. The constant a is the number of weight

values that the primary sink element may take on. If L/vr is the number of incremental increases for the

primary row r and L/vs is the number increases for row s, then the number of executions, E, of the Markov

simulation needed to explore all perturbation combinations for one row is

 E = O (Lr/vr ∙ (Ls/vs + 1) ∙ a(b
3
 − b

2
)), (3.3)

if one assumes that that there is no possibility of self-transition, so that c
↑
≠ s is always true. However, if c

↑
= s,

then E is slightly smaller:

 E = O (Lr/vr ∙ (Ls/vs + 1) ∙ a(b
3
 − 2b

2
 − b)). (3.4)

The complete exploration of a TPM having a order d is thus O (d * E), which grows polynomially with

respect to the branching factor but linearly with respect to matrix size, or the number of states. In practice,

neither figure will be completely accurate since the branching factor is not constant for all states.

The complete exploration of the grid system Markov chain in the 8 h scenario required approximately 56

min, while the 640 h scenario required 15.4 h. This, however, is favorable in comparison with the running

time of the large simulation which took 1 week and 5.2 weeks respectively. For the 8 h scenario, large-scale

simulation needed about two orders of magnitude more time; in the 640 h case, large-scale simulation

required 1.5 orders of magnitude more time, though it also included a number of extra runs to test extreme

conditions (discussed further in Sec. 5). For the Abilene system problem, execution of the perturbation

algorithm to completely perturb rows 2 to 6 of the related Markov chain TPMs required 27.3 h, an effort that

involved 330 perturbation combinations and almost 100 000 executions of the Markov simulation. Still, this

is an impressive improvement over the Abilene system large-scale simulation where a single execution

required 7.3 h! In Sec. 5, we provide a complete summary of the results of these simulations and their

predictions of performance degradation in the systems they model.

Despite these significant gains in comparative efficiency, it is clear that the running time of the Markov

simulation would be very substantial for significantly larger matrices than those discussed above. Further, it

might impose on the analyst (whether automated or human) quite a burden in analyzing large amounts of

output to identify situations that predict performance degradations and other behavioral anomalies. Thus we

seek more efficient methods to identify areas of the Markov chain TPM where perturbation leads to

performance degradation. This is the subject of the subsequent sections in this report, in which we describe

our work on two methods for this purpose. In Secs. 4 and 5, we show how generation of minimal s-t cut sets

that disconnect all paths between an initial state and a desired absorbing state can be used to identify critical

state transitions, which if perturbed, can cause severe performance degradations. We show that generation of

such minimal s-t cut sets finds all areas of the Markov chain problems described above where perturbation

causes the proportion of tasks to fall to 0, but at a much smaller cost than the perturbation algorithm. We then

 18

present preliminary results indicating that this approach can be effective for larger, more complex Markov

chains and their TPMs. In Sec. 7, we show how the Spectral Expansion Theorem can be used as an

alternative to Markov simulations described earlier by the evaluation of analytical formulae. Further, we

show that changes in the leading eigenvector of the transient part of the TPM correlates reasonably well with

performance changes due to state transition perturbations. While not perfect, we claim these changes can be

used as to distinguish critical perturbations (i.e. those that lead to significant performance degradation) from

non-critical.

 19

4. Identifying Critical System Execution Paths and Minimal Cut Set Analysis

In this section, we describe a method based on graph theory concepts for identifying minimal s-t cut sets

between an initial state and desired absorbing state. The minimal s-t cut sets consist of critical state

transitions, which if perturbed, are likely to lead to system performance degradations. In Sec. 5, we see that

this method is capable of finding the same areas of performance degradation as the perturbation algorithm

overviewed in Sec. 3, but at a small fraction of the computational cost.

4.1 Finding State Transition that Disconnect Paths to Absorbing States

In basic graph theory, a graph G (V, E) consists of a set of vertices V connected by edges from the set E. A

path is a sequence of edges that connects two vertices in a graph. It is easy to see that a Markov chain can be

represented as a directed graph, in which the set of vertices V corresponds to the set of states, while the set of

directed edges E correspond to transitions between states that can occur in only one direction. A path is then a

sequence of transitions that lead from one state to another. For our purposes, the most important paths are

those which lead from the initial state to an absorbing state.

Figure 4.1. Two unique non-cyclic paths (numbered and denoted by thick arrows) from the Initial State to Tasks Completed state

for grid computing system. Three single-transition s-t cuts appear as heavy bars over transitions. Trap states are denoted by T.

In the Markov chain models for the grid system and the Abilene system, the paths of interest are those that

lead from the Initial State to one of the two absorbing states: Tasks Completed or Tasks Failed. For the

remainder of this analysis we will consider only the Tasks Completed absorbing state. To render the analysis

tractable, we consider only paths that are non-cyclic. For example, Fig. 4.1 shows two paths through grid

system Markov chain from the Initial State to the Tasks Completed state. For a small Markov chain, a well

known algorithm for finding the shortest non-cyclic paths between two vertices in a graph, such as given in

[38], can be modified to do a breadth-first search and enumerate all paths between the Initial and Tasks

Completed state (we will return to the question of the tractability of this computation below). By finding one

or more state transitions that are common to all paths from the Initial State to the Tasks Completed state, it is

possible to disconnect, or block, all paths to the Tasks Completed state by removing these common

transitions—a condition which could obviously adversely affect system performance. These common

transitions identify areas of the Markov chain that are sensitive to perturbation. By reducing the transition

probability values of these common transitions to 0, the flow of tasks to the Tasks Completed state is also

reduced to 0.

Negotiating

Tasks Failed

Tasks Completed

Waiting

MonitoringDiscovering

Initial

State

1,2

1

2

2

1,2

1,2

T

T

T

 20

In discrete mathematics, a set of one or more edges, which if removed, disconnects all paths between two

vertices s and t is often referred to as an s-t cut set, as for example [32]. An s-t cut set is defined to be a

minimal s-t cut set if removal of any edge from the cut set causes s and t to be reconnected. In Fig. 4.1, the

state transition Initial  Discovering, by itself, constitutes a minimal s-t cut set consisting of one edge. This

transition is common to all paths from the Initial State (s) to the Tasks Completed state (t). If the transition is

removed, all paths to the Tasks Completed state would be disconnected. In this report, minimal s-t cut sets

with a single member will be referred to as single-transition s-t cuts and are an important special case of

interest, as illustrated further below. We will return to the topic of minimal s-t cut sets consisting of multiple

transitions shortly.

4.2 Using Single-Transition s-t Cuts to Analyze Markov Chain Models

In Fig. 4.1, there are three single-transition s-t cuts: Initial  Discovering, Negotiating  Monitoring, and

Monitoring  Tasks Completed. Figure 3.7 (a, b) shows graphically the result of reducing the probability of

transition for Negotiating  Monitoring to 0 in both the 8 h and 640 h cases. When this occurs, the

proportion of tasks that reaches the Tasks Completed state drops to 0 in both cases. The same result occurs

when the other two transitions identified as single-transition s-t cuts, Initial  Discovering and Monitoring

 Tasks Completed, are similarly perturbed, as discussed further in [7]. As will be described in Sec. 5, an

exhaustive application of the perturbation algorithm to the Waiting, Discovering, Negotiating, and

Monitoring states corroborated that these three single-transition s-t cuts are the only state transitions, which if

individually reduced to 0, also cause the proportion of tasks reaching the Tasks Completed state to fall to 0.

 In the Abilene system, there are two single-transition s-t cuts: Initial  Connecting and Connecting 

Initial Slow Start, shown in Fig. 4.2. Figure 3.8 shows the result of reducing the probability of transition for

Connecting  Initial Slow Start to 0, which results in the proportion of flows reaching the Flows Completed

state to fall to 0. Again, Sec. 5 presents results to corroborate that these single-transition s-t cuts are the only

state transitions, which if individually reduced to 0, also cause the proportion of flows completed to fall to 0.

Figure 4.2. An example of 4 unique non-cyclic paths (denoted by thick arrows) from the Initial State to the Flows Completed state

for the Abilene network system. There are 16 possible paths, of which 4 are shown. Two single-transition s-t cuts appear as heavy

bars over transitions. Trap states are denoted by T.

Initial Slow Start (ISS)

Normal Congestion Avoidance (NCA)

Alternate Congestion Avoidance (ACA)

Slow Start (SS)

Connecting (CONN)

Initial

State

Flows Completed

1-4

1-4

1-3

4

2-3

1

2

3

3

T

T

 21

 Thus for both the grid system and the Abilene System, it was possible to use a simple algorithm for

enumerating all paths derived from [38] to identify state transitions that were highly sensitive to perturbation

and that would have a dramatic effect on system performance. Excluding transitions out of the initial state,

the single-transition s-t cuts correspond to obvious critical real-world processes in both the grid and Abilene

systems. In the grid system, the single-transition s-t cuts for Negotiating  Monitoring and Monitoring 

Tasks Completed are clearly related to critical steps in the process of allocating resources to, and executing,

tasks. More trivially in the Abilene network, the Connecting  Initial Slow Start single-transition s-t cut

represents the obvious consequences of failing to establish a connection. We next proceed to the related topic

of trap states, which like single-transition s-t cuts, lie on all paths between the initial state and a desired

absorbing state, and can have similar impacts of system performance in Markov chains.

4.3 Identifying Trap States as Potential Sources of Drastic Performance Degradation

In the discussion of the perturbation algorithm, reducing probabilities of transition out of one state requires

raising the sum of one or more probabilities of transition from that state to different states by an equal

amount. The ―to state‖ state(s) which will receive increased probabilities of transition may be different from

the ―from state‖ or may be the same. In the latter case, when the ―to‖ and ―from‖ states are the same, the

process remains in the same state, or merely transitions back to itself–which we refer to as a self-transition
2
.

If a self-transition probability is raised so that it approaches 1, or even equals 1, the process remains in the

―from state‖ for a prolonged time. In this case, the ―from state‖ effectively becomes a trap state for processes.

A trap state is distinguished from a permanent absorbing state, such as Tasks Completed, because the self-

transition probability of a trap state may vary, while the self-transition probability of an absorbing state is

always 1.0.

 (a) (b)

Figure 4.3 (a, b). Perturbation of Discovering State (r= Discovering) to predict effect of increasing probability of self-transition

Discovering  Discovering (c
↑
 = Discovering) in (a) the 8 h case and (b) the 640 h case for the grid system model. Proportion of

tasks completed in the large-scale and Markov simulations shown for (a) and (b). Probability of transition from Discovering to all

other states lowered to 0. Secondary perturbation row, s=Monitoring (result is the same for all secondary perturbations). For (a)

Lr=0.5, vr = 0.01, Ls=0.25 , and vs = 0.0625; for (b) Lr=0.75, vr = 0.01, Ls=0.4 and vs = 0.2.

 An example of such a trap state and its impact on system performance for the grid system is shown in Fig.

4.3 when the Discovering state is made a trap state in the 8 h and 640 h cases. Tasks never leave the

Discovering state, so that they cannot proceed to other states and finish. The perturbation described for the

2
 Self-transition probabilities are determined using (1) by observing processes that remain in a state longer than one time step (85 s

in the grid system case and 0.05 s in the Abilene case. That is, si  si, or fii is tabulated for processes whose duration in a state

exceeds a time step.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
ti

on
 T

as
ks

 C
om

pl
et

e

Increase in probability of Discovering self-transition

Large-scale simulation

Secondary row perturbation of Negotiating to Monitoring

increase 0.063

increase 0.125

increase 0.188

increase 0.250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s

k
s

 C
o

m
p

le
te

Increase in probability of Discovering self-transition

Large-scale simulation

Secondary perturbation of Negotiating to Monitoring

increase 0.2

increase 0.4

 22

Abilene system in Fig. 3.8 can also be accomplished by raising the Connecting self-transition to 1. Making

the Connecting state a trap state prevents flows from reaching the data transmission phase (in which they

enter congestion control states) and then finishing. Trap states may be easily identified as being states that are

common to all paths between an initial state and an absorbing state. Hence, their removal also effectively

disconnects all paths between the vertex s, initial state, and the vertex t, the absorbing state (Tasks Completed

in the grid model or Flows Completed in the Abilene model). In the grid system model, the trap states are

Initial, Discovering, Negotiating, and Monitoring, shown in Fig. 4.1; for the Abilene model, these are Initial,

Connecting, and Initial Slow Start, shown in Fig. 4.2.

 As Sec. 5 will show in more detail, the use of path enumeration to find single-transition s-t cuts and trap

states achieves the same goal as our original perturbation algorithm [7] but at less cost. However, the

approach is insufficient for analysis of substantially larger Markov chains, as we describe in Sec. 6.

4.4 Minimal s-t Cut Sets With Multiple Transitions

A minimal s-t cut set between the initial and absorbing states that consists of more than one state transition

will be referred to in this report as a multiple-transition s-t cut. In such a minimal s-t cut set on a Markov

chain graph, it is necessary to lower probabilities of transitions to 0 for all state transitions that are members

of the cut set in order to radically affect system performance. Figure 4.4 shows two multiple-transition s-t cuts

for the grid computing system Markov chain.

Figure 4.4. Two multiple-transition s-t cuts for the grid computing system: (a) Discovering  Negotiating and Discovering 

Waiting; and (b) Discovering  Negotiating and Waiting  Negotiating.

In the Abilene system Markov chain, there are 8 possible multiple-transition s-t cuts listed in Table 4.1, one

of which is shown as an example in Fig. 4.5. As in Fig. 4.1 and Fig. 4.2 for single-transition s-t cuts, it is easy

to see that the two multiple-transition, minimal s-t cut sets in Fig. 4.4 disconnect the Initial State from the

Tasks Completed state, while in Fig. 4.5, the sample multiple-transition minimal s-t cut set also disconnects

the Initial State from the Flows Completed state.

Negotiating

Tasks Failed

Tasks Completed

Waiting

MonitoringDiscovering

Initial

State

(a)

(b)

 23

Table 4.1. Complete list of 10 minimal s-t cut sets for Abilene system Markov chain. Two of these minimal s-t transition cut sets

are single s-t transition cuts (1 and 2), while 8 are multiple-transition s-t cuts (3-10).

Figure 4.5. Example of multiple-transition, minimal s-t cut set for the Abilene network system

 The concept of an s-t cut set can be extended to include vertices whose removal disconnects all paths from s

to t. Such a set of elements (edges and vertices) is sometimes known as an s-t separating set; if this set is

Initial Slow Start (ISS)

Normal Congestion Avoidance (NCA)

Alternate Congestion Avoidance (ACA)

Slow Start (SS)

Connecting (CONN)

Initial

State

Flows Completed

Minimal s-t cut sets for
Abilene Network System

1 InitConnected

2 ConnectedISS

3 ISSNCA, ISSACA, ISSSS, ISSFlows Completed

4
ISSFlowsCompleted, NCAFlowsCompleted,
ACAFlowsCompleted, SSFlows Completed

5
ISSACA, ISSSS, ISSFlows Completed, NCAACA,
NCASS, NCAFlows Completed

6
ISSNCA, ISSSS, ISSFlows Completed, ACANCA,
ACASS, ACAFlows Completed

7
ISSNCA, ISSACA, ISSFlows Completed, SSNCA,
SSACA, SSFlows Completed

8 ISSACA, ISSFlows Completed, NCAACA,
NCAFlowsCompleted, SSACA, SSFlows Completed

9 ISSSS, ISSFlows Completed, NCASS, NCAFlows
Completed, ACASS, ACAFlows Completed

10 ISSNCA, ISSFlows Completed, ACANCA,
ACAFlowsCompleted, SSNCA, SSFlows Completed

 24

minimal, then it is a minimal s-t separating set [44]. In the context of a discrete time Markov chain, vertices,

whose removal results in disconnection of all paths to a desired absorbing state, correspond to trap states

whose self-transition probability approaches 1. In the grid system Markov model, the trap states Initial,

Discovering, Negotiating, and Monitoring are actually minimal s-t separating sets with a single vertex. In the

Abilene network model, Initial, Connecting, and Initial Slow Start also fall into this category. In the grid

system Markov chain graph, there is one combination of edges and vertices that disconnect all paths from the

initial to the absorbing states, e.g. state transitions and states whose probabilities of self-transition go to 1: the

state transition from Discovering  Negotiating and the state, Waiting. In the Abilene system model, 47 such

combinations were found.

 It is likely that multiple-transition s-t cuts and multiple-transition separating sets are more common in larger

Markov chain problems. They cannot be easily found using simple approaches such as path enumeration and

require more powerful algorithms. In Sec. 6, we provide an algorithm for finding multiple-transition s-t cuts

that is appropriate for large Markov chains (which was actually used to compute the multiple-transition s-t

cuts in Fig. 4.4 and Fig. 4.5). But first, in Sec. 5, we verify that minimal s-t cut sets, both single- and

multiple-transition, can be used to identify areas in a Markov chain where perturbations lead to performance

degradations.

 25

5. Results of Minimal Cut Set Analysis

This section shows that identification of minimal s-t cut sets, including single-transition and multiple-

transition s-t cuts, can be used to predict which state transitions, if perturbed, are most likely to adversely

impact system performance. We first verify this conclusion by comparing minimal s-t cut sets for paths

between the Initial State and Tasks Completed states in the grid system Markov chain model against both the

results produced by the perturbation algorithm and the results of the large-scale grid simulations. We then

verify this conclusion by comparing minimal s-t cut sets for paths between the Initial and Flows Completed

states in the Abilene system Markov chain model against the results produced by the perturbation algorithm.

The conclusions are verified by showing the correspondence between specific minimal s-t cut sets and state

transitions which, if perturbed, cause dramatic declines in system performance. We assess the potential

savings in computation time provided by this new method in analyzing both the grid and Abilene systems.

For both problems, minimal s-t cut sets could be found either through the path enumeration algorithm

adapted from [38] discussed earlier or through the node contraction algorithm, which will be described in

Sec. 6.

 In both cases, the perturbation algorithm is applied only to the primary row; no secondary row perturbation

is used. This permits better focus on the perturbation algorithm results that involve states and state transitions

of interest. Where appropriate, accentuating or mitigating effects of secondary row perturbation are discussed

(see [7] for the full results).

5.1 Grid System

In this section, we verify that all minimal s-t cut sets for paths between the Initial State and Tasks Completed

states in the grid system Markov chain correspond to state transitions, which if suitably perturbed using the

perturbation algorithm described in Sec. 3, can adversely impact system performance. Table 5.1 shows the

results of the application of the perturbation algorithm overviewed in Sec. 3.1 to the grid system Markov

model for the 8 h grid system case, while Table 5.2 shows the same for the 640 h case. Specifically, the tables

show the results of perturbing rows, r, corresponding to the states Waiting, Discovering, Negotiating, and

Monitoring, by raising the probability of transition from the states designated as r to states that correspond to

primary increase columns c
↑
, while lowering the probability of transition from, r, to other states that are

designated as sink columns, c
↓
. Both tables show that in all cases where application of the perturbation

algorithm causes declines in the proportion of tasks completed that approach 100% (i.e., the proportion of

tasks completed approaches 0
3
), a correspondence can be drawn to the existence of a single-transition s-t cut.

Perturbation algorithm results that were verified by the large-scale grid simulation are in shaded cells.

5.1.1 Correspondence of Single-transition s-t Cuts to Perturbation Algorithm Results

 We first consider how well single-transition s-t cuts for paths between the Initial State and Tasks

Completed states in Fig. 4.1 correspond to results produced by the perturbation algorithm in which the

proportion of tasks completed is reduced to 0. The first case occurs when r = Negotiating. Here, Tables 5.1

(c) and 5.2 (c) show that designating Monitoring as the sink column c
↓
, i.e., lowering the probability of

Negotiating  Monitoring to 0, resulted in the proportion of tasks completed approaching 0 (a percentage

decline that approaches 100%), which was verified by the large-scale simulation. This result occurs

regardless of whether the state transition probability for Waiting, Discovering, or Negotiating is raised, i.e.,

3
 Note that the perturbation algorithm is designed with built-in tolerances by which perturbed values approach, but do not reach,

limits of 0 or 1 within a specific number of significant digits. Hence, the actual proportion of tasks completed also approaches, but

does not equal, 0

 26

made the primary increase column, c
↑
. In this case, Fig. 4.1 shows that the state transition Negotiating 

Monitoring is a single-transition s-t cut.

Table 5.1. Correspondence between cases where application of the perturbation algorithm results in the proportion of tasks

completed approaching 0 and the existence of single-transition s-t cuts for 8 h grid system simulation. The table shows the

proportion of tasks completed and percent change when perturbation algorithm is applied to rows, r, of the summary TPM in Fig.

3.2 (a) to decrease the probability of transition to 0 for the sink column, c
↓
, or the state transition r  c

↓
, while increasing the

probability of transition in the primary increase column, c
↑
, or r  c

↑
 with a sink weight = 1. Secondary perturbation is excluded.

The right-most column indicates if single-transition s-t cut exists for r  c
↓

in Fig. 4.1. In all cases where perturbation causes

proportion of tasks completed to approach 0, a positive correspondence exists with a single-transition s-t cut. Shaded cells represent

perturbations where the change to the proportion of tasks completed was verified by large-scale simulation. Note: trap states are

discussed separately below.

 In Fig. 4.1, transition corresponds to

 aNegotiating to Monitoring single-transition s-t cut

 bMonitoring to Completed single-transition s-t cut

 cInitial to Discovering single-transition s-t cut

 * Note that that the perturbation described in this row occurs even though the transition from Monitoring  Negotiating is not

directly perturbed. See text above for the explanation.

 Similarly, when r = Monitoring, Tables 5.1 (d) and 5.2 (d) show that designating Tasks Completed as the

sink column c
↓
, i.e., lowering the probability of Monitoring  Tasks Completed to 0, creates the obvious

result where the proportion of tasks completed also approaches 0 (a percentage decline that approaches

100%). Large-scale simulation verified that this result occurs regardless of what state transition probability is

raised, i.e., made the primary increase column, c
↑
. Again, Fig. 4.1 shows that the state transition Monitoring

 Tasks Completed is a single-transition s-t cut. Note also that lowering the probability of Monitoring self-

transition (i.e., designating it the sink column c
↓
), while raising the transition Monitoring  Negotiating, also

resulted in the proportion tasks completed approaching 0. This happens because the probability of transition

for Monitoring  Tasks Completed is initially very low (0.008 for the 8 h case and 0.009 for the 640 h case.

See Fig. 3.2. Thus, the probability of Monitoring self-transition must be very high (over 0.99 in both parts of

Fig. 3.2) to ensure that all tasks remain in the Monitoring state long enough to have an opportunity to

transition to Tasks Completed. Thus, a perturbation to reduce the probability of Monitoring self-transition to

0 has the effect of preventing tasks from transitioning to Tasks Completed—and is equivalent to a reduction

of the probability of transition for Monitoring  Tasks Completed.

(c) r = Negotiating

Waiting Discovering 0.974 +1.83% No

Waiting Negotiating 0.985 +3.03% No

Waiting Monitoring 1.000 +4.53% No

Discovering Waiting 0.954 +0.09% No

Discovering Negotiating 0.957 +0.11% No

Discovering Monitoring 0.967 +1.22% No

Negotiating Waiting 0.923 -3.63% No

Negotiating Discovering 0.941 -1.48% No

Negotiating Monitoring 0.988 +3.23% No

Monitoring Waiting 0.000 -99.98% Yesa

Monitoring Discovering 0.000 -99.98% Yesa

Monitoring Negotiating 0.000 -99.98% Yesa

(d) r = Monitoring

Negotiating Monitoring 0.982 +2.94% No

Negotiating Tasks Comp 0.982 +3.04 No

Monitoring Negotiating 0.028 -97.04% Yesb, *

Monitoring Tasks Comp 0.980 +2.84 No

Tasks Comp Negotiating 0.001 -99.93% Yesb

Tasks Comp Monitoring 0.002 -99.83% Yesb

(b) r = Waiting

Sink
column (c↓)

Primary
increase
column (c↑)

Prop. Tasks Completed
and % change when
prob. (r c↓) 0

Single-
transition
s-t cut exists

Waiting Discovering 0.974 +2.05 No

Waiting Negotiating 0.981 +2.59 No

Discovering Waiting 0.937 -1.69 No

Discovering Negotiating 0.963 +0.59 No

Negotiating Waiting 0.818 -14.55 No

Negotiating Discovering 0.939 +1.70 No

(a) r = Discovering

Sink
column (c↓)

Primary
increase
column c↑)

Prop. Tasks Completed
and % change when
prob. (r c↓) 0

Single-
transition s-t
cut exists

Waiting Discovering 0.957 +0.07 No

Waiting Negotiating 0.959 +0.42 No

Discovering Waiting 0.939 -1.50 No

Discovering Negotiating 0.963 +0.88 No

Negotiating Waiting 0.894 -6.39 No

Negotiating Discovering 0.651 -32.05 No

(e) r = Initial

Discovering Initial 0.0 -100.00 Yesc

Initial Discovering 0.970 +1.57 No

 27

Table 5.2. Correspondence between cases where application of the perturbation algorithm results in the proportion of tasks

completed falling to 0 and existence of single-transition s-t cuts in 640 h grid system simulation. The table shows the proportion of

tasks completed and percent change when the perturbation algorithm is applied to rows, r, of the TPM in Fig. 3.2 (b) to decrease the

probability of transition to 0 for the sink column, c
↓
, or the state transition r  c

↓
, while increasing the probability of transition in

the primary increase column, c
↑
, or r  c

↑
 with a sink weight = 1. Secondary perturbation is excluded. The right-most column

indicates if single-transition s-t cut exists for r  c
↓

in Fig. 4.1. In all cases where perturbation causes the proportion of tasks

completed to approach 0, a positive correspondence exists with a single-transition s-t cut. Shaded cells represent perturbations

where changes to the proportion of tasks completed were verified by large-scale simulation. Note: trap states are excluded.

 In Fig. 4.1, corresponds to

 aNegotiating to Monitoring single-transition s-t cut

 bMonitoring to Completed single-transition s-t cut

 cInitial to Discovering single-transition s-t cut

 * Note that that the perturbation described in this row occurs even though the transition from Monitoring  Negotiating is not

directly perturbed. See text above for the explanation.

Finally, there were situations where the proportion of tasks completed dropped significantly, but not near to 0.

For example, this occurred in Tables 5.1 (b) and 5.2 (b) when Waiting was made the primary increase

column, c
↑
, while Negotiating was made the sink column, c

↓
. Here the combined probabilities of transition of

matrix elements c
↑
 and c

↓
 approached, but did, not equal 1. Hence raising c

↑
 to the limit while lowering c

↓
 to

0 created conditions in which the flow of tasks to the Tasks Completed state was constrained but not stopped.

These correspond to the state transitions of the 2 multiple-transition s-t cuts in Fig. 4.4. Note that these

multiple-transition s-t cuts were identified by the node contraction algorithm to be described below, but not

by the path enumeration algorithm or by the perturbation algorithm described in Sec. 3.1.

5.1.2 Correspondence of Trap States to Perturbation Algorithm Results

With regard to trap states in the grid system, Table 5.3 shows the results of the Markov and large-scale

simulations for perturbations of self-transitions of individual states common to all paths between the Initial

and Tasks Completed states in the grid 8 h and 640 h cases. This table shows the effect on tasks completed of

raising the self-transition probability to 1 for four states, with the Initial State again omitted. These results

confirm that as the self-transition probability of the three trap states, Discovering (mentioned above),

Negotiating, and Monitoring, reaches 1, the proportion of tasks completed approaches 0. The fourth state,

(c) r = Negotiating

Waiting Discovering 0.937 +0.19% No

Waiting Negotiating 0.938 +0.28% No

Waiting Monitoring 0.939 +0.37% No

Discovering Waiting 0.935 +0.00% No

Discovering Negotiating 0.935 +0.00% No

Discovering Monitoring 0.936 +0.07% No

Negotiating Waiting 0.931 -0.44% No

Negotiating Discovering 0.933 -0.27% No

Negotiating Monitoring 0.938 +0.35% No

Monitoring Waiting 0.000 -99.99% Yesa

Monitoring Discovering 0.000 -99.99% Yesa

Monitoring Negotiating 0.000 -99.98% Yesa

(d) r = Monitoring

Negotiating Monitoring 0.937 +0.24% No

Negotiating Tasks Compl’d 0.938 +0.27% No

Monitoring Negotiating 0.186 -80.13% Yesb, *

Monitoring Tasks Compl’d 0.949 +1.52% No

Tasks Compl’d Negotiating 0.006 -99.40% Yesb,

Tasks Compl’d Monitoring 0.016 -98.32% Yesb

(b) r = Waiting

Sink
column (c↓)

Primary
increase
column (c↑)

Prop. Tasks Completed
and % change when
prob. (r c↓) 0

Single-
transition
s-t cut exists

Waiting Discovering 0.937 +0.22% No

Waiting Negotiating 0.939 +0.38% No

Discovering Waiting 0.934 -0.13% No

Discovering Negotiating 0.936 +0.03% No

Negotiating Waiting 0.843 -9.82% No

Negotiating Discovering 0.932 -0.30% No

(a) r = Discovering

Sink
column (c↓)

Primary
increase
column c↑)

Prop. Tasks Completed
and % change when
prob. (r c↓) 0

Single-
transition s-t
cut exists

Waiting Discovering 0.935 -0.04% No

Waiting Negotiating 0.935 +0.01% No

Discovering Waiting 0.935 -0.07% No

Discovering Negotiating 0.935 +0.03% No

Negotiating Waiting 0.933 -0.23% No

Negotiating Discovering 0.932 -0.31% No

(e) r = Initial

Discovering Initial 0.0 -100.00 Yesc

Initial Discovering 0.970 +1.96 No

 28

Waiting, is not a trap state; but it lies on one of only two paths to the Completed state. Hence if the self-

transition probability of Waiting is raised to 1, there is a partial downward effect on tasks completed, which

also impacts the results in Tables 5.1 and 5.2, mentioned above.

Table 5.3. Identification of trap states in 8 h and 640 h grid system. The table shows the proportion of tasks completed by the

Markov simulation for states in Fig. 3.1 when their probability of self-transition is raised to 1. The states where the proportion of

tasks completed falls to 0 correspond to trap states. Shaded cells indicate verification by the large-scale simulation.

5.1.3 Efficiency of Minimal s-t Cut Set Analysis in the Grid System Case

In summary, the data in Table 5.1, 5.2, and 5.3 shows that all single-transition s-t cuts and trap states

identified in Fig. 4.1 correspond to cases where the perturbation algorithm found perturbation combinations

that caused the proportion of tasks completed to approach 0. For all other perturbation combinations shown in

Tables 5.1 and 5.2, the proportion of tasks completed remained relatively stable (i.e., did not decline

significantly).

Using path enumeration to find single-transition s-t cuts required less than 0.01 s second for both the grid

system and Abilene problems. Having identified single-transition s-t cuts, trap states and minimal multiple-

transition s-t cut sets, it was then desirable to apply the perturbation algorithm to the corresponding TPM

rows to verify these conditions and document the drop in the proportion of tasks completed. To do this for the

three single-transition s-t cuts shown in Fig. 4.1 requires systematically lowering one transition probability in

each row with a weight of 1.0—the transition probability for the single-transition cut itself–while raising at

most 5 others: one in the row for Initial, 3 for Negotiating, and one for Monitoring. In the 8 h case, this

entailed about 71 s of execution time. Reducing the two two-transition cut sets in Fig. 4.4 to approach 0

requires an additional 40 s each, while perturbing the three traps states to raise probability of self-transition to

1 as discussed above would add about 93 s execution time, or about 7% of the 56 min required for the

original complete perturbation. For the 640 h case, the time to perform the same perturbations was about 230

s, or about 1.4% of the total 4.5 h. All experiments were executed on a Dell PowerEdge 6950 with quad,

dual-core 3.0GHz processors and 32GB memory, running under Windows 2003. The results described above

for the grid system model (as well as the Abilene system described below) are summarized and compared to

the times for the large-scale simulation in Table 5.4. The results show that path enumeration and minimal s-t

cut set identification can lead to up to two orders of magnitude improvement in computational time over the

use of the perturbation algorithm described in [7], which itself was found to constitute a two-order magnitude

improvement over large-scale simulation [7].

State for which
probability of self-
transition is raised to 1

Proportion Flows Complete Corresponds
to Trap State8-hour 640-hour

Waiting 0.400 0.756 No

Discovering 0.030 0.019 Yes

Negotiating 0.018 0.045 Yes

Monitoring 0.000 0.000 Yes

 29

Table 5.4. Comparison of execution times for grid computing system and Abilene network using (a) Identification of minimal s-t

cut sets followed by use of perturbation algorithm on state transitions identified as single-transition s-t cuts, with (b) Exhaustive

search of the rows of a TPM using the perturbation algorithm as described in [7] and (c) large-scale simulation [1].

a
Note: results achieved by path enumeration were also achieved using the node contraction algorithm to be described in the Sec. 6.

Finally, it is important to point out that incremental perturbation of transitions identified in cut sets and trap

states can be avoided to save time; however if this is done, one loses information about the rate of

degradation in tasks completed which may be vital in understanding system sensitivity and the existence of

thresholds. For example, see Fig. 3.7 or Fig. 3.8.

5.2 Abilene System

In this section, we verify that all minimal s-t cut sets for paths between the Initial State and Flows Completed

states in the Abilene system Markov chain model correspond to state transitions, which if perturbed using the

perturbation algorithm as described in Sec. 3, can adversely impact system performance. Table 5.5 shows the

results of applying the perturbation algorithm to the Abilene Markov chain model. As before, the

probabilities of transition from the Connecting, Initial Slow Start (ISS), Normal Congestion Avoidance

(NCA), Alternate Congestion Avoidance (ACA), and Slow Start (SS) to other states is lowered to 0 (i.e.,

designated as sink columns c
↓
). At the same time probabilities of transitions to other states are raised (i.e.,

designated as primary increase columns c
↑
). However, in contrast to the grid system case, we were unable to

verify these results through the large-scale simulation due to the extreme cost in execution time (over 7 h for

a single execution). As before, the transition from the Initial State is omitted from the analysis.

With respect to single-transition s-t cuts for paths between the Initial and Flows Completed states, Table

5.5 shows that only the probability of transition for Connecting  Initial Slow Start (i.e., r = Connecting and

Initial Slow Start is made c
↓
), when lowered to 0, causes the proportion of flows completed to approach 0.

Fig. 4.2 shows that the state transition Connecting  Initial Slow Start is indeed a single-transition s-t cut.

Table 5.5 shows no other cases where lowering one transition probability, by itself, causes flows completed to

approach 0, except the transition out of the Initial State. Figure 4.2 shows no other single-transition s-t cuts,

other than the cut from the Initial State. Hence, in the case of the Abilene system as in the grid system, all

single-transition s-t cuts found (there was 1) correspond to state transitions that adversely impact system

performance, when probability of transition is perturbed to fall to 0.

Minimal s-t cut set Identification Exhaustive

search of TPM

rows with

perturbation

algorithm

Large-scale

simulation
Path

Enumeration

Algorithma

Perturbation of

individual state

transitions only

Grid

Computing

System

8-hour <0.01 s 244 s 56 minutes 205 hours

640-

hour

<0.01 s 230 s 4.5 hours 870 hours

Abilene

Network

<0.01 s 450 s 27.3 hours Not available

 30

Table 5.5. Correspondence between cases where perturbation algorithm results in proportion of tasks completed falling to 0 and

existence of single-transition s-t cuts in the Abilene system Markov chain model. The table shows the proportion of tasks completed

and percent change when perturbation algorithm is applied to rows, r, of the TPM in Fig. 3.5 to decrease the probability of

transition to 0 for the sink column, c
↓
, or the state transition r  c

↓
, while increasing the probability of transition in the primary

increase column, c
↑
, or r  c

↑
 with a sink weight = 1. Secondary perturbation is excluded. The right-most column indicates if a

single-transition s-t cut exists for r  c
↓

in Fig. 4.2. In all cases where perturbation causes proportion of tasks completed to

approach 0, a positive correspondence exists with a single-transition s-t cut. Note: trap states are discussed separately below.

 aIn Figure 4.2, corresponds to Connected  Initial Slow Start single-transition s-t cut and Connected trap state

For the Abilene model, Table 5.6 shows that the perturbation algorithm found that two trap states,

Connecting and Initial Slow Start. These are the only states that result in the proportion of flows completed

approaching 0 when their self-transition probabilities are raised to 1.0. Figure 4.2 shows that Connecting and

Initial Slow Start are the only trap states in the Abilene Markov chain model, and their existence is also

predicted through path enumeration. As in the case of the grid system, the perturbation algorithm revealed no

additional states for which raising the probability of self-transition to 1 caused the proportion of flows

completed to approach 0. As Table 5.6 shows, when the probability of self-transition is raised to 1 for the

other three states—Normal Congestion Avoidance, Alternate Congestion Avoidance, and Slow Start—a

smaller reduction in flows completed occurs that is relatively proportional to the chances that a flow enters

the particular state. This suggests that if a system fault occurs that causes flows to remain in one of these

three states, use of an alternative congestion control regime is a possible remedy that would allow the system

to function without a disastrous decline in performance.

(a) r = Initial Slow Start (ISS)

Sink
column (c↓)

Primary
increase
column (c↑)

Prop. Tasks Complete
and % change when
prob. (r c↓) 0

single-
transition s-t
cut exists

ISS NCA 0.997 -0.20 No

ISS ACA 0.998 -0.10 No

ISS SS 0.997 -0.20 No

NCA ISS 0.999 0.00 No

NCA ACA 0.998 -0.10 No

NCA SS 0.998 -0.10 No

ACA ISS 0.999 0.00 No

ACA NCA 0.998 -0.10 No

ACA SS 0.998 -0.10 No

SS ISS 0.999 0.00 No

SS NCA 0.998 -0.10 No

SS ACA 0.998 -0.10 No

(d) d = Slow Start (SS)

Sink
column (c↓)

Primary
increase
column (c↑)

Prop. Tasks Complete
and % change when
prob. (r c↓) 0

single-
transition s-t
cut exists

NCA ACA 0.999 0.00 No

NCA SS 0.999 0.00 No

ACA NCA 0.998 -0.10 No

ACA SS 0.998 -0.10 No

SS NCA 0.998 -0.10 No

SS ACA 0.999 0.00 No

(c) r = Alternate Congestion Avoidance (ACA)

Sink
column (c↓)

Primary
increase
column (c↑)

Prop. Tasks Complete
and % change when
prob. (r c↓) 0

single-
transition s-t
cut exists

NCA ACA 0.999 0.00 No

NCA SS 0.999 0.00 No

ACA NCA 0.998 -0.10 No

ACA SS 0.998 -0.10 No

SS NCA 0.998 -0.10 No

SS ACA 0.999 0.00 No

(b) r = Normal Congestion Avoidance (NCA)

Sink
column (c↓)

Primary
increase
column (c↑)

Prop. Tasks Complete
and % change when
prob. (r c↓) 0

single-
transition s-t
cut exists

NCA ACA 0.999 0.00 No

NCA SS 0.999 0.00 No

ACA NCA 0.999 0.00 No

ACA SS 0.999 0.00 No

SS NCA 0.999 0.00 No

SS ACA 0.999 0.00 No

(e) d = Connected (Conn)

Sink
column (c↓)

Primary
increase
column (c↑)

Prop. Tasks Complete
and % change when
prob. (r c↓) 0

single-
transition s-t
cut exists

ISS
Connected

Connected
ISS

0.071 -92.89 Yesa

No0.999 -0.10

 31

Table 5.6. Identification of trap states in Abilene system Markov simulation. The table shows proportion of flows completed by the

simulation for states in the Abilene model when their probability of self-transition is raised to 1. The states where the proportion of

flows completed approaches 0 correspond to trap states.

The path enumeration algorithm identified 8 minimal s-t cut sets that were multiple-transition s-t cuts in the

Abilene model. These are listed in Table 4.1, one of which is shown in Fig. 4.5. Simultaneously lowering the

transition probabilities to 0 of all state transitions identified by these cut sets does indeed cause the proportion

of flows completed to approach 0. However, each of these cases represents situations that are less likely than

the case of a single-transition s-t cut. For all multiple-transition s-t cuts in Table 4.1, the perturbation

algorithm results showed that if the probability of transition of any single member of the cut set was not

lowered, the proportion of flows completed remained high. This result suggests that the Abilene system

possesses a relative degree of robustness as long as at least one path to a congestion control regime exists that

can lead to completion of flows. Further experimentation would be necessary to determine if this conjecture

actually holds in all cases for the large-scale Abilene simulation.

Finally, it is necessary to consider the relative efficiency of the minimal s-t cut set generation approach

when compared to the perturbation algorithm overviewed in Sec. 3.1. As in the grid system case, it is

desirable to apply the perturbation algorithm to the limited areas of the Abilene system TPM that were

identified by the minimal s-t cut sets and trap states. For the single-transition s-t cut ConnectingInitial Slow

Start, this involves just one perturbation combination, which ran about 13 s. With regard to the two trap

states, Connecting involved one perturbation combination that ran 90 s, while Initial Slow Start required an

additional three, for about 260 s. Simultaneously lowering the transition probabilities to 0 in the any of the

minimal s-t cut sets shown in Table 4.1 involved roughly 10-20 s each. These results are summarized in

Table 5.4. As in the case of the grid system, these computations required a very small fraction of the 27.3 h

that were needed to apply the perturbation algorithm to all rows of the Abilene Markov chain TPMs.

State for which probability of
self-transition is raised to 1

Proportion
Flows Complete

Corresponds
to Trap State

Connected 0.008 Yes

Initial Slow Start 0.007 Yes

Normal Congestion Avoidance 0.824 No

Alternate Congestion Avoidance 0.967 No

Slow Start 0.918 No

 32

 33

6. Application of Minimal s-t Cut Set Identification to Larger Markov Chain Problems

Section 5 showed the feasibility of using minimal s-t cut sets on paths from the initial to the absorbing state to

predict which state transitions, if perturbed, are most likely to adversely impact system performance.

However, the path enumeration algorithm for finding minimal s-t cut sets discussed in earlier sections is not

scalable for two reasons. First, in the worst-case situation of a complete graph (a graph where each pair of

vertices is connected by an edge), enumeration of all non-cyclic paths between two vertices has a complexity

that is factorial with respect to the number of vertices [45, 46]. This makes a path enumeration algorithm

impractical for larger Markov chains. Second, in larger Markov chains, it may be that all paths leading to an

absorbing state cannot be disconnected by cutting a single state transition. Therefore, it is necessary to find

an algorithm that can (1) work efficiently on larger Markov chain problems; and (2) identify minimal s-t cut

sets consisting of multiple state transition that disconnect all paths leading from the initial to the absorbing

state.

 In this section we address the question of how an approach based on minimal s-t cut set analysis might

work for larger Markov chains models. We first introduce an algorithm, known as the node contraction

algorithm, which fulfills the two requirements identified in the preceding paragraph. The algorithm finds

minimal s-t cut sets probabilistically and can be bounded to run for a limited amount of time, though it is not

guaranteed to find all cut sets. We then provide examples of algorithm’s use for Markov chain problems and

assess its potential for Markov problems of significant size and complexity. We find that while these

investigations into the feasibility of use of non-exhaustive techniques to generate minimal s-t cut sets are not

complete and more work remains to be done, they do provide evidence that this approach will work for larger

problems. Finally, we compare the different approaches presented in this report to finding minimal s-t cut sets

and describe the circumstances under which each should be used.

6.1 A Probabilistic Algorithm for Finding Minimal s-t Cut Sets in Larger Markov Chains

This section describes an algorithm for finding minimal s-t cut sets that also has the potential to be effective

for larger Markov chain models. As before, this algorithm identifies single-transition s-t cuts and trap states.

However, the algorithm also identifies minimal s-t cut sets with multiple edges, which correspond to sets of

state transitions in a Markov chain, which if perturbed together, cause degradations in performance (as

measured by the proportion of tasks that enter the Tasks Completed state or proportion of flows that enter

Flows Completed). The set of state transitions in such a minimal s-t cut set will represent related

circumstances in the domain being modeled, or may represent unrelated events which could randomly occur

together. We assume that in most large domains, the most critical cut sets will have a small number of

transitions, since small combinations are more likely, as discussed in [47]. Therefore, a reasonable goal would

be to generate minimal s-t cut sets consisting of a limited number of state transitions. It is also desirable that

these cut sets should contain the minimum number of state transitions needed to disconnect the initial state

from the absorbing state, or be slightly larger.

A number of algorithms have been developed for enumerating all minimal s-t cut sets between two vertices

in directed graphs [33, 35, 48]. All require considerable computational effort for large graphs. For instance, in

[33], enumeration of all s-t cut sets was found to have a complexity of O |E| per cut set listed. However, this

algorithm can be computationally expensive as well, since Markov chains with as few as fifty states can

contain over 10
8
 minimal s-t cut sets on paths between the initial and absorbing states, as we will show

below. An interesting alternative to enumeration is the node contraction algorithm, which while not

guaranteed to find all minimal s-t cut sets, can be controlled to bound computational cost. Efficient

implementations of this algorithm for undirected graphs run in O (n
2
) time [34]. However, computational

characteristics for directed graphs have not been determined and remain a topic for future work. Below we

 34

show that this algorithm can find a large proportion of minimal and near minimal s-t cut sets in a sample of

larger Markov chain problems. Section 6.4 returns to the subject of other minimal s-t cut set algorithms

which could be explored in future work.

The node contraction algorithm operates by randomly choosing two vertices connected by an edge and

replacing these vertices with a single, new vertex. The new vertex assumes the edges by which the two

replaced vertices were connected to the remainder of the graph (i.e., the edges of replaced vertices become the

edges of the new vertex) and takes up the edges that connected the two replaced vertices. The process of

randomly selecting pairs of vertices repeats until only two large, mega-vertices remain. The directed edges

between the two remaining mega-vertices c1 and c2, and the directed edges between vertices <v1, v2>, v1≠ v2,

in which v1 was replaced by c1 and v2 was replaced by c2, constitute a minimal s-t cut set of the graph. We

apply this algorithm to the Markov chain, modifying it to prevent the two vertices representing the Initial

State and desired absorbing state (Tasks or Flows Completed) from being replaced by the same vertex. This

ensures that the Initial State, s, and Tasks Completed state, t, will not both end up in either c1 or c2. In this

way, the edges between the two remaining mega-vertices, c1 and c2, together with the vertices each has

absorbed, yield an s-t cut set of state transitions, which if removed, disconnect the Initial State and absorbing

state (Tasks or Flows Completed).

Since the algorithm randomly selects two connected vertices to combine, repeated applications produce

different cut sets. The more the algorithm is repeated, the greater the chances that a large proportion, if not

all, of the minimal s-t cut sets of interest will be obtained. Hence, the operation of the algorithm can be said

to be probabilistic. Because the number of repetitions can be controlled, computation cost can be bounded.

Further, cut sets can identify potential trap states, which exist when all transitions in the cut set emanate from

the same state. Lastly, Markov simulation need be applied only to the transitions in the s-t cut sets, in order to

generate curves for the proportion of tasks completed, such as are shown in Fig. 3.7 and 3.8, and to identify

performance thresholds. However, to be scalable, the algorithm must be effective in producing the most

critical minimal s-t cut sets in a relatively limited number of repetitions. In the next section, we describe

examples of the operation of this algorithm. Pseudo-code for one repetition of the algorithm is given in

Appendix A.

6.2 Examples of the Application of the Node Contraction Algorithm

In this section we provide two examples of the application of the node contraction algorithm so that the

reader can see more clearly how the algorithm operates. First, we apply the node contraction algorithm to the

grid computing system and Abilene system Markov models and compare the results of these small problems

to the results provided in Secs. 4 and 5. Then we apply the node contraction algorithm to a much larger

example problem to see what these results look like. In Sec. 6.3, we provide a more extended analysis of the

application of the algorithm to a set of larger problems and provide some quantitative results.

6.2.1 Example Application to the Grid Computing and Abilene System Markov Chain Problems

The node contraction algorithm produced 5 minimal s-t cut sets for the grid computing system Markov

chain. These are the three single-transition s-t cuts that appear in Fig. 4.1 and two multiple-transition s-t cuts

that appear in Fig. 4.4. This algorithm also found 10 minimal s-t cut sets for the Abilene system, shown in

Table 4.1. Both are the complete sets of minimal s-t cut sets from the initial to absorbing states for both

Markov chain problems. Both sets required 100 repetitions of this algorithm, which consumed less than a

0.01 s of CPU time. In both cases, the algorithm identified all single-transition s-t cuts—in other words, all

minimal s-t cut sets that with a single state transition–that were also obtained through path enumeration. In

Sec. 5, the single- and multiple-transition cuts were shown to correspond exactly to state transitions in

Markov chain graphs that could be perturbed to produce large performance degradations.

 35

6.2.2 Example Application to a Large Markov Chain TPM

This section illustrates an example of the use of the node contraction algorithm on a larger Markov Chain

matrix with 136 states. Unlike the grid or Abilene system problems, this Markov chain was generated by a

matrix generation program as a test problem [49]. Hence, it does not model a real-world system in which

states can be given concrete interpretations; instead, states are numbered from 1 to 136. This Markov chain is

homogeneous with respect to time, and provides no time step information. Though originally an ergodic

chain, it has been modified to substitute a single absorbing state (state 134) to allow it to behave as an

absorbing chain for our purposes. A compressed visualization of the TPM appears in Fig. 6.1 (with a more

detailed view of the first 50 states of the TPM in Appendix B.3). This TPM is a sparse matrix in which

processes proceed by following state transitions roughly along the matrix diagonal (dark gray cells) to the

introduced absorbing state 134. However, most states also provide transitions that lead backwards toward

states with lower numbers, which greatly increases the number of potential paths.

Figure 6.1. Compressed view of TPM rw136 for a Markov chain of 136 states from [49]. The horizontal axis represents the

numbered states in ascending order from left to right; the vertical axis represents the states in descending order from bottom to top.

Dark gray cells represent non-zero values. The pattern of shaded cells clearly shows a sparse diagonal matrix. For a more detailed

view of the first 50 states of this TPM, see Appendix B.3.

This problem is of sufficient size and complexity that it effectively prohibits enumeration of all paths from

the initial state to the single absorbing state, making it a good test problem for our purposes as well. An

application of the path enumeration algorithm quickly confirms that there are at least two paths having no

common states (other than the initial state or the single absorbing state); hence, no single-transition s-t cuts or

individual trap states will be found. However, an application of the node contraction algorithm does find a

number of minimal s-t cut sets consisting of 2–5 state transitions—as well as larger cut sets. Table 6.1 shows

a sample from a total produced by 200 repetitions of the cut-set algorithm, which were generated in 491

seconds. The sample is chosen on the basis of a low total transition probability for cut set members. A much

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

1 0 0.07 0 1

2 0.50 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 2

3 0 0.47 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 3

4 0 0 0.43 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 4

5 0 0 0 0.40 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 5

6 0 0 0 0 0.37 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 6

7 0 0 0 0 0 0.33 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 7

8 0 0 0 0 0 0 0.30 0 0.53 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 8

9 0 0 0 0 0 0 0 0.27 0 0.60 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 9

10 0 0 0 0 0 0 0 0 0.23 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 10

11 0 0 0 0 0 0 0 0 0 0.20 0 0.73 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 11

12 0 0 0 0 0 0 0 0 0 0 0.17 0 0.80 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 12

13 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.87 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 13

14 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.93 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 14

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 15

16 0.50 16

17 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0.07 0 17

18 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 18

19 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0.10 19

20 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 20

21 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 21

22 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0.20 22

23 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 23

24 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 24

25 0 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0.30 25

26 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 26

27 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 27

28 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0.40 28

29 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 29

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 30

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.50 31

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0.10 32

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0.20 33

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0.13 0 34

35 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0.17 0 35

36 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0.20 36

37 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0.23 0 37

38 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0.27 0 38

39 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0.30 39

40 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0.33 0 40

41 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0.37 0 41

42 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0.40 42

43 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0.43 0 43

44 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0.47 0 44

45 0.03 0.50 45

46 0.43 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0.13 0 46

47 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0.17 0 0 0 0 0 0 0 0 0 0 0.27 0 47

48 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0.20 0 0 0 0 0 0 0 0 0 0 0.17 0 48

49 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0.23 0 0 0 0 0 0 0 0 0 0 0.20 49

50 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0.27 0 0 0 0 0 0 0 0 0 0 0.23 0 50

51 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0.30 0 0 0 0 0 0 0 0 0 0 0.27 0 51

52 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0.33 0 0 0 0 0 0 0 0 0 0 0.30 52

53 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0 0 0 0 0 0 0.33 0 53

54 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0 0 0 0 0 0 0.37 0 54

55 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0 0 0 0 0 0 0.40 55

56 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0 0 0 0 0 0 0.43 0 56

57 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0 0 0 0 0 0 0.47 0 57

58 0.03 0.50 58

59 0.40 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0.17 0 59

60 0.37 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0.20 0 0 0 0 0 0 0 0 0 0.33 0 60

61 0.33 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0.23 0 0 0 0 0 0 0 0 0 0.20 61

62 0.30 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0.27 0 0 0 0 0 0 0 0 0 0.23 0 62

63 0.27 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0.30 0 0 0 0 0 0 0 0 0 0.27 0 63

64 0.23 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0.33 0 0 0 0 0 0 0 0 0 0.30 64

65 0.20 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0 0 0 0 0 0.33 0 65

66 0.17 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0 0 0 0 0 0.37 0 66

67 0.13 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0 0 0 0 0 0.40 67

68 0.10 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0 0 0 0 0 0.43 0 68

69 0.07 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0 0 0 0 0 0.47 0 69

70 0.03 0.50 70

71 0.37 0 0 0 0 0 0 0 0 0 0.03 0 0 0.20 71

72 0.33 0 0 0 0 0 0 0 0 0 0 0.33 0 0.23 0 0 0 0 0 0 0 0 0.40 72

73 0.30 0 0 0 0 0 0 0 0 0 0 0.30 0 0.27 0 0 0 0 0 0 0 0 0.23 0 73

74 0.27 0 0 0 0 0 0 0 0 0 0 0.27 0 0.30 0 0 0 0 0 0 0 0 0.27 0 74

75 0.23 0 0 0 0 0 0 0 0 0 0 0.23 0 0.33 0 0 0 0 0 0 0 0 0.30 75

76 0.20 0 0 0 0 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0 0 0 0 0.33 0 76

77 0.17 0 0 0 0 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0 0 0 0 0.37 0 77

78 0.13 0 0 0 0 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0 0 0 0 0.40 78

79 0.10 0 0 0 0 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0 0 0 0 0.43 0 79

80 0.07 0 0 0 0 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0 0 0 0 0.47 0 80

81 0.03 0.50 81

82 0.33 0 0 0 0 0 0 0 0 0.03 0 0 0.23 0 82

83 0.30 0 0 0 0 0 0 0 0 0 0.30 0 0.27 0 0 0 0 0 0 0 0.47 0 83

84 0.27 0 0 0 0 0 0 0 0 0 0.27 0 0.30 0 0 0 0 0 0 0 0.27 0 84

85 0.23 0 0 0 0 0 0 0 0 0 0.23 0 0.33 0 0 0 0 0 0 0 0.30 85

86 0.20 0 0 0 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0 0 0 0.33 0 86

87 0.17 0 0 0 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0 0 0 0.37 0 87

88 0.13 0 0 0 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0 0 0 0.40 88

89 0.10 0 0 0 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0 0 0 0.43 0 89

90 0.07 0 0 0 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0 0 0 0.47 0 90

91 0.03 0.50 91

92 0.30 0 0 0 0 0 0 0 0.03 0 0 0.27 0 92

93 0.27 0 0 0 0 0 0 0 0 0.27 0 0.30 0 0 0 0 0 0 0.53 0 93

94 0.23 0 0 0 0 0 0 0 0 0.23 0 0.33 0 0 0 0 0 0 0.30 94

95 0.20 0 0 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0 0 0.33 0 95

96 0.17 0 0 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0 0 0.37 0 96

97 0.13 0 0 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0 0 0.40 97

98 0.10 0 0 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0 0 0.43 0 98

99 0.07 0 0 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0 0 0.47 0 99

100 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 100

101 0.27 0 0 0 0 0 0 0.03 0 0 0.30 101

102 0.23 0 0 0 0 0 0 0 0.23 0 0.33 0 0 0 0 0 0.60 102

103 0.20 0 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0 0.33 0 103

104 0.17 0 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0 0.37 0 104

105 0.13 0 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0 0.40 105

106 0.10 0 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0 0.43 0 106

107 0.07 0 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0 0.47 0 107

108 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 108

109 0.23 0 0 0 0 0 0.03 0 0 0.33 0 109

110 0.20 0 0 0 0 0 0 0.20 0 0.37 0 0 0 0 0.67 0 110

111 0.17 0 0 0 0 0 0 0.17 0 0.40 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 111

112 0.13 0 0 0 0 0 0 0.13 0 0.43 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112

113 0.10 0 0 0 0 0 0 0.10 0 0.47 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113

114 0.07 0 0 0 0 0 0 0.07 0 0.50 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 114

115 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 115

116 0.20 0 0 0 0 0.03 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116

117 0.17 0 0 0 0 0 0.17 0 0.40 0 0 0 0.73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 117

118 0.13 0 0 0 0 0 0.13 0 0.43 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 118

119 0.10 0 0 0 0 0 0.10 0 0.47 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 119

120 0.07 0 0 0 0 0 0.07 0 0.50 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 120

121 0.03 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 0 0 121

122 0.17 0 0 0 0.03 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 122

123 0.13 0 0 0 0 0.13 0 0.43 0 0 0.80 0 0 0 0 0 0 0 0 0 123

124 0.10 0 0 0 0 0.10 0 0.47 0 0 0.43 0 0 0 0 0 0 0 0 124

125 0.07 0 0 0 0 0.07 0 0.50 0 0 0.47 0 0 0 0 0 0 0 125

126 0.03 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 126

127 0.13 0 0 0.03 0 0 0.43 0 0 0 0 0 0 0 0 127

128 0.10 0 0 0 0.10 0 0.47 0 0.87 0 0 0 0 0 128

129 0.07 0 0 0 0.07 0 0.50 0 0.47 0 0 0 0 129

130 0.03 0 0 0 0 0 0 0 0.50 0 0 0 130

131 0.10 0 0.03 0 0 0.47 0 0 0 0 131

132 0.07 0 0 0.07 0 0.50 0 0 0 132

133 0.03 0 0 0 0 0 0.50 0 133

134 0.07 0.03 0 1 0.50 0 134

135 0.03 0 0 0 1 135

136 0 136

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

 36

longer execution of 2500 repetitions produced only two cut sets having lower total transition probabilities.

The time needed to generate the sample in Table 6.1 is no doubt a small fraction of time needed to completely

perturb this large matrix using the perturbation algorithm described in [7] and overviewed in Sec. 3.1 (which

we did not even attempt). Each of the minimal s-t cut sets in Table 6.1 was also verified by removing its

transitions (edges) from the 136-state graph and executing the path search algorithm, which is then unable to

find any paths.

Table 6.1. Selected minimal s-t cut sets between the initial state and the absorbing state in a Markov chain of 136 states produced

by executing the node contraction algorithm for 200 repetitions. These cut sets represent low combinations of number of from states

and state transitions, and low sums of transition probabilities for cut set members. Each was verified as a minimal s-t cut set using

the Markov simulation program.

In this example, the identification of a moderate number of small minimal s-t cut sets in a reasonable

amount of time provides a tractable means for identifying where performance degradations can occur within a

larger Markov chain. To verify that implementing the cut sets in Table 6.1 would actually disconnect the

graph and cause the proportion of processes that reach the absorbing state to fall to 0, we first executed the

Markov simulation program on the 136 × 136 TPM and modeled the evolution of the 136-element state

vector, using the procedure overviewed in Sec. 3 and described in detail in [7]. By modifying the Markov

perturbation algorithm to simultaneously lower a set of transition probabilities for state transitions to 0 in any

of the cut sets in Table 6.1, it was possible to model the effect of these reductions on the flow of processes

into the designated absorbing state, state 134.

Number
from states/
transitions

List of transitions
Sum of
transition
probabilities

1 3 / 4
131 134, 128132, 129133,
131132

0.233

2 3 / 4
128132, 129131, 129133,
127131

0.233

3 4 / 5
123128, 124129, 125130,
125127, 122127

0.367

4 4 / 5
125130, 124129, 123128,
127131, 127128

0.400

5 5 / 6
123128, 124125, 124129 ,
119125, 120126, 122127

0.467

6 6 / 7
114116, 109116, 110117, 111
118, 112119, 113120, 114121

0.733

7 3 / 4
131134, 131132, 128132,
133132

0.700

8 1 / 2
12, 117 1.0

9 2 / 3
2 18, 23, 117 1.43

 37

6.3 Performance of the Node Contraction Algorithm on Four Larger Markov Chain Problems

In this section we apply minimal s-t cut set analysis using node contraction to a set of large Markov chain

problems. In doing this, we hope to provide a preliminary evaluation of the effectiveness of minimal s-t cut

set analysis using this algorithm on a set of large, complex problems. As pointed out above, this algorithm

generates minimal s-t cut sets probabilistically, but does not enumerate all possible cut sets. Therefore, the

question naturally arises as to whether it either misses critical minimal s-t cut sets in larger Markov chains, or

if it requires too many repetitions to generate the most critical ones.

Investigation of these questions required that the node contraction algorithm be applied to a large absorbing

Markov chain for which, ideally, all critical minimal s-t cut sets between the initial and absorbing states could

be obtained by other means to provide a baseline for purposes of comparison. To accomplish this, we

implemented the minimal s-t cut set enumeration algorithm of [33], which enumerates all s-t cut sets in a

directed graph. We obtained four large Markov chain matrices for which most, if not all, minimal s-t cut sets

between initial and absorbing state could be generated using the algorithm described in [33], though it might

take many hours or even days. These matrices, which appear in Appendix B, are sparse matrices. Matrices 1

and 2 were generated using [50] and are based on [51] and [52] respectively. Matrix 3 was a 50 × 50 subset of

a very large 136 ×136 Markov chain matrix described in [49]. Matrix 4 was generated using [50] and is based

on [53]. Each of these matrices was originally an ergodic Markov chain that was modified to become an

absorbing chain by designating a single absorbing state.

To identify which minimal s-t cut sets between the initial and absorbing states were critical, we developed

selection criteria that might conceivably be used in a real-world situation. These criteria are based on the idea

that in an actual real-world system, it is likely that expert guidance will be required to select which cut sets

represent circumstances of interest. A domain expert might consider various criteria for selecting minimal s-t

cut sets to examine further. For example, one possible selection criterion would be minimal s-t cut sets that

have few edges (state transitions). The justification for this criterion might be that the most critical minimal s-

t cut sets will consist of a small number of transitions, since small cut sets represent combinations of

circumstances that are more likely to occur together and thus more likely to severely impact a system. (Note:

in [47], this intuition is partially corroborated for the case of undirected graphs by the finding that small cut

sets are more likely to lead to disconnection of undirected graphs, if the edges in the cut set fail independently

with a known probability.) Another criterion might be cut sets for which the total probability of transition of

all member state transitions is low. Minimal s-t cut sets with total transition probability near 0 are likely to be

sensitive to small perturbations, which quickly drive down system performance. On the other hand, cut sets

with high total transition probabilities consist of state transitions that are more likely to be taken. Hence, they

may be good candidates as well.

We defined three such criteria for ordering minimal s-t cut sets that are based on such considerations and

that we believe are sufficient for the purposes of this experiment. Therefore, we chose the first criterion, Sort

A, to rank minimal s-t cut sets by the fewest number of edges as a primary sorting criterion and lowest total

transition probability of edges as the secondary criterion. The second, Sort B, uses only the lowest total

transition probability of edges in the cut set as a sorting criterion (which also tends to rank cut sets with fewer

transitions higher). Hence, Sorts A and B are likely to identify minimal s-t cut sets in which smaller

perturbations to the fewest number of state transitions are likely to produce the largest changes. The third

ranking criteria, Sort C, uses least number of edges as a primary sorting criterion and highest total transition

probability of edges as a secondary criterion. Sort C identifies cut sets consisting of state transitions more

likely to be taken and therefore, if perturbed, could have greater impact on system behavior. No doubt further

research is necessary to investigate criteria for choosing minimal s-t cut sets for larger Markov chains in order

to decide which are likely to be important. Nevertheless, having found a means to determine the critical

minimal s-t cut sets between the initial and absorbing states in a sufficiently large Markov chain, it was then

 38

possible to run the node contraction algorithm to see if it could also find the critical cut sets in a reasonable

amount of time.

Table 6.2 shows the results of the enumeration algorithm of [33] and the node contraction algorithm to all

four matrices. Both algorithms were parameterized to rank minimal s-t cut sets generated by three sorting

criteria described above. Table 6.2 lists the total number of enumerated minimal s-t cut sets and the time

required to compute the enumeration. The table then compares the performance of the node contraction

algorithm. The table shows what proportion of the top-ranked 100 cut sets, as ordered by the three sorting

criteria described above, that the node contraction algorithm was able to produce in a specified number of

repetitions and the time required. We examined the performance of the node contraction algorithm at three

levels of effort: 1000, 10 000, and 100 000 repetitions. Note that the number of minimal s-t cut sets generated

and time required did not always grow linearly with the matrix order (number of rows and columns). This

was due to differences in topology and interconnectedness in the Markov chains; in some cases, a few states

with large numbers of transitions can drastically increase the number of possible cut sets and thus increase the

level of effort needed to enumerate all transitions.

Table 6.2. Comparison of minimal s-t cut sets for paths between the initial and absorbing states enumerated by the algorithm of [33]

and the node contraction algorithm. Both algorithms were applied to the four matrices reproduced in Appendix B. The node

contraction algorithm was executed a three levels of effort: 1000, 10 000, and 100 000 repetitions. Minimal s-t cut sets generated

were sorted by: (Sort A) fewest number of edges as a primary sorting criteria with lowest total transition probability of edges as a

secondary sorting criteria; (Sort B) lowest total transition probability of all edges in the cut set; and (Sort C) fewest number of edges

as a primary sorting criteria with highest total transition probability of edges as a secondary criterion. At 10 000 repetitions, the node

contraction generated 77.2% (variance 555.2) of the top 100 ranked cut sets in 0.14% of the time for Sorts A-C. At 100 000 repetitions, node

contraction generated 91.4% (variance 432.0) in 1.3% of the time

With the exception of Matrix 1, Table 6.2 shows that the node contraction algorithm generated as much as

91.4% of the top 100 ranked cut sets that were generated by the enumeration algorithm of [33] in 1.3% of the

time needed (for 100 000 repetitions under all three sorts).For instance, for Matrices 2 and 3, the algorithm

was able to find almost all top 100 minimal s-t cut sets in a relatively small fraction of the number of hours

required by the enumeration algorithm of [33]. For matrix 4, the node contraction algorithm could find all the

top 100 minimal s-t cut sets under sort criteria A and C in about 15 min (as opposed to 156.1 h by the

algorithm of [33]). However, the algorithm found only 37 of 100 high ranked minimal s-t cut sets under Sort

B. Moreover, for Matrix 1, Table 6.2 shows that the node contraction algorithm had to run longer than the

algorithm of [33], before it began to produce a large percentage of highly-ranked cut sets (hence, we did not

attempt to use the node contraction algorithm at the highest level of effort). The differences in performance

are attributable in part to large problem size, as for instance, Matrix 4 which has 422,060,801 minimal s-t cut

sets. The differences in performance may also be attributable to topological characteristics such as vertices

Matrix Minimal s-t cut sets
enumerated using
algorithm of [33]

Proportion (in %) of 100 top-ranked minimal s-t cut sets ranked by
criteria A, B and C, which were found by the node contraction algorithm

Number of
minimal
s-t cut sets

Time After 1000 repetitions After 10,000 repetitions After 100,000 repetitions

Time Sort A Sort B Sort C Time Sort A Sort B Sort C Time Sort A Sort B Sort C

1 50 530,432 332.1 s 63 s 56 67 22 640 s 80 100 96 --- --- --- ---

2 50 28,230,288 21.6
hours

17 s 49 58 36 171 s 93 98 65 1710 s 99 100 99

3 50 27,242,634 36 hours 22 s 48 86 87 218 s 67 100 100 2288 s 88 100 100

4 40 422,060,801 156.1
hours

11s 15 30 22 106 s 30 80 62 1051 s 37 100 100

 39

(states) with large numbers of edges (state transitions), which increase the amount of interconnectivity, as in

Matrices 1 and 4 (see Appendix B). Matrix characteristics such as high interconnectivity may possibly serve

as impediments to the operation of the node contraction algorithm, causing it to run longer to find all highly-

ranked cut sets. In the case of Matrix 1 which has only 530,432 minimal s-t cut sets, it may actually be more

efficient to enumerate cut sets rather than to generate them probabilistically.

 Despite these significant exceptions, the data shows that it is possible to use the node contraction algorithm

to find a high proportion of critical minimal s-t cut sets between the initial and absorbing states in larger

Markov chains. However, further work is necessary on a wide variety of problems to fully demonstrate

scalability and the ability to handle large, complex Markov chain problems. In addition, further research is

needed to find more effective minimal s-t cut set generation methods that employ probabilistic or heuristic

approaches.

6.4. Discussion and Future Work

In Secs. 3–6, we have discussed four methods of discovering areas of sensitivity within an absorbing Markov

chain representation of a dynamic system. These four approaches are based on use of:

1. A perturbation algorithm of the type described in [7, 42] and overviewed Sec. 3.1 (note: a second

perturbation algorithm is discussed in the next section and presented in Appendix C),

2. A algorithm, such as discussed in Sec. 4 to enumerate all paths between an initial state and an absorbing

state of interest and select state transitions common to all paths,

3. An algorithm that enumerates all minimal s-t cut sets between an initial state and an absorbing state of

interest [33, 35, 48],

4. A robust, probabilistic approach, such as the node contraction algorithm, that generates a high proportion

of the most critical minimal s-t cut sets in significantly less time than cut set enumeration.

The choice of which of the four approaches to use may depend on problem size and circumstances. If the

problem is very small, a perturbation algorithm such as that described in Sec. 3 can be used directly as in [7].

For larger problems, one might apply a path enumeration algorithm to identify all paths to the absorbing state

and then determine if cutting one transition can disconnect all paths. Then one may apply the perturbation

algorithm to a limited number of perturbation combinations determined by the ―from‖ and ―to‖ states of the

single-transition s-t cut(s). For a problem of moderate size for which sufficient time and computational

resources exist, it may be desirable to enumerate all minimal s-t cut sets that disconnect the initial state and

the desired absorbing state. If the problem is larger, or one state transition is insufficient to disconnect all

paths to the absorbing state, a more robust approach, such as the node contraction algorithm, can be applied

to find minimal s-t cut sets with multiple transitions. The perturbation algorithm can then be applied in

parallel to the related TPM rows as was described above to learn the rate of degradation in system

performance. In the next section, we will present an additional approach in which eigendecomposition is used

to identify areas on a Markov chain TPM that are sensitive to perturbation. This fifth approach is intended to

be used in a complementary way with the four methods discussed above.

 With regards to future work on graph-theoretic approaches, methods will be needed to better determine

which of possibly many minimal s-t cut sets are most likely to be important in affecting system performance.

For instance, one may explore different criteria for ranking alternative cut sets, in addition to the criteria

provided in Sec. 6.3. It will also be important to understand how domain expertise might be leveraged in

combination with various criteria for ranking cut sets.

 Another area of future work is the investigation of other scalable methods for finding minimal s-t cut sets

in directed graphs, such as, for instance, adapting alternative approaches to probabilistic node contraction

[34]. Along these lines, it may be possible to combine node contraction with lumping techniques, mentioned

 40

earlier in the section on previous work [10–12], to reduce problem size. By selectively lumping vertices

(states) into clusters, in such a way as to eliminate non-critical state transitions, it may be possible to reduce

the complexity of finding minimal s-t cut sets. Related strategies for simplifying large Markov chains involve

partitioning the graphs into clusters of closely related vertices and exploring cluster connections as possible

minimal s-t cut sets. For this, we may consider adapting the node contraction algorithm or such as that of [54]

and others on graph division. As mentioned earlier, it is also important to extend the analysis to minimal s-t

separating sets, consisting of combinations of multiple trap states and state transitions (even though doing so

will have the effect of increasing problem size rather than reducing it). Separating sets may correspond to

important real-world circumstances that impact system performance.

 Finally, one may also explore other approaches that can be used to generate minimum weight cut sets

between two vertices in a directed graph which do not involve Markov chain analysis. These include, for

instance, adaptation of methods for analysis of network flows [37–39], as mentioned earlier. Here, network

flow theory is used to rank cut sets by their nearness to maximum flow and minimum capacity, rather than the

criteria discussed earlier. To enable such rankings, the work of [55, 56] could be adapted.

 41

7. Theoretical Model of a Markov Chain

The compressed representation of the large-scale grid system as a 7-state Markov chain makes it possible to

search for critical pathways to system failure by examining the paths in the graph induced by the state

transitions. In this section we will discuss an approach based on direct examination of the elements of the

transition probability matrices. Our discussion will yield methods that produce results that are consistent with

results of the methods in the previous sections and thus are, in some sense, complimentary to them. In

particular, we will derive a very good approximation of the proportion of tasks completed based on the

eigendecomposition of the TPMs. We will call this approximation the theoretical model.

7.1 Eigendecomposition of an Absorbing Markov Chain

As mentioned in Sec. 3.1, the state of the system at time step m can be described in terms of a row vector vm

of length seven, where the entry vi gives the proportion of tasks in state si at that time step. Now since there

are 85 time steps per time period, at time step m, the system is in time period tp(m) := [(m − 1) /85 + 1]. Then

the following equation determines the evolution of the Markov system at time period m,

 vm = vm-1 ∙ (7.1)

where is the TPM corresponding to time period tp(m). Recall that row i in this matrix corresponds to

the probabilities of transition of tasks from state si to some state sj. Note that at every time step, the tasks in

state si must transition to some state and thus, the transition probabilities given in row i must sum to 1 for all

i. In other words, the TPMs are stochastic.

 In an absorbing Markov chain, one can classify each of the states of the chain as either transient or

absorbing. A state is termed transient if it is possible to leave that state and is called absorbing otherwise. In

the model of the large-scale grid system, the states Initial, Waiting, Discovering, Negotiating, and Monitoring

are all transient, while the states Tasks Completed and Tasks Failed are absorbing, so called because once the

system arrives in that state, there is zero probability of leaving it. Notice that the transition probability matrix

associated with an absorbing Markov chain can always be taken to have the following form

where Q gives the probabilities of transitioning between transient states, R gives the probabilities of

transitioning from a transient state to an absorbing state, and the zero submatrix represents the fact that it is

impossible to transition from an absorbing state to a transient state [57]. The submatrix I is the l × l identity

matrix where l is the number of absorbing states, which represents the fact that the only transitions from the l

absorbing states are self-transitions. Observe that the transition probability matrices for the grid system

Markov model are already in this form; as we can see from Fig. 3.2(b), the first 5 × 5 submatrix corresponds

to transitions among the transient states, the next 5 × 2 submatrix corresponds to transitions from transient to

absorbing states, the lower left 2 × 5 submatrix is zeros, and the lower right 2 × 2 submatrix is the identity

matrix. This is shown in Fig. 7.1.

 42

Figure 7.1. Canonical form of summary TPM in Fig. 3.2 (b). In this form, Q gives the probabilities of transitioning between

transient states, R gives the probabilities of transitioning from a transient state to an absorbing state, the zero submatrix indicates

that it is impossible to transition from an absorbing state to a transient state, and I is the l × l identity matrix where l is the number of

absorbing states, where the only transitions are self-transitions.

Now, using this special form of the TPM, it is possible to express powers of the matrix in terms of the

submatrices. It follows easily by induction that
S
 is given by

Furthermore, it is possible to express a product of powers of different TPMs again in terms of these

submatrices. Let represent the TPM for the ith time period with submatrices Qi and Ri. Then to calculate

the product of the matrices corresponding to the first m=kS+t time steps, where S is the number of time steps

per time period and t is the number of time steps elapsed in the current (k+1)th period, one may use the

following equation

The submatrix Am is given by

 (7.2)

Here l is the index for the lth time period. Plugging this product of matrices into Eq. (7.2) gives a closed form

equation for the value of the state vector vm with m = kS + t:

Finally, since v0 consists of simply a 1 in the first entry and 0s elsewhere, it follows that the proportion of

tasks completed at time step m is given by the (1, 6) entry of or the (1, 1) entry of the

submatrix Am. Thus, it is vital to examine alternative methods of expressing the submatrix Am.

 First, we examine alternative formulations for the matrices Qi. For the Markov models considered here, we

verified that the eigenvalues of the Qi matrices are distinct. Thus, by the Spectral Theorem, it is possible to

express each Qi in terms of its projections onto each of its eigenspaces [58]. To be more precise, consider the

equation

RQ

I0

Initial Wait Disc Ngt Mon Compl Fail

Initial 0.9997 0 0.0003 0 0 0 0

Wait 0 0.6292 0.0252 0.3441 0 0 0.0015

Disc 0 0.0766 0.6133 0.3101 0 0 0

Ngt 0 0.0378 0.0015 0.0637 0.8710 0 0.0259

Mon 0 0 0 0.0004 0.9883 0.0113 0

Compl 0 0 0 0 0 1.0 0

Fail 0 0 0 0 0 0 1.0

 43

 (7.3)

Suppose the Qi are 5 × 5 matrices with distinct eigenvalues. Thus, there are five distinct values of λ; for the

purposes of this report, the eigenvalues will always be ordered according to their absolute value (or modulus)

of λ that satisfy Eq. (7.3), i.e., . Then, associated with each eigenvalue, there is a

distinct one-dimensional family of vectors y that satisfy the equation, i.e. for a given y that satisfies the

equation for a given λ, every scalar multiple of y will also satisfy the equation for that λ. A column vector y

that satisfies Eq. (7.3) for a given value of λ is known as a right eigenvector corresponding to the eigenvalue

λ. For each of these eigenvalues, there also exists a one-dimensional family of row vectors x that satisfy the

following equation

 (7.4)

The vector x is a left eigenvector corresponding to the eigenvalue λ. Then by the Spectral Theorem [57], since

the eigenvalues of Qi are distinct for all i, it is possible to find a set of left eigenvectors, {x
(j)

}, and a set of

right eigenvectors, {y
(k)

}, such that

Then for each j, the matrix P
(j)

 = y
(j)

x
(j)

 is known as the jth eigenprojection of Q. Notice that due to the

biorthogonality of the eigenvectors, the product of P
(j)

 and P
(k)

 is the zero matrix for j ≠ k. Another

consequence of the Spectral Theorem is that it is then possible to write each matrix Qi in terms of these

eigenprojections:

Furthermore, as a result of the biorthogonality of the eigenvectors, there is a simple expression for any power

of Qi, in particular,

 (7.5)

Since there are 85 time steps per time period in the large-scale grid system, each TPM will be raised to the

85th power by the end of its time period. Observe also that for small values of , this value raised to the

85th power will become negligible; specifically any < 0.88 will contribute a negligible amount to the

calculation of for S = 85. Thus it is sufficient to express using only the leading terms of the sum.

The Qi in the Markov model for the 8 h simulation have three eigenvalues with an absolute value greater than

0.88, so in this case, is approximated as the first three terms of the sum in Eq. (7.5). Meanwhile, the Qi

in the Markov model for the 640 h simulation with load level 75% has only two eigenvalues greater than 0.88

(after the first 6 time periods), and thus the may be approximated with only the first two terms of the

sum.

 Next, we turn to alternative means of representing the submatrix Ri for each of the TPMs . In general, let

 be any transition probability matrix of an absorbing Markov chain. Consider the long-term proportion of

tasks in a given absorbing state sj assuming that all the tasks began in a transient state si. The matrix B = {bij}

with bij equal to the probability of being absorbed into state sj given a beginning in transient state si precisely

(5)(2)(1) λλλ

(j)λ

 44

describes these proportions. The formula for this matrix B is then given in terms of the N fundamental matrix

of and the submatrix R:

where N = (I − Q)
−1

 [10]. Additionally, it is well-known that the long-term proportion of tasks in a particular

absorbing state, given that all the tasks began in state i, is equal to the ith entry of one of the leading two

eigenvectors of the matrix that correspond to the eigenvalue 1, where two eigenvectors are being

considered because there are two absorbing states [10]. In particular, let V be a matrix consisting of the first

two eigenvectors, but with the rows corresponding to the absorbing states removed. It is clear that the entries

of V give exactly the long-term proportion of tasks in a particular absorbing state for each of the different

possible transient starting states, and thus, V = B. Finally, one may solve for R, to find that

Now it is possible to plug the approximation for in terms of its largest eigenvalues and the formula for Ri

into Eq. (7.2). For the 640 h simulation these are the two largest eigenvalues, and for the 8 h simulation they

are the three largest eigenvalues. We will restrict our discussion to the 640 h case because the 8 h case is very

similar. Further simplification is obtained when we make use of the fact that within a given time step, the

product of distinct eigenprojections is zero and each eigenprojection is idempotent, i.e., each eigenprojection

squared is equal to the original eigenprojection. We can then rewrite as:

where the final equation comes from the fact that the sums in the second line are telescoping. Now employing

this reduction, the following formula for Am is obtained:

 (7.6)

Although this formula appears particularly cumbersome, there is much insight to be gained upon closer

examination. This formulation for Am illustrates that the primary quantities that affect Am, and thus affect the

proportion of tasks completed, are and {Vi}, where i ranges from 1 to the number

of time periods; in other words, the leading eigenvalues and associated eigenvectors and projections of the

≈

 45

transient part of the TPM for each period. These quantities largely determine the job completion rate as a

function of time. We can demonstrate this by observing that an approximation of the proportion of completed

tasks using Eq. (7.6) compares very favorably with the results of a large-scale grid simulation or Markov

simulation. Indeed Figs. 7.2–7.5 illustrate the results of approximating the probability of completion using the

(1, 1) entry of Am from Eq. (7.6) plotted against the results of the large-scale simulation and the Markov

model for different lengths of observation time and different system load levels. The effect of perturbations of

the performance of the large-scale grid system can be modeled with good qualitative agreement by

appropriate perturbations of the Markov chain as demonstrated in [7] and in Figs. 7.6–7.9. The discussion in

this section shows that we should be able to use the analytical formula given in Eq. (7.6) instead of the

Markov simulation, as long as the eigenvalues of the perturbed system are distinct and well separated from

the boundary of the unit circle, which is the case in these models. Evaluating the effect of the degree of

perturbation on the proportion of tasks completed is thus substantially faster and easier because this involves

the calculation of eigenvalues and eigenvectors. Moreover, as the discussion of the next subsections will

show, there is a correlation between changes in the eigenvalues and decrease in performance. Thus there is

evidence that they can play a useful role in the development of a methodology for predicting deleterious

perturbations.

Figure 7.2: A comparison of the evolution of the proportion of tasks completed over time for the large-scale simulation, the Markov

model, and the theoretical approximation for a simulated 8 h day with two hours of overtime.

Figure 7.3: A comparison of the evolution of the proportion of tasks completed over time for the large-scale simulation, the Markov

model, and the theoretical approximation for a simulated 640 h duration at a load level of 75%.

 46

7.2 Quantifying Perturbation Effects

The perturbation method employed in the development of the Theoretical Method is similar to that described

in [7]. A number of important differences exist, though, so the precise perturbation procedure for this report

is described in Appendix C. Like the method in [7], this perturbation method is designed to determine the

long-term effects of decreasing (or increasing) certain transition probabilities from a particular state while

proportionally increasing (decreasing) other transition probabilities from that state. The development of the

method described in Appendix C serves to demonstrate that more than one approach to systematic

perturbation of a set to TPMs is possible.

Figure 7.4: A comparison of the evolution of the proportion of tasks completed over time for the large-scale simulation, the Markov

model, and the theoretical approximation for a simulated 640 h duration at a load level of 50%.

Figure 7.5: A comparison of the evolution of the proportion of tasks completed over time for the large-scale simulation, the Markov

model, and the theoretical approximation for a simulated 640 h duration at a load level of 100%.

 47

 IncMonNegDecMonComp.eps

Figure 7.6: A comparison of the large-scale simulation, the Markov model, and the theoretical approximation for the proportion of

tasks completed given an increase in the transition probability from Monitoring to Negotiating and a decrease of weight 0.2 in the

transition from Monitoring to Completion. These results are for a simulated 640 h duration at a load level of 75%.

 IncSelfWaitDecWaitNeg.eps

 Probability of Self-Transition for Discovering

Figure 7.7. A comparison of the large-scale simulation, the Markov model, and the theoretical approximation for the proportion of

tasks completed given an increase in the self-transition probability for Discovering and a decrease of weight 0.2 in the transition

from Discovering to Negotiating. These results are for a simulated 640 h duration with a load level of 75%.

 48

Figure 7.8: A comparison of the large-scale simulation, the Markov model, and the theoretical approximation for the proportion of

tasks completed given a decrease in the transition probability from Negotiating to Monitoring and an increase of weight 1.0 in the

self-transition for Negotiating. These results are for a simulated 640 h duration at a load level of 75%.

Figure 7.9: A comparison of the large-scale simulation, the Markov model, and the theoretical approximation for the proportion of

tasks completed given a decrease in the transition probability from Monitoring to Completion and an increase of weight 1.0 in the

transition from Monitoring to Negotiating. These results are for a simulated 640 h duration at a load level of 75%.

We will now discuss the use of measuring and predicting performance deterioration in the 640 h simulation.

As shown in Sec. 7.1, the primary quantities that impact the proportion of tasks completed are and

 , the first and second leading eigenvalues of the submatrices {Qi }, and , the first and second

leading eigenprojections of the {Qi}, and finally {Vi}, the leading right eigenvector of {Qi }. Here i is the

index of the ith time period. By appropriately quantifying the changes in these quantities caused by a

perturbation, we are able to demonstrate their usefulness in identifying those perturbations that lead to

significant decrease in performance. This section examines some means for quantifying the changes

 and {Vi}, and examines the predictive power of these quantities.

 49

 To quantify the change in the leading two eigenvalues of the Qi submatrices, the mean value of the percent

change in the sum of the first two eigenvalues was calculated. To be more precise, the quantity examined was

given by

 (7.7)

where and are the leading eigenvalues of the perturbed submatrices and N is the number of time

periods. This method for quantifying the change in the leading eigenvalues was chosen because it captured

the magnitude of the change over all the time periods. A similar formula was used to quantify the change in

the leading two eigenprojections of the Qi; for the eigenprojections, the mean value of the percent change in

the norm of the sum of the first two eigenprojections was calculated. In other words, the quantity of interest

was

 (7.8)

where the 2-norm was used, i.e., the norm function calculated the square root of the sum of the squares of the

entries of the matrix. Next, to measure the change in the leading right eigenvector of the , the mean value

of the percent change in the norm of the eigenvector was used, i.e.,

 (7.9)

Additional attempts were made to quantify the total change across the quantities

and {Vi}. One formula considered was the product of the mean percent change in the norm of the

eigenprojections and the mean percent change in the norm of the leading right eigenvector, in other words,

 (7.10)

Another quantity investigated is given by the formula below

 (7.11)

Recall that the quantities and appear throughout Eq. (7.6), which approximates the

proportion of tasks completed. Thus, the value from Eq. (7.11) should be a good measurement of changes in

the proportion of tasks completed.

 50

Table 7.1. Changes in the leading eigenvalues, eigenprojections, eigenvectors, and proportion of tasks completed caused by various

perturbation combinations using the primary decrease perturbation method described in Appendix C. The perturbation

combinations are defined by the choice of sink and primary increase columns with v = 1 and w = 0.5. The table shows the

proportion of tasks completed by the Markov simulation program and indicates whether the perturbation combination corresponded

to a single-transition s-t cut (see sec. 5). The system was simulated over 640 h at a load level of 75%.

*In this perturbation, assigning a weight of 1.0, rather than 0.5, to the primary increase column would ensure no tasks transition to

Monitoring, which corresponds to a single-transition s-t cut along Negotiating  Monitoring. In Sec. 5.1 results are reported for

this perturbation with a weight of 1.0.

(a) r = Waiting

Sink
Column
(c↓)

Primary
increase
column
(c↑)

Diff λi

Eq. (7)
Diff Pi

Eq. (8)
Diff Vi

Eq. (9)
Prod Diff
Pi,Vi

Eq. (10)

Prod Diff
λi * Pi *Vi

Eq (11)

Percent change in
prop. Tasks
Completed

Single-
transition s-t
cut exists

Waiting Discovering 0.00 0.59 0.03 0.02 0.50 +0.06 No

Waiting Negotiating 0.00 1.14 0.23 0.26 1.10 -0.06 No

Discovering Waiting 0.00 0.13 0.07 0.01 0.14 -0.03 No

Discovering Negotiating 0.00 0.07 0.03 0.00 0.08 -0.01 No

Negotiating Waiting 0.59 97.68 40.50 3995.66 87.24 -7.94 No

Negotiating Discovering 0.04 3.84 0.15 0.57 3.48 -0.13 No

(b) r = Discovering

Waiting Discovering 0.01 0.16 0.02 0.00 0.08 +0.04 No

Waiting Negotiating 0.01 0.16 0.02 0.00 0.08 +0.04 No

Discovering Waiting 0.02 0.92 0.04 0.04 0.68 -0.04 No

Discovering Negotiating 0.02 0.93 0.04 0.03 0.70 -0.03 No

Negotiating Waiting 0.03 2.18 0.18 0.38 2.06 -0.27 No

Negotiating Discovering 0.03 2.26 0.40 0.90 2.20 -0.31 No

(c) r = Negotiating

Waiting Discovering 0.00 0.28 0.16 0.05 0.31 +0.09 No

Waiting Negotiating 0.00 0.33 0.17 0.06 0.36 +0.09 No

Waiting Monitoring 0.00 0.37 0.41 0.15 0.45 -0.01 No

Discovering Waiting 0.00 0.02 0.00 0.00 0.02 0.00 No

Discovering Negotiating 0.00 0.01 0.00 0.00 0.02 0.00 No

Discovering Monitoring 0.00 0.13 0.05 0.01 0.15 +0.02 No

Negotiating Waiting 0.00 0.31 0.07 0.02 0.29 +0.04 No

Negotiating Discovering 0.00 0.10 0.00 0.00 0.05 -0.01 No

Negotiating Monitoring 0.00 1.54 1.71 2.64 1.82 -1.66 No

Monitoring Waiting 0.08 76.12 86.00 6546.52 87.04 -100.00 Yes

Monitoring Discovering 0.09 76.21 86.00 6554.38 87.13 -100.00 Yes

Monitoring Negotiating 0.04 76.43 86.00 6572.95 87.04 -100.00 Yes

(d) r = Monitoring

Negotiating Monitoring 0.01 0.48 0.13 0.06 0.52 +0.13 No

Negotiating Tasks Comp 0.01 0.48 0.13 0.06 0.52 -0.13 No

Monitoring Negotiating 14.19 127.40 3.01 383.42 159.05 -2.67* Yes*

Monitoring Tasks Comp 14.37 126.61 2.86 362.30 157.99 -2.58 No

Tasks Comp Negotiating 0.56 3.94 97.51 383.81 97.51 -100.00 Yes

Tasks Comp Monitoring 0.57 3.92 97.51 382.51 97.51 -100.00 Yes

(e) r = Initial

Initial Discovering 18.28 150.91 0.15 22.49 3.39 +2.14 No

Discovering Initial 0.01 0.05 42.75 2.11 42.28 -100.00 Yes

 51

 The values from each of these equations were calculated for each of the possible perturbation combinations

r, c
↓
, and c

↑
. The primary decrease perturbation method was used for these combinations with a value of v =

1, in other words, the (r, c
↓
) entry was perturbed to equal zero in each of the TPMs and the appropriate

increase was then proportionally distributed among the other entries in row r. The values for Eqs. (7.7–7.11)

were only calculated for the TPMs derived from this extreme of the perturbations. The rationale for using the

extreme value of the perturbation was that if decreasing the value of a particular transition probability would

affect the proportion of tasks completed, then cutting off that transition entirely would produce the largest

effect on the proportion of tasks completed. Thus, to predict if decreasing a particular transition probability

will have any effect on the long-term behavior of the grid system, it should suffice to predict if eliminating

that transition will affect long-term behavior. Table 7.1 below summarizes the values obtained from Eqs.

(7.7–7.11) for each of the perturbations along with the absolute value of the percent change in the proportion

of tasks completed. For comparative purposes, the table also shows the results of the minimal s-t cut set

analysis from Sec. 5.

 Performing a multivariable linear regression on the decrease in proportion of tasks completed (shown in

column 8) with the quantities in Eqs. (7.7–7.11) as predictor variables, is a useful way to conceptualize the

results of Table 7.1. The regression coefficients can be used to determine which variables are most

consequential in accounting for these performance drops. We calculated the coefficients, their 95%

confidence intervals, residuals and some goodness of fit statistics. All computations were carried out using

MATLAB 7.4.0 (2007a). Using the data contained in the rows of Table 7.1 we obtained the regression

coefficients shown in Table 7.2, together with the endpoints of the related confidence intervals.

Table 7.2. Coefficients of regression.

 Clearly the coefficient corresponding to Diff λi has the largest magnitude, and therefore we conclude that

the change in eigenvalues has the largest influence in predicting the decrease in system performance.

Although a high accuracy fit of the data is of secondary importance here, we used residuals and the

coefficient of determination, r
2
, as evidence to test the strength of our conclusion. The residuals (see Fig.

7.10) do not show any obvious systematic variation that would undermine the linear regression hypothesis.

The residual values are circled and the vertical lines through them indicate the confidence intervals. Fig. 7.10

shows there are 2 outliers (indicated in red) and the estimated variance is 116.55. The coefficient of

determination for this calculation is r
2
=0.9373, thus the fit is very good but more importantly it suggests that

our conclusion is a reasonable one. We then performed a second computation using just the first three

quantities (Eq. (7.7), (7.8) and (7.9)) as predictor variables. The corresponding coefficients were –1.41383

(for Eq. (7.7)), 0.1863 (for Eq. (7.8)), and −1.2039 (for Eq. (7.9)). Based on the magnitude of the coefficients,

we see that the change in both eigenvalues and eigenvectors are influential. Here the number of outliers

increased to 4, as shown in Fig. 7.11. However, the value of r
2
remained stable at 0.9205, while the estimated

variance rose to 137.19.

Diff λi

Eq. (7)
Diff Pi

Eq. (8)
Diff Vi

Eq. (9)
Prod Diff Pi, Vi

Eq. (10)
Prod Diff λi * Pi *Vi

Eq. (11)

Coefficients of multivariable
linear regression

-6.6057 0.8297 -1.0580 -0.0102 -0.0287

Confidence interval
left Endpoint

-11.0377 0.2799 -1.2970 -0.0181 -0.1871

Confidence interval
right Endpoint

-2.1738 1.3796 -0.8190 -0.0022 0.1296

 52

Figure 7.10. Plot of the residuals and confidence intervals for multilinear regression analysis on the change in proportion of tasks

completed in scenarios shown in Table 7.1, which resulted from perturbation using the primary decrease method. This calculation

was done for 5 predictor variables corresponding to Eqs. (7.7–7.11).

Figure 7.11. Plot of the residuals and confidence intervals for multilinear regression analysis on the change in proportion of tasks

completed in scenarios shown in Table 7.1, which resulted from perturbation using the primary decrease method. This calculation

was done for 3 predictor variables corresponding to Eqs. (7.7–7.9).

5 10 15 20 25 30

-50

-40

-30

-20

-10

0

10

20

Residual Case Order Plot

R
es

id
ua

ls

Case Number

5 10 15 20 25 30

-60

-50

-40

-30

-20

-10

0

10

20

30

40

Residual Case Order Plot

R
es

id
ua

ls

Case Number

 53

Table 7.3 Changes in the leading eigenvalues, eigenprojections, eigenvectors, and proportion of tasks completed caused by various

perturbation combinations using the primary increase method described in Appendix C. The perturbation combinations are defined

by the choice of sink and primary increase columns with w = 0.5. The table shows the proportion of tasks completed by the Markov

simulation program and indicates whether the perturbation combination corresponded to a single-transition s-t cut (see Sec. 5). The

system was simulated over 640 h at a load level of 75%.

1
This perturbation is equivalent to a single-transition s-t cut. This is because as the probability of transition to the state

corresponding to the primary increase column approaches 1, the probability of transition to all other columns goes to 0 – including

the state transition from Negotiating to Monitoring, which is a single-transition s-t cut.
2
As probability of transition from Monitoring to Negotiating approaches 1, all tasks are redirected out of the Monitoring state. This

is the reverse of the Negotiating to Monitoring single-transition s-t cut and is effectively equivalent to it. See Table 7.1 and Sec. 5.1.

(c) r = Negotiating

Waiting Discovering 0.61 103.11 111.189 11465.00 119.05 -100.00 s-t cut1

Waiting Negotiating 0.61 103.11 111.03 11448.00 118.79 -100.00 s-t cut1

Waiting Monitoring 0.61 103.11 111.24 11470.00 118.96 -100.00 s-t cut1

Discovering Waiting 0.63 101.67 104.54 10628.00 113.31 -100.00 s-t cut1

Discovering Negotiating 0.63 101.67 104.52 10626.00 113.21 -100.00 s-t cut1

Discovering Monitoring 0.63 101.67 104.60 10635.00 113.27 -100.00 s-t cut1

Negotiating Waiting 0.95 114.45 115.48 13218.00 123.12 -100.00 trap state

Negotiating Discovering 0.95 114.45 115.00 13163.00 122.76 -100.00 trap state

Negotiating Monitoring 0.95 114.45 114.50 13105.00 122.06 -100.00 trap state

Monitoring Waiting 0.00 2.86 3.39 10.00 3.33 +3.13 No

Monitoring Discovering 0.00 2.84 3.37 10.00 3.31 +3.16 No

Monitoring Negotiating 0.009 2.71 3.20 9.00 3.15 +2.94 No

(d) r = Monitoring

Negotiating Monitoring 0.94 64.96 97.20 6314.00 97.20 -100.00 s-t cut2

Negotiating Tasks Comp s-t cut
Monitoring Negotiating 0.58 2.98 96.35 287.00 96.4007 -100.09 trap state

Monitoring Tasks Comp trap state

Tasks Comp Negotiating 18.46 113.44 0.13 15.00 110.65 +0.13 No

Tasks Comp Monitoring 18.46 113.44 0.13 15.00 110.65 +0.13 No

(e) r = Initial

Initial Discovering 0.01 0.06 43.13 2.00 42.68 -100.00 trap state

Discovering Initial 18.28 251.34 0.57 143.00 3.70 +2.14 No

(a) r = Waiting

Primary
increase
column

(c↑)

Sink
Column
(c↓)

Diff λi

Eq. (7)
Diff Pi

Eq. (8)
Diff Vi

Eq. (9)
Prod Diff
Pi,Vi

Eq. (10)

Prod Diff
λi * Pi *Vi

Eq (11)

Percent change in
prop. Tasks
Completed

Corresponds
to Single-
transition s-t
cut or trap
state

Waiting Discovering 0.63 103.27 44.26 4571.00 92.57 -21.29 No

Waiting Negotiating 0.62 103.27 44.37 4582.00 92.61 -21.29 No

Discovering Waiting 0.02 9.06 8.43 76.00 9.10 -3.58 No

Discovering Negotiating 0.01 13.87 13.59 189.00 13.97 -5.89 No

Negotiating Waiting 0.00 0.87 0.25 0.00 0.82 +0.19 No

Negotiating Discovering 0.00 0.87 0.25 0.00 0.82 +0.19 No

(b) r = Discovering

Waiting Discovering 0.02 0.79 0.18 0.00 0.30 -0.2369 No

Waiting Negotiating 0.02 0.79 0.18 0.00 0.30 -0.2369 No

Discovering Waiting 0.63 96.80 72.01 6970.00 99.17 -100.05 trap state

Discovering Negotiating 0.63 96.80 71.76 6946.00 99.25 -100.05 trap state

Negotiating Waiting 0.02 1.50 0.09 0.00 1.07 +0.05 No

Negotiating Discovering 0.02 1.50 0.09 0.00 1.07 +0.05 No

 54

 A similar analysis was carried out for perturbations generated by the primary increase method with w=0.5.

With this method, the value of transition probability in the (r, c
↑
) entry was increased in increments of 0.01

and the summary value of (r, c
↑
) was recorded. These increases were performed until the last point at which

the summing value of the (r, c
↑
) entry was strictly less than 1. For these perturbations the values of the

quantities from Eqs. (7.7–7.11) are given in Table 7.3 along with the mean percent change in the proportion

of tasks completed for each perturbation combination. As in Table 7.2, a multilinear regression calculation

was carried out on change in proportion of tasks completed for each of the 30 perturbation scenarios indicated

in the rows. The predictor variables are again the values from Eqs. (7.7–7.11). For the 5 variables, the

corresponding regression coefficients were: –0.3038 (for Eq. (7.7)), 0.0284 (for Eq. (7.8)), –1.3038 (for Eq.

(7.9)), 0.003 (for Eq. (7.10)), and 0.0189 (for Eq. (7.11)). The r
2

value or coefficient of determination was

0.9212 while the variance was 236.0. Thus, the linear fit was very good and roughly comparable to that

obtained for the primary decrease method. Fig. 7.12 shows a plot of the residuals together with the confidence

intervals. There are 4 outliers. Thus in the primary increase method, the change in the leading eigenvectors

was most predictive of the drop in tasks completed.

Figure 7.12. Plot of the residuals and confidence intervals for multilinear regression analysis on change in proportion of tasks

completed in scenarios shown in Table 7.3, which resulted from perturbation using the primary increase method. This calculation

was done for 5 predictor variables corresponding to Eqs. (7.7–7.11).

Using just the values from Eqs. (7.7–7.9) (i.e., eliminating the Eq. 7.10 and Eq. 7.11 that are derived from

them), the regression coefficients are: –1.0482 (for Eq. (7.7)), 0.1374 (for Eq. (7.8)), –1.0712 (for Eq. (7.9)).

In the residual plot, the number of outliers (shown in Fig. 7.13) was 3. Here the r
2
value was 0.9106 while the

variance was 247.13.

5 10 15 20 25 30

-60

-50

-40

-30

-20

-10

0

10

20

30

40

Residual Case Order Plot

R
es

id
ua

ls

Case Number

 55

Figure 7.13. Plot of the residuals and confidence intervals for multilinear regression analysis on the change in proportion of tasks

completed in scenarios shown in Table 7.3, which resulted from perturbation using the primary increase method. This calculation

was done for 3 predictor variables corresponding to Eqs. (7.7–7.9).

 In summary we evaluated how predictive the changes in the leading eigenvalues, leading eigenvectors and

eigenprojections of the matrices Qi (see Eq. (7.3) and Sec. 7.1) are of changes in the proportion of tasks

completed by constructing a regression on changes in task completion proportion using the quantities in Eqs.

(7.7–7.11) as independent variables. The regression fit was good as measured by the coefficient of

determination, r
2
, for both the perturbation decrease and the perturbation increase methods. It is reasonable

therefore to consider the use of quantities defined by Eqs. (7.7–7.11), that is, changes in the leading

eigenvalue and eigenvectors of Qi as signals of large deterioration in system performance. In Sec. 5.1 we

demonstrated the predictive power of minimal s-t cut sets in forecasting decreases in the number of task

completions. Indeed, single s-t cut transitions, i.e., single transitions that cut off all paths joining the initial

state to the completion state, are exactly associated with decreases of 100%. Inspection of Tables 7.1 and 7.3

shows that large values for the quantities in Eqs. (7.7–7.11) occur when a single-transition s-t cut or trap state

is present in all cases except one. In the third row of Table 7.1(d), the particular perturbation chosen here

prevents a drop in the proportion of tasks completed by distributing half of the increase weight to the

transition from the state Monitoring to the state Task Completed. This has a compensating effect. Note that

the predictive power is somewhat weaker than that provided by the minimal s-t cut sets in the sense that

elevated values of Eqs. (7.7 –7.11) are necessary but not sufficient conditions for inferring performance loss.

One can see examples in the tables of cases where values are elevated but there is no decrease in the

proportion of tasks completed. Nevertheless, by comparing them with the results of cut set analysis we have

provided additional evidence that the eigenvalue based quantities are effective signals. The existence of

elevated values by themselves indicates that further analysis of the system is warranted. Alternatively,

elevated values can be used as part a suite of measurements of system performance, which include cut set

analysis and fast simulation of the Markov chain model based on the theoretical model. In this chapter we can

see that the results of all three methodologies are largely consistent.

5 10 15 20 25 30

-60

-40

-20

0

20

40

Residual Case Order Plot

R
es

id
u
al

s

Case Number

 56

 57

8. Conclusions

This work presents an advance in our efforts to develop analytical and computational tools for analyzing

dynamic behavior in large-scale distributed computing systems. Building on earlier work in [7, 42] on the

piecewise homogeneous approximation of the large-scale grid computing simulation, we showed how the

application of existing methods in graph theory and the spectral theory of Markov chains can be used to

predict system qualitative behavior by comparing it to a discrete event simulation of the full system.

Furthermore, we demonstrated that the methods discussed in this report greatly reduce the time and effort

required to identify failure scenarios discussed in these earlier papers.

 Our first technique, minimal cut set analysis, is based on the graph topology induced by the Markov chains

that constitute the pieces of the approximation. In our earlier work [7], critical transitions that lead to system

degradation or failure were identified by a perturbation algorithm, which conducted a restricted exhaustive

search based on the systematic perturbation of TPM elements (see Sec. 3.1). The effect of any single

perturbation of a critical transition could be determined by finding the proportion of tasks completed at the

end of an observed time interval. In minimal cut set analysis, described in Secs. 4 and 5 of this report, key

concepts from graph theory are used as a basis to define more efficient methods for finding critical transitions

where perturbation can lead to large performance degradation. In this approach, minimal s-t cut sets are

computed that disconnect all paths through the Markov chain graph from the initial state to a desired

absorbing state. The edges in these cut sets reliably identify the critical state transitions which lead to drastic

performance declines when perturbed. When applied to the Markov chain for the grid system and that of a

second problem, the Abilene network, minimal s-t cut set analysis could be used to find the same critical

transitions as those found by the perturbation algorithm. These critical transitions can then be perturbed

directly to test for performance thresholds. Overall, the minimal cut set analysis approach resulted in a two-

order of magnitude savings in computational cost over the perturbation algorithm.

 To investigate the scalability of this new approach, one method that can be used to find minimal s-t cut

sets—the node contraction algorithm—was applied to graph topologies induced by significantly larger

stochastic matrices than the ones derived from the grid computing system or Abilene network. The results

(Sec. 6) show that, with some exceptions, the node contraction algorithm was able to find a large proportion

of minimal s-t cut sets that contained the most critical transitions in two orders of magnitude less time (20

min or less) than by using a well-known algorithm that was guaranteed to enumerate all minimal s-t cut sets

[33]. Further, the node contraction algorithm was able to find minimal s-t cut sets that consisted of more than

one critical state transition, which the earlier perturbation algorithm [7] was unable to find. The ability to

efficiently analyze large, complex Markov chain problems in which combinations of critical state transitions

can affect system performance is a significant improvement over the earlier perturbation algorithm. This

ability is also likely to be an important factor in the potential use of this approach as a tool for predicting

dynamic behavior in real-world distributed systems.

 The second technique, the ―theoretical method‖ is based on the fact that the total observation time is much

larger than the duration of a single Markov chain step. We developed an accurate approximation of the

probability of task completion (or more generally reaching a desired end state), in terms of the eigenvalues

and eigenvectors associated with the transient part of the Markov chain. Like minimal cut set analysis, this

analysis eliminates much of the computation required by earlier perturbation algorithm described in [7]. This

technique is complementary to the minimal s-t cut set identification methods in the sense that the effect of

any system perturbation (as modeled by a perturbation in the elements of the transition probability matrices)

can be assessed by computing the approximation of the probability of task completion using the theoretical

method. While the methods for identifying minimal s-t cut sets provide a qualitative approach to the

identification of critical transitions in the system, the quantitative effect of perturbing these transitions at a

specific level can be approximated by the theoretical method. Moreover the theoretical method can be used to

test for threshold effects that would not be captured by examining the graph topology alone. In the latter case,

 58

a minimum amount of Markov simulation is applied to critical transitions to obtain quantitative effects and

test for thresholds. The analysis in Sec. 7 shows good comparisons with the results obtained by large-scale

simulation or Markov chain iteration. The analysis also suggests that the theoretical method and minimal s-t

cut set analysis methods are substantially in agreement in identifying single state transitions that may

critically affect system performance.

 Given the existence of rapid and efficient methods for computing the leading eigenvalues and

corresponding eigenvectors of matrices, a natural question arises about how tight a connection there is

between the degree of perturbation of the eigen-elements and degree of performance degradation. Indeed a

very strong correlation would imply that eigen-elements are predictors of system failure and could be used to

identify critical perturbations without using any other method. We found there is a positive but moderate

correlation. However in some cases, large changes in the eigen-elements are not necessarily associated with a

large change in the task completion rate. Thus each critical transition candidate identified by this method

must be subjected to further investigation. Nevertheless, the theoretical method can be used to determine the

effect of these perturbations, once they are identified without resorting to a calculation based on iteration of

the transition probability matrices.

 In summary, we have presented two methods—minimal cut set analysis and the theoretical method—that

exhibit potential for efficient analysis of Markov chain representations of dynamic systems. We have shown

that there is a large degree of consistency between the predictions these methods make, which may argue for

their use as complementary tools in operational settings. While this work is in its beginning stages, the results

to date show promise that both methods can be evolved into practical tools for analysis of complex, large-

scale distributed systems and prediction of dynamic behavior.

 59

9. References

[1] K. Mills, and C. Dabrowski, Investigating Global Behavior in Computing Grids, Lecture Notes in Computer Science 4124, 120–136 (2006).

[2] D. Carr, How Google Works, Baseline Magazine, July 6, 2006, [Web Page], http://www.baselinemag.com, [accessed 7/15/08].

[3] D. Raffo, Grid, redundancy and home-cooked management help site survive, Byte and Switch, November 22, 2006.

[4] B. Chun, and E. Culler, User-centric performance analysis of market-based cluster batch schedulers, Proceedings of the 2nd IEEE

International Symposium on Cluster Computing and the Grid, Berlin Germany, May 2002, p. 30.

[5] C. Yeo, and R. Buyya, Service level agreement based allocation of cluster resources: handling penalty to enhance utility, Proceedings of the

7th IEEE International Conference on Cluster Computing, Boston, USA, September 2005, 27–30.

[6] K. Mills, and C. Dabrowski, Can Economics-based Resource Allocation Prove Effective in a Computation Marketplace? Journal of Grid

Computing 6 (3), 291–311 (2008).

[7] C. Dabrowski, and F. Hunt, Using Markov Chain Analysis to Study Dynamic Behavior in Large-Scale Grid Systems, Seventh Australasian

Symposium on Grid Computing and e-Research (AUSGRID 2009), Wellington, New Zealand, January 2009.

[8] J. Wu, and F. Deng, Finite Horizon Optimal Control of Networked Control Systems with Markov Delays, Proceedings of the Sixth World

Congress on Intelligent Control and Automation, Dalian, China, October 2006, 4513–4517.

[9] D. Feng, D. Wencai, and L. Zhi, New Smith Predictor and Nonlinear Control for Networked Control Systems, Proceedings of the

International MultiConference of Engineers and Computer Scientists (Vol. II), Hong Kong, March 2009, 1148–1153.

[10] J. Kemeny, and J. Snell, Finite Markov Chains, New York, Springer (1976).

[11] M. Siegle, On Efficient Markovian Modelling, Proceedings of the QMIPS Workshop on Stochastic Petri Nets, Sophia Antipolis, France,

November 1992, 213–225.

[12] P. Buchholz, Hierarchical Markovian Models: Symmetries and Reduction, Performance Evaluation 22 (1), 93–100 (1995).

[13] B. Aupperle, and J. Meyer, State space generation for degradable multiprocessor systems, Twenty-First International Symposium on Fault-

Tolerant Computing, 1991 (FTCS-21), Digest of Papers, June 1991, 308–315.

[14] W. Sanders, and J. Meyer, Reduced base model construction methods for stochastic activity networks, IEEE Journal on Selected Areas in

Communications, Special Issue on Computer-Aided Modeling Analysis, and Design of Communication Networks 9 (1), 25–36 (1991).

[15] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, Stochastic Well-Formed Colored Nets and Symmetric Modeling Applications,

IEEE Transactions on Computers 42 (11), 1343–1360 (1993).

[16] W. Obal, and W. Sanders, Measure-adaptive state-space construction, Performance Evaluation 44 (1–4), 237–258 (2001).

[17] M. Jacobi, and O. Gornerup, A Dual Eigenvector Condition for Strong Lumpability of Markov Chains, submitted to Arxiv preprint

arXiv:0710.1986.

[18] P. Schweitzer, Perturbation Theory and Finite Markov Chains, Journal of Applied Probability 5 (2), 401–413 (1968).

[19] F. Delebecque, A Reduction Process for Perturbed Markov Chains, SIAM Journal of Applied Mathematics 43, 325–250 (1983).

[20] C. Meyer, Stochastic Complementation, Uncoupling Markov Chains, and the Theory of Nearly Reducible Systems, SIAM Review 31 (2),

240–272 (1989).

[21] W. Stewart, and M. Dekker, Numerical Solution of Markov Chains, Princeton University Press, Princeton, New Jersey, 1994.

[22] Y. Ho, A Survey of the Perturbation Analysis of Discrete Event Dynamic Systems, Annals of Operations Research 3, 393–402 (1985).

[23] R. Suri, Perturbation Analysis: The State of the Art and Research Issues Explained via the GI/G/l Queue, Proceedings of the IEEE 77 (1),

114–138 (1989).

[24] Y. Ho, and S. Li, Extensions of infinitesimal perturbation analysis, IEEE Transactions on Automation Control AC-33 (5), 427–438 (1988).

http://www.baselinemag.com/

 60

[25] X. Cao, Basic Ideas for Event-Based Optimization of Markov Systems, Discrete Event Dynamic Systems: Theory and Applications 15, 169–

197 (2005).

[26] X. Cao, and J. Zhang, Event-Based Optimization of Markov Systems, IEEE Transactions on Automatic Control 53 (4), 1076–1082 (2008).

[27] M. Benzi, and M. Tuma, A parallel solver for large-scale Markov chains, Applied Numerical Mathematics 41, 135–153 (2002).

[28] D. Fox, Block Cutpoint Decomposition for Markovian Queueing Systems, Applied Stochastic Models and Data Analysis 4 (2), 101–114

(1988).

[29] A. Gambin, P. Kryzanowski, and P. Pokarowski, Aggregation Algorithms for Perturbed Markov Chains With Applications To Networks

Modeling, SIAM Journal of Scientific Computation 31 (1), 45–73 (2008).

[30] G. Hachtel, E. Macii, A. Pardo, and F. Somenzi, Markovian Analysis of Large Finite State Machines, IEEE Transactions On Computer-

Aided Design Of Integrated Circuits And Systems 15 (12), 1479–1493 (1996).

[31] E. Solan, and N. Vielle, Perturbed Markov Chains, Journal of Applied Probability 40, 107–122 (2003).

[32] S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. Ariyoshi, An Algorithm to Enumerate All Cut Sets of a Graph in Linear Time per Cutset,

Journal of the Association of Computing Machinery 27 (4), 619–632 (1980).

[33] S. Provan, and M. Ball, Computing Network Reliability in Time Polynomial in the Number of Cuts, Operations Research 32 (3), 516–526

(1996).

[34] D. Karger, and C. Stein, A New Approach to the Minimum Cut Problem, Journal of the ACM 43, 601–640 (1996).

[35] H. Lin, S. Kuo, and F. Yeh, Minimal cutset enumeration and network reliability evaluation by recursive merge and BDD, Proceedings of the

Eighth IEEE International Symposium on Computers and Communications, Kemer-Antalya, Turkey, June 2003, 1341–1346.

[36] Z. Tang, and J. Dugan, Minimal cut set/sequence generation for dynamic fault trees, Proceedings of the 2004 Annual Symposium on

Reliability and Maintainability (RAMS), Los Angeles, CA, January, 2004, 207–213.

[37] L. Ford, and D. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, (1962).

[38] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD (1979).

[39] A. Goldberg, and R. Tarjan, A New Approach to the Maximum-Flow Problem, Journal of the Association for Computing Machinery 35 (4),

921–940 (1988).

[40] K. Mills, J. Filliben, D. Cho, E. Schwartz, and D. Genin, Study of Proposed Internet Congestion-Control Mechanisms, NIST Special

Publication 500–282, National Institute of Standards and Technology: Gaithersburg, MD, May 2010.

[41] D. Rosenberg, E. Solan, and N. Vielle, Approximating A Sequence of Observations By A Simple Process, The Annals of Statistics 32 (6),

2742–2775 (2004).

[42] C. Dabrowski, and F. Hunt, Markov Chain Analysis for Large-Scale Grid Systems, Interagency Report 7566, National Institute of Standards

and Technology: Gaithersburg, MD, April 2009.

[43] Measurement Science for Complex Systems, National Institute of Standards and Technology,

 http://www.nist.gov/itl/antd/emergent_behavior.cfm. November 2010.

[44] J. Hayakawa, S. Tsukiyama, and H. Ariyoshi, Generation of Minimal Separating Sets of Graphs, IEICE Transaction Fundamentals E82-A

(5), 775–783 (1999).

[45] L. Fratta, and U. Montanari, A Vertex Elimination Algorithm for Enumerating all Simple Paths in a Graph, Networks 5, 151–177 (1975).

[46] B. Banerjee, and B. Chandrasekaran, A framework for planning multiple paths in free space, Proceedings of the 25th Army Science

Conference, Orlando, FL, November, 2006.

[47] D. Karger, A Randomized Fully Polynomial Time Approximation Scheme for the All-Terminal Network Reliability Problem, SIAM Review

43 (3), 499–522 (2001).

[48] L. Yan, H. Taha, and T. Landers, A Recursive Approach for Enumerating Minimal Cutsets in a Network, IEEE Transactions on Reliability

43 (3), 383–387 (1994).

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9034
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9034
http://www.nist.gov/itl/antd/emergent_behavior.cfm

 61

[49] RW136: Markov Chain Transition Matrix, National Institute of Standards and Technology, [Web page],

http://math.nist.gov/MatrixMarket/data/NEP/mvmrwk/rw136.html#set, [accessed 8/09].

[50] F. Hunt, A Monte Carlo Approach To The Approximation of Invariant Measures, Random and Computational Dynamics 2 (1), 111–122

(1994).

[51] R. Jensen, and E. Jessup, Statistical Properties of the Circle Map, Journal of Statistical Physics 43 (1–2), 369–389 (1986).

[52] A. Boyarksy, A matrix method for estimating the Liapunov exponent of one-dimensional systems, Journal of Statistical Physics 50 (1–2),

213–229 (1988).

[53] S. Grossmann, and S. Thomae, Invariant Distributions and Stationary Correlations of One-Dimensional Discrete Processes. Zeitschrift für

Naturforschung, 32a, 1353–1363 (1997).

[54] R. Tarjan, Depth-first Search and Liner Gaph Algortihms, SIAM Journal of Computation 1 (2), 146–160 (1972).

[55] N. Curet, J. DeVinney, and M. Gaston, An Efficient Network Flow Code for Finding all Minimum Cost s-t Cutsets, Computers &

Operations Research 29, 205–219 (2002).

[56] A. Balcioglu, and K. Wood, Enumerating Near-Min s-t Cuts, in Network Interdiction and Stochastic Integer Programming, D. L.

Woodruff, ed., Kluwer Academic Publishers, 21–49, 2003.

[57] S. Karlin, A First Course in Stochastic Processes, Academic Press, New York, 1966.

[58] J. Hunter, Mathematical Techniques of Applied Probability, Vol. I, Academic Press, New York (1983) pp. 144–145.

http://math.nist.gov/MatrixMarket/data/NEP/mvmrwk/rw136.html#set

 62

 63

Appendix A. Node Contraction Algorithm

/* Procedure for generating minimal s-t cut set of a directed graph. Procedure accepts a TPM and identifiers

for the start state and absorbing state. It randomly selects two vertices, combines them into one vertex whose

out arcs are the combined out arcs of the two combined vertices. It ensures start and absorbing vertices are

never in the same combined vertex. Procedure repeats until two vertices are left, and minimal s-t cut sets are

then generated. */

Procedure PerformContraction (float TPM[*][*], integer startState, absorbingState, matrixOrder)

 returning set (cut set members)

boolean notContractible [matrixOrder]; /* if TRUE, vertex has already been contracted or has been

 denoted as being not contractible */

integer contractionRecord [matrixOrder]; /* Array in which vertex denoted by index value has been

 contracted into vertex denoted by value in array element */

integer toBeContracted /* Vertex that is to be contracted into intoVertex */

integer intoVertex /* Vertex that toBeContracted is contracted into */

integer verticesLeft; /* Number vertices left to be contracted */

 /* Begin by initializing */

verticesLeft = matrixOrder;

notContractible [startState] = TRUE;

notContractible [absorbingState] = TRUE;

 forever /* Loop repeats contractions until only two vertices are left */

 {

 forever /* Loop to select eligible pair of vertices to contract */

 {

 /* Randomly select next proposed vertex from 1..matrixOrder to contract */

 toBeContracted = selectRandom (1, matrixOrder);

 /* If this vertex has already been contracted, retry (continue to next iteration of forever loop)*/

 if (notContractible [toBeContracted]) continue;

 /* Otherwise, mark vertex to be contracted and select vertex into which to contract BeContracted. */

 notContractible [toBeContracted] = TRUE;

 intoVertex = getContractedInto (toBeContracted, notContractible, TPM);

 /* Check if proposed contraction causes start and absorbing states to be contracted into same vertex.

 If so, unmark proposed vertex, and select again */

 contractionConflict = checkContractionConflict (toBeContracted, intoVertex, contractionRecord,

 startState, AbsorbingState);

 if (contractionConflict)

 { notContractible [toBeContracted] = FALSE;

 continue ; }

 } /* end of forever loop to select pair of vertices to contract */

/* procedure continues on next page */

 64

 /* Procedure PerformContraction continued */

 /* Perform contraction operation */

 contractVertices (toBeContracted, intoVertex, contractedMatrix, matrixOrder);

 contractionRecord [toBeContracted] = intoVertex;

 /* Decrement number of vertices left that can be contracted. If number left = 2, break from loop */

 verticesLeft = verticesLeft – 1;

 if (verticesLeft == 2) break;

 } /* End of forever loop that repeats contractions until only two vertices are left */

 /* Retrieve cut set that exists between two remaining vertices. */

 NewCutSet = getCutSet (notContractible, contractionRecord);

/* ensure cut set disconnects that graph and that it is minimal */

 If (verifyCutSet (NewCutSet, TPM)

 {minimalizeCutSet (newCutSet)

 return NewCutSet;

 }

 else

 return NULL;

END

} /* end Procedure PerformContraction () */

 65

/* Procedure that randomly select of adjoining vertex that toBeContracted will be contracted into

 and with which toBeContracted has a state transition. */

procedure getContractedInto (integer toBeContracted, boolean notContractible[*], float TPM [*][*])

 returning integer

{ integer proposedVertex; /* Candidate vertex selected for contraction into. */

 integer linked [matrixOrder]; /* Identifies candidate vertices to contract into: i.e., vertices

 that are yet uncontracted with which vertex

 toBeContracted has arcs. */

 float numLinks; /* Number of vertices in linked */

 integer state, k, nthState; /* Counters and index variables*/

/* Populate linked array with candidate vertices with arcs that indicate transitions with state

 toBeContracted and that have not previously been contracted. */

 for (state = 1 to matrixOrder)

 if (((TPM [state, toBeContracted] > 0) or (TPM [toBeContracted, state] > 0)) and

 (not notContractible [state]) and

 (not (state == toBeContracted)))

 { k = k + 1;

 linked [k] = state;

 numLinks = numLinks + 1;

 }

 /* Randomly pick nth state from 1..numLinks to be proposed state that toBeContracted will be

 contracted into. Proposed state to be returned is nth value of linked array. */

 nthState = random (1, numLinks);

 proposedState = linked [nthState];

 return proposedState;

} // procedure getContractedInto

 66

/* Checks to see record of contraction indicates that StartState and Absorbing State have been contracted into

the same vertex. If so, returns TRUE. Accepts identifier of vertex toBeContracted, vertex into which

contraction occurs (intoVertex), and start and target states for s-t cut set. Current contraction record

(contractionRecord) is an array for which index value identifies vertex that has been contracted and array

element value identifies what which vertex the contracted vertex has been taken up into. */

procedure checkContractionConflict (integer toBeContracted, intoVertex, StartState, TargetState,

 integer contractionRecord [*])

 returning boolean

{

 integer followVertex; // next vertex in chain of contractions

 integer vStartState, // previous (last) vertex that was contracted into for start state

 integer vTargetState; // previous (last) vertex that was contracted into for target state

 integer pContractionRecord [matrixOrder]; // proposed contraction record if toBeContracted is contracted

/* First, create proposed contraction record in which toBeContracted is contracted into intoVertex. */

 for (i = 1; i <= matrixOrder) pContractionRecord [i] = contractionRecord [i];

 draftContractionRecord [toBeContracted] = intoVertex;

/* Follows chain of contraction for start state to find vertex into which start state in currently contracted */

 followVertex=StartState;

 forever

 { vStartState=followVertex;

 if (pContractionRecord [followVertex] == 0) break;

 followVertex = draftContractionRecord [followVertex];

 }

/* Follows chain of contraction for start state to find vertex into which start state in currently contracted */

 followVertex= TargetState;

 forever

 { vTargetState=followVertex;

 if (pContractionRecord [followVertex] == 0) break;

 followVertex = draftContractionRecord [followVertex];

 }

/* return value of boolean proposition that vertex into which Start State and Target State

 were contracted into are equal */

return (vTargetState == vStartState);

} // procedure checkContractionConflict

 67

/* Procedure to modify TPM so that arcs going into and out of vertex toBeContracted now go into and out

of vertex intoVertex . */

 procedure contractVertices (integer toBeContracted, intoVertex,

 inout float TPM [*][*], integer matrixOrder)

 {

 float probabilityOfTransition;

 /* Modify TPM to connect arcs going into toBeContracted so that they go into intoVertex */

 for (i =1; i <= matrixOrder)

 if (TPM [toBeContracted, i] > 0)

 { probabilityOfTransition = TPM [toBeContracted , i];

 TPM [intoVertex, i] = TPM [intoVertex, i] + probabilityOfTransition;

 TPM [toBeContracted, i]=0;

 }

/* Modify TPM to connect arcs going from toBeContracted so that they go from intoVertex */

 for (i =1; i <= matrixOrder)

 if (TPM [i, toBeContracted] > 0)

 {TPM [i, intoVertex] = TPM [i, intoVertex] + TPM [i, toBeContracted];

 TPM [i, toBeContracted]=0;

 }

/* Zero out self-transition probability */

 TPM [intoVertex, intoVertex] = 0;

 } // procedure contractVertices

 68

/* Retrieves and returns cut set that exists between two remaining vertexs. */

procedure getCutSet (boolean notContractible [*], integer contractionRecord)

 returning cutSet

{

 integer vertex1, vertex2; /* two remaining vertices in contracted graph */

 /* Identify two remaining vertices in contracted graph */

 for (i =1 to matrixOrder)

 if (not notContractible [i])

 { vertex1 = i;

 break;

 }

 for (j =i to matrixOrder)

 if (not notContractible [j])

 { vertex2 = j;

 break;

 }

arcSet1 = retrieveLinks (vertex1, vertex2, TPM, contractionRecord);

arcSet2 = retrieveLinks (vertex2, vertex1, TPM, contractionRecord);

cutSet = mergeArcSets (arcSet1, arcSet2);

return cutSet;

} // procedure getCutSet

 69

/* Recursive procedure to retrieve vertices that were contracted into vertex2 via vertex1 and

 store their cumulative arcs in the cut set that is returned */

procedure retrieveLinks (integer vertex1, vertex2, float TPM [*][*], integer contractionRecord [*])

 returning arcSet

{ integer state;

 set arcSet, arcSetA, arcSetB;

/* Add all non-duplicate arcs from vertex2 to vertex1 into cut set */

 if (TPM [vertex1, vertex2] > 0)

 { if (not duplicateArc (vertex2  vertex1))

 place (vertex2  vertex1) into arcSet;

 }

/* Add all non-duplicate arcs from vertex1 to vertex2 into cut set */

 if (TPM [vertex2, vertex1] > 0)

 { if (not duplicateArc (vertex1  vertex2))

 place (vertex1  vertex2) into arcSet;

 }

 /* Recurse on vertex2 and vertex1 to follow chain of vertex contractions */

 for (state = 1; state <=matrixOrder)

 { if (contractionRecord [state] = vertex1)

 arcSetA = retrieveLinks (state, vertex2, TPM, contractionRecord);

 if (contractionRecord [state] ==vertex2)

 arcSetB = retrieveLinks (vertex1, state, TPM, contractionRecord);

 }

 arcSet = mergeArcSets (arcSetA, arcSetB);

 return arcSet;

} // procedure retrieveLinks

 70

 71

Appendix B. Four Transition Test Probability Matrices

For all matrices, row and column numbers are provided in margins. Non-zero elements represent state

transitions and are shaded. In a state transition, the from state is read along the row, and the to state is read

along the column.

B.1 Matrix 1

A matrix of order 50 generated from [51] using [50]. State 50 has been made the absorbing state. Note that

four states, 2, 3, 25, and 26 each have at least 10 transitions to other states, state 24 has 7 transitions to other

states, while all other states have a single-transition to either state 1 or the absorbing state, state 50. Thus, this

TPM exhibits a high degree of interconnectivity. Only 530, 432 minimal s-t cut sets were found.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 0.68 0.02 0 0.02 0.02 0.04 0.04 0 0.02 0 0.02 0 0.04 0.04 0.02 0 0.02 0.02 0 1

2 0.04 0.02 0 0 0.02 0.02 0 0.02 0 0 0.02 0.02 0.02 0 0.02 0 0 0.02 0.02 0.02 0.02 0.04 0 0.06 0.02 0 0.6 2

3 0 1 3

4 0 1 4

5 0 1 5

6 0 1 6

7 0 1 7

8 0 1 8

9 0 1 9

10 1 10

11 0 1 11

12 0 1 12

13 0 1 13

14 0 1 14

15 0 1 15

16 0 1 16

17 0 1 17

18 0 1 18

19 0 1 19

20 1 20

21 0 1 21

22 0 1 22

23 0 1 23

24 0.02 0.04 0 0.04 0 0 0.02 0.02 0.02 0.84 24

25 0.36 0 0.04 0 0 0.04 0.04 0.04 0.02 0 0.04 0 0.04 0.02 0.02 0.06 0 0.02 0.06 0.02 0.02 0 0.02 0 0.02 0 0.02 0.04 0 0 0 0 0.02 0.02 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0 0 0 25

26 0.64 0.02 0 0.02 0.04 0 0.02 0 0 0.04 0.02 0.04 0 0 0.04 0.02 0 0 0.02 0 0.06 0.02 0 26

27 1 0 27

28 1 0 28

29 1 0 29

30 1 0 30

31 1 0 31

32 1 0 32

33 1 0 33

34 1 0 34

35 1 0 35

36 1 0 36

37 1 0 37

38 1 0 38

39 1 0 39

40 1 0 40

41 1 0 41

42 1 0 42

43 1 0 43

44 1 0 44

45 1 0 45

46 1 0 46

47 1 0 47

48 1 0 48

49 1 0 49

50 1 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

 72

Non-zero TPM elements are listed below.

 (1,1) 0.680000
(1,2) 0.020000

(1,4) 0.020000

(1,5) 0.020000

(1,6) 0.040000

(1,7) 0.040000

(1,9) 0.020000

(1,11) 0.020000

(1,13) 0.040000

(1,14) 0.040000

(1,15) 0.020000

(1,17) 0.020000

(1,18) 0.020000

(2,24) 0.040000

(2,25) 0.020000

(2,28) 0.020000

(2,29) 0.020000

(2,31) 0.020000

(2,34) 0.020000

(2,35) 0.020000

(2,36) 0.020000

(2,38) 0.020000

(2,41) 0.020000

(2,42) 0.020000

(2,43) 0.020000

(2,44) 0.020000

(2,45) 0.040000

(2,47) 0.060000

(2,48) 0.020000

(2,50) 0.600000

(3,50) 1.000000

(4,50) 1.000000

(5,50) 1.000000

(6,50) 1.000000

(7,50) 1.000000

(8,50) 1.000000

(9,50) 1.000000

(10,50) 1.000000

(11,50) 1.000000

(12,50) 1.000000

(13,50) 1.000000

(14,50) 1.000000

(15,50) 1.000000

(16,50) 1.000000

(17,50) 1.000000

(18,50) 1.000000

(19,50) 1.000000

(20,50) 1.000000

(21,50) 1.000000

(22,50) 1.000000

(23,50) 1.000000

(24,41) 0.020000

(24,42) 0.040000

(24,44) 0.040000

(24,47) 0.020000

(24,48) 0.020000

(24,49) 0.020000

(24,50) 0.840000

(25,1) 0.360000

(25,3) 0.040000

(25,6) 0.040000

(25,7) 0.040000

(25,8) 0.040000

(25,9) 0.020000

(25,11) 0.040000

(25,13) 0.040000

(25,14) 0.020000

(25,15) 0.020000

(25,16) 0.060000

(25,18) 0.020000

(25,19) 0.060000

(25,20) 0.020000

(25,21) 0.020000

(25,23) 0.020000

(25,25) 0.020000

(25,27) 0.020000

(25,28) 0.040000

(25,33) 0.020000

(25,34) 0.020000

(25,40) 0.020000

(26,1) 0.640000

(26,2) 0.020000

(26,4) 0.020000

(26,5) 0.040000

(26,7) 0.020000

(26,10) 0.040000

(26,11) 0.020000

(26,12) 0.040000

(26,15) 0.040000

(26,16) 0.020000

(26,19) 0.020000

(26,21) 0.060000

(26,22) 0.020000

(27,1) 1.000000

(28,1) 1.000000

(29,1) 1.000000

(30,1) 1.000000

(31,1) 1.000000

(32,1) 1.000000

(33,1) 1.000000

(34,1) 1.000000

(35,1) 1.000000

(36,1) 1.000000

(37,1) 1.000000

(38,1) 1.000000

(39,1) 1.000000

(40,1) 1.000000

(41,1) 1.000000

(42,1) 1.000000

(43,1) 1.000000

(44,1) 1.000000

(45,1) 1.000000

(46,1) 1.000000

(47,1) 1.000000

(48,1) 1.000000

(49,1) 1.000000

(50,50) 1.000000

 73

B.2 Matrix 2

A matrix of order 50 generated from [52] using [50]. State 50 has been made the absorbing state. In this case,

no state has more than 3 transitions to any other state. There were 28,230,288 minimal s-t cut sets found.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 0.48 0.52 0 1

2 0.56 0.44 0 2

3 0.46 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

4 0.4 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

5 0.46 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

6 0.58 0.42 0 0 0 0 0 0 0 0 0 0 0 0 0 6

7 0.58 0.42 0 0 0 0 0 0 0 0 0 0 0 7

8 0.54 0.46 0 0 0 0 0 0 0 0 0 8

9 0.54 0.46 0 0 0 0 0 0 0 9

10 0.5 0.5 0 0 0 0 0 10

11 0.64 0.36 0 0 0 11

12 0.54 0.46 0 12

13 0 1 13

14 0.4 0.6 14

15 0.38 0.62 0 15

16 0.48 0.52 0 0 16

17 0.54 0.46 0 0 0 17

18 0.42 0.58 0 0 0 0 18

19 0.5 0.5 0 0 0 0 0 19

20 0.58 0.42 0 0 0 0 0 0 20

21 0.42 0.58 0 0 0 0 0 0 0 21

22 0.48 0.52 0 0 0 0 0 0 0 0 22

23 0.5 0.5 0 0 0 0 0 0 0 0 0 23

24 0.5 0.5 0 0 0 0 0 0 0 0 0 0 24

25 0.46 0.54 0 0 0 0 0 0 0 0 0 0 0 25

26 0.2 0.6 0.2 0 0 0 0 0 0 0 0 0 0 0 0 26

27 0.22 0.58 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27

28 0.22 0.58 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28

29 0.36 0.5 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29

30 0.22 0.56 0.22 0 30

31 0.36 0.42 0.22 0 31

32 0.26 0.5 0.24 0 32

33 0.22 0.44 0.34 0 33

34 0.26 0.44 0.3 0 34

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.64 0.16 0 35

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34 0.46 0.2 0 36

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0.26 0.5 0.24 0 37

38 0 0 0 0 0 0 0 0 0 0 0 0 0.66 0.34 0 38

39 0 0 0 0 0 0 0 0 0 0 0 1 0 39

40 0 0 0 0 0 0 0 0 0 0 1 0 40

41 0 0 0 0 0 0 0 0 0 1 0 41

42 0 0 0 0 0 0 0 0 1 0 42

43 0 0 0 0 0 0 0 1 0 43

44 0 0 0 0 0 0 1 0 44

45 0 0 0 0 0 1 0 45

46 0 0 0 0 1 0 46

47 0 0 0 1 0 47

48 0 0 1 0 48

49 0 1 0 49

50 1 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

 74

Non-zero TPM elements are listed below.

(1,26) 0.480000

(1,27) 0.520000

(2,28) 0.560000

(2,29) 0.440000

(3,30) 0.460000

(3,31) 0.540000

(4,32) 0.400000

(4,33) 0.600000

(5,34) 0.460000

(5,35) 0.540000

(6,36) 0.580000

(6,37) 0.420000

(7,38) 0.580000

(7,39) 0.420000

(8,40) 0.540000

(8,41) 0.460000

(9,42) 0.540000

(9,43) 0.460000

(10,44) 0.500000

(10,45) 0.500000

(11,46) 0.640000

(11,47) 0.360000

(12,48) 0.540000

(12,49) 0.460000

(13,50) 1.000000

(14,49) 0.400000

(14,50) 0.600000

(15,48) 0.380000

(15,49) 0.620000

(16,47) 0.480000

(16,48) 0.520000

(17,46) 0.540000

(17,47) 0.460000

(18,45) 0.420000

(18,46) 0.580000

(19,44) 0.500000

(19,45) 0.500000

(20,43) 0.580000

(20,44) 0.420000

(21,42) 0.420000

(21,43) 0.580000

(22,41) 0.480000

(22,42) 0.520000

(23,40) 0.500000

(23,41) 0.500000

(24,39) 0.500000

(24,40) 0.500000

(25,38) 0.460000

(25,39) 0.540000

(26,36) 0.200000

(26,37) 0.600000

(26,38) 0.200000

(27,34) 0.220000

(27,35) 0.580000

(27,36) 0.200000

(28,32) 0.220000

(28,33) 0.580000

(28,34) 0.200000

(29,30) 0.360000

(29,31) 0.500000

(29,32) 0.140000

(30,28) 0.220000

(30,29) 0.560000

(30,30) 0.220000

(31,26) 0.360000

(31,27) 0.420000

(31,28) 0.220000

(32,24) 0.260000

(32,25) 0.500000

(32,26) 0.240000

(33,22) 0.220000

(33,23) 0.440000

(33,24) 0.340000

(34,20) 0.260000

(34,21) 0.440000

(34,22) 0.300000

(35,18) 0.200000

(35,19) 0.640000

(35,20) 0.160000

(36,16) 0.340000

(36,17) 0.460000

(36,18) 0.200000

(37,14) 0.260000

(37,15) 0.500000

(37,16) 0.240000

(38,13) 0.660000

(38,14) 0.340000

(39,12) 1.000000

(40,11) 1.000000

(41,10) 1.000000

(42,9) 1.000000

(43,8) 1.000000

(44,7) 1.000000

(45,6) 1.000000

(46,5) 1.000000

(47,4) 1.000000

(48,3) 1.000000

(49,2) 1.000000

(50,50) 1.000000

 75

B.3 Matrix 3

This matrix of order 50 is a subset of the 136 × 136 [49] described in Sec. 6.2.2. It was obtained by taking the

first 50 states of that matrix. State 50 has been made the absorbing state. In this case, no state has more than 4

transitions to any other state. There were 27,242,634 minimal s-t cut sets found.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 1

2 0.07 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 2

3 0 0.13 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 3

4 0 0 0.20 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 4

5 0 0 0 0.27 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 5

6 0 0 0 0 0.33 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 6

7 0 0 0 0 0 0.40 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 7

8 0 0 0 0 0 0 0.47 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 8

9 0 0 0 0 0 0 0 0.53 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 9

10 0 0 0 0 0 0 0 0 0.60 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 10

11 0 0 0 0 0 0 0 0 0 0.67 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 11

12 0 0 0 0 0 0 0 0 0 0 0.73 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 12

13 0 0 0 0 0 0 0 0 0 0 0 0.80 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 13

14 0 0 0 0 0 0 0 0 0 0 0 0 0.87 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 14

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.93 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 16

17 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17

18 0 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18

19 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19

20 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

21 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21

22 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 22

23 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 23

24 0 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 24

25 0 0 0 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 25

26 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0 26

27 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 27

28 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 28

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0 0 0 29

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0 0 0 30

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50 31

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 32

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 33

34 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0.37 0 0 34

35 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 35

36 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0.20 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0.30 36

37 0.32 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0 0.36 0 0 0 0 0 0 0 0 0 0 0 0 37

38 0.35 0 0 0 0 0 0 0 0 0 0 0 0 0.35 0 0.30 0 0 0 0 0 0 0 0 0 0 0 38

39 0.38 0 0 0 0 0 0 0 0 0 0 0 0 0.38 0 0.25 0 0 0 0 0 0 0 0 0 0 39

40 0.40 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0.20 0 0 0 0 0 0 0 0 0 40

41 0.42 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0 0.15 0 0 0 0 0 0 0 0 41

42 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0.44 0 0.11 0 0 0 0 0 0 0 42

43 0.46 0 0 0 0 0 0 0 0 0 0 0 0 0.46 0 0.07 0 0 0 0 0 0 43

44 0.48 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0 0 0.03 0 0 0 0 44

45 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 45

46 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 46

47 0.21 0 0 0 0 0 0 0 0 0 0 0 0.21 0 0.58 0 0 47

48 0.25 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0.50 0 48

49 0.29 0 0 0 0 0 0 0 0 0 0 0 0.29 0 0.43 49

50 1.00 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

 76

Non-zero TPM elements are listed below.

(1,2) 0.500000

(1,17) 0.500000

(2,1) 0.066667

(2,3) 0.466667

(2,18) 0.466667

(3,2) 0.133333

(3,4) 0.433333

(3,19) 0.433333

(4,3) 0.200000

(4,5) 0.400000

(4,20) 0.400000

(5,4) 0.266667

(5,6) 0.366667

(5,21) 0.366667

(6,5) 0.333333

(6,7) 0.333333

(6,22) 0.333333

(7,6) 0.400000

(7,8) 0.300000

(7,23) 0.300000

(8,7) 0.466667

(8,9) 0.266667

(8,24) 0.266667

(9,8) 0.533333

(9,10) 0.233333

(9,25) 0.233333

(10,9) 0.600000

(10,11) 0.200000

(10,26) 0.200000

(11,10) 0.666667

(11,12) 0.166667

(11,27) 0.166667

(12,11) 0.733333

(12,13) 0.133333

(12,28) 0.133333

(13,12) 0.800000

(13,14) 0.100000

(13,29) 0.100000

(14,13) 0.866667

(14,15) 0.066667

(14,30) 0.066667

(15,14) 0.933333

(15,17) 0.033333

(15,31) 0.033333

(16,15) 1.000000

(17,2) 0.066667

(17,18) 0.466667

(17,32) 0.466667

(18,3) 0.066667

(18,17) 0.066667

(18,19) 0.433333

(18,33) 0.433333

(19,4) 0.100000

(19,18) 0.100000

(19,20) 0.400000

(19,34) 0.400000

(20,5) 0.133333

(20,19) 0.133333

(20,21) 0.366667

(20,35) 0.366667

(21,6) 0.166667

(21,20) 0.166667

(21,22) 0.333333

(21,36) 0.333333

(22,7) 0.200000

(22,21) 0.200000

(22,23) 0.300000

(22,37) 0.300000

(23,8) 0.233333

(23,22) 0.233333

(23,24) 0.266667

(23,38) 0.266667

(24,9) 0.266667

(24,23) 0.266667

(24,25) 0.233333

(24,39) 0.233333

(25,10) 0.300000

(25,24) 0.300000

(25,26) 0.200000

(25,40) 0.200000

(26,11) 0.333333

(26,25) 0.333333

(26,27) 0.166667

(26,41) 0.166667

(27,12) 0.366667

(27,26) 0.366667

(27,28) 0.133333

(27,42) 0.133333

(28,13) 0.400000

(28,27) 0.400000

(28,29) 0.100000

(28,43) 0.100000

(29,14) 0.433333

(29,28) 0.433333

(29,30) 0.066667

(29,44) 0.066667

(30,15) 0.466667

(30,29) 0.466667

(30,32) 0.033333

(30,45) 0.033333

(31,16) 0.500000

(31,30) 0.500000

(32,18) 0.133333

(32,33) 0.433333

(32,46) 0.433333

(33,19) 0.100000

(33,32) 0.100000

(33,34) 0.400000

(33,47) 0.400000

(34,20) 0.133333

(34,33) 0.133333

(34,35) 0.366667

(34,48) 0.366667

(35,21) 0.166667

(35,34) 0.166667

(35,36) 0.333333

(35,49) 0.333333

(36,22) 0.200000

(36,35) 0.200000

(36,37) 0.300000

(36,50) 0.300000

(37,23) 0.318182

(37,36) 0.318182

(37,38) 0.363636

(38,24) 0.347826

(38,37) 0.347826

(38,39) 0.304348

(39,25) 0.375000

(39,38) 0.375000

(39,40) 0.250000

(40,26) 0.400000

(40,39) 0.400000

(40,41) 0.200000

(41,27) 0.423077

(41,40) 0.423077

(41,42) 0.153846

(42,28) 0.444444

(42,41) 0.444444

(42,43) 0.111111

(43,29) 0.464286

(43,42) 0.464286

(43,44) 0.071429

(44,30) 0.482759

(44,43) 0.482759

(44,46) 0.034483

(45,31) 0.500000

(45,44) 0.500000

(46,33) 0.333333

(46,47) 0.666667

(47,34) 0.210526

(47,46) 0.210526

(47,48) 0.578947

(48,35) 0.250000

(48,47) 0.250000

(48,49) 0.500000

(49,36) 0.285714

(49,48) 0.285714

(49,50) 0.428571

(50,50) 1.000000

 77

B.4 Matrix 4

A matrix of order 50 generated from [53] using [50]. State 40 has been made the absorbing state. Note that

three states, 4, 5, 36, and 37 each have at least 7 transitions to other states. Like Matrix 1, this matrix is highly

connected, but 422,060,801 minimal s-t cut sets were found.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0.51 0.48 0.01 0 1

2 0 0 0.38 0.43 0.19 0 2

3 0 0 0 0 0.13 0.30 0.38 0.19 0 3

4 0 0 0 0 0 0 0 0.10 0.22 0.17 0.23 0.15 0.08 0.06 0.01 0 4

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.04 0.02 0 0 0 0 0 0.01 0.04 0.03 0.08 0.06 0.13 0.16 0.24 0.15 0 0 0 0 0 0 0 0 0 5

6 0.09 0.27 0.38 0.26 0 0 0 0 0 0 6

7 0.21 0.60 0.19 0 0 0 0 7

8 0.55 0.45 0 0 0 8

9 0.58 0.42 0 0 9

10 0.69 0.31 0 10

11 0 1 0 11

12 0.66 0.34 12

13 0 1 13

14 0 1 14

15 0 1 15

16 0 1 16

17 0 1 17

18 0 1 18

19 0 1 19

20 1 20

21 0 1 21

22 0 1 22

23 0 1 23

24 0 1 24

25 0 1 25

26 0 1 26

27 0 1 27

28 0 1 28

29 0.63 0.37 29

30 1 0 30

31 0.65 0.35 0 31

32 0.48 0.53 0 0 32

33 0.48 0.52 0 0 0 33

34 0.16 0.52 0.33 0 0 0 0 34

35 0.08 0.32 0.37 0.23 0 0 0 0 0 0 35

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0.02 0.03 0.02 0.01 0 0.01 0 0 0.02 0.03 0.05 0.05 0.10 0.16 0.22 0.23 0 0 0 0 0 0 0 0 0 36

37 0 0 0 0 0 0 0 0.07 0.33 0.13 0.18 0.12 0.08 0.07 0.03 0 37

38 0 0 0 0 0.09 0.37 0.38 0.16 0 38

39 0 0 0.37 0.43 0.20 39

40 1 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

 78

Non-zero TPM elements are listed below.

(1,1) 0.508333

(1,2) 0.483333

(1,3) 0.008333

(2,3) 0.383333

(2,4) 0.425000

(2,5) 0.191667

(3,5) 0.133333

(3,6) 0.300000

(3,7) 0.375000

(3,8) 0.191667

(4,8) 0.100000

(4,9) 0.216667

(4,10) 0.166667

(4,11) 0.225000

(4,12) 0.150000

(4,13) 0.075000

(4,14) 0.058333

(4,15) 0.008333

(5,15) 0.050000

(5,16) 0.041667

(5,17) 0.016667

(5,23) 0.008333

(5,24) 0.041667

(5,25) 0.033333

(5,26) 0.075000

(5,27) 0.058333

(5,28) 0.125000

(5,29) 0.158333

(5,30) 0.241667

(5,31) 0.150000

(6,31) 0.091667

(6,32) 0.266667

(6,33) 0.383333

(6,34) 0.258333

(7,34) 0.208333

(7,35) 0.600000

(7,36) 0.191667

(8,36) 0.550000

(8,37) 0.450000

(9,37) 0.583333

(9,38) 0.416667

(10,38) 0.691667

(10,39) 0.308333

(11,39) 1.000000

(12,39) 0.658333

(12,40) 0.341667

(13,40) 1.000000

(14,40) 1.000000

(15,40) 1.000000

(16,40) 1.000000

(17,40) 1.000000

(18,40) 1.000000

(19,40) 1.000000

(20,40) 1.000000

(21,40) 1.000000

(22,40) 1.000000

(23,40) 1.000000

(24,40) 1.000000

(25,40) 1.000000

(26,40) 1.000000

(27,40) 1.000000

(28,40) 1.000000

(29,39) 0.633333

(29,40) 0.366667

(30,39) 1.000000

(31,38) 0.650000

(31,39) 0.350000

(32,37) 0.475000

(32,38) 0.525000

(33,36) 0.483333

(33,37) 0.516667

(34,34) 0.158333

(34,35) 0.516667

(34,36) 0.325000

(35,31) 0.083333

(35,32) 0.316667

(35,33) 0.366667

(35,34) 0.233333

(36,15) 0.058333

(36,16) 0.016667

(36,17) 0.033333

(36,18) 0.016667

(36,19) 0.008333

(36,21) 0.008333

(36,24) 0.016667

(36,25) 0.033333

(36,26) 0.050000

(36,27) 0.050000

(36,28) 0.100000

(36,29) 0.158333

(36,30) 0.216667

(36,31) 0.233333

(37,8) 0.066667

(37,9) 0.333333

(37,10) 0.125000

(37,11) 0.175000

(37,12) 0.116667

(37,13) 0.083333

(37,14) 0.066667

(37,15) 0.033333

(38,5) 0.091667

(38,6) 0.366667

(38,7) 0.383333

(38,8) 0.158333

(39,3) 0.366667

(39,4) 0.433333

(39,5) 0.200000

(40,40) 1.000000

APPENDIX C. Perturbation Method for the Theoretical Model

The perturbation method employed in this paper is similar to that of [7]. A number of important
differences exist, though, so the precise perturbation procedure for this paper will be described
below. This perturbation method is designed to determine the long-term effects of decreasing (or
increasing) certain transition probabilities from a particular state while proportionally increasing
(decreasing) other transition probabilities from that state. This proportional increase (decrease)
is necessary to preserve the stochasticity of the TPMs. The work of [7] examines perturbations of
combinations of two rows, but for the purposes of this paper, only perturbations affecting a single
row, i.e. affecting transitions out of a single state, will be considered for the sake of simplicity.
Restricting to these single perturbations makes it somewhat more difficult to precisely model the
behavior of the large-scale grid system since inducing different execution paths in the large-scale
system often results in changes to the transition probabilities for multiple states. Despite this
shortcoming, though, the perturbation method used here does appear to at least qualitatively
predict the effect of key changes to the large-scale system.

With this perturbation method, each of the transient states will be selected to have transitions
from that state perturbed. The perturbation algorithm iterates through each of the different
rows corresponding to the transient states, and the current state to be perturbed is given by the
perturbation row, r. Within that row, the algorithm iteratively selects an entry to decrease, known
as the decrease column, c↓, as well as an entry to increase, known as the increase column, c↑. Here,
c↓ and c↑ are required to be allowable transitions for the grid system, i.e. the entries (r, c↓) and
(r, c↑) must be non-zero in at least one of the TPMs.

In the primary decrease perturbation method, the (r, c↓) entry will be decreased down to zero
by an increment v in all of the TPMs. Meanwhile, each decrease by v must be accompanied by an
increase of v distributed across the other entries in row r so that the row sum will still equal 1. A
weighted portion of that increase will be added to the entry in the increase column, (r, c↑). The
weight, w, for the increase was varied between 0.1 and 0.9, but a weight of 0.5 was predominantly
used. The entry (r, c↑) was then increased by w∗v at each step of the perturbation. The remainder
of the increase was then distributed to the other entries in row r in an amount proportional to
the original value of the entry. The new transition probabilities derived from these incremental
perturbations are summarized below

p
(new)
rj =


p
(old)
rj − v if j = c↓

p
(old)
rj + w ∗ v if j = c↑

p
(old)
rj + (1 − w) ∗ p

(old)
rj∑

k 6=c↓,c↑ p
(old)
rk

else

There are a couple of important situations, though, where the values of p
(new)
rj slightly deviate from

those described above. The first case is when p
(old)

rc↓
− v is negative for some TPM. In this event,

the value of v used for that TPM is set to equal the old transition probability, p
(old)

rc↓
, and this new

value for v is distributed as an increase among the other entries in the row as described previously.
The other special case occurs when there are only two non-zero entries in a particular row, e.g.
the only allowable transitions from the state Initial are the self-transition and the transition to
Discovering. In this event, the increase column will be increased by v rather than by w ∗ v since
there are no other non-zero entries to distribute the increase among. Notice that there is never a
special case of increasing the increase column by too much, i.e. of making that entry greater than

79

1. This is not an issue because the increase to the entry (r, c↑) is equal to w ∗ v for w ≤ 1 and v is
capped by the value of the (r, c↓) entry, where the sum of the entries (r, c↓) and (r, c↑) is less than
or equal to 1 since the TPMs are stochastic.

A second type of perturbation method, the primary increase perturbation method, was also
used where the primary focus was on increasing a particular transition up to be just less than 1 by
increments of v while distributing a weighted decrease to the other non-zero entries in that row.1

For this perturbation method, the new transition probabilities are as follows

p
(new)
rj =


p
(old)
rj + v if j = c↑

p
(old)
rj − w ∗ v if j = c↓

p
(old)
rj − (1 − w) ∗ p

(old)
rj∑

k 6=c↓,c↑ p
(old)
rk

else

Similar to the first type of perturbation, there are a few situations where the values of p
(new)
rj slightly

deviate from those described. The first case occurs when p
(old)

rc↑
+v is greater than 1 for some TPM.

In this case, the value for v is set to 1− p
(old)

rc↑
so that p

(new)

rc↑
will equal 1 and the decrease by v will

be distributed across the other entries in that row in the same manner described previously. The
special case when there are only two non-zero entries in the perturbation row is handled in the
same fashion as outlined above. Finally, there is an additional situation to consider for this type
of perturbation. For this type of perturbation, it is possible for w ∗ v to be greater than the (r, c↓)
entry so that the weighted decrease would perturb that entry to be negative for a particular TPM.
In this event, the weight w is modified for that specific TPM so that w ∗ v = p

(old)

rc↓
; then, the (r, c↓)

entry is perturbed down to zero while the other entries in that row take on a larger proportion
of the decrease by v. Additionally, it is possible that (1 − w) ∗ v, the amount of decrease to be
distributed throughout the rest of the row, is greater than the total values in that row; thus, the
standard method for perturbing those entries would cause them to become negative. To remedy
this situation, each of the entries in the row other than (r, c↑) and (r, c↓) are perturbed to zero

resulting in a decrease by
∑

k 6=c↓,c↑ p
(old)
rk . Then the remainder of the decrease is distributed to prc↓

so that p
(new)

rc↓
= p

(old)

rc↓
− v +

∑
k 6=c↓,c↑ p

(old)
rk .

Now, using the perturbed matrices created by the appropriate perturbation algorithm, the
resulting Markov chain was utilized to determine the proportion of tasks completed by this new
system. Additionally, the perturbed matrices were used to find the theoretical approximation to
the proportion of tasks completed using Equation 6. The value for proportion of tasks completed
for the Markov model and the theoretical model were then recorded together with a summary value
for the entry (r, c↓) (or (r, c↑), depending on the perturbation method used) from the perturbed
TPMs. This summary value was calculated as a weighted average of the (r, c↓) (or (r, c↑)) entries
across all the TPMs, using the formula described by [7] for creating a summary matrix. Pertur-
bations were performed using both the primary decrease and primary increase methods for every
allowable combination of r, c↓, and c↑ where r ranged among the transient states. For each of these
perturbations, the proportion of tasks completed was then plotted against the varying summary
values for the perturbed entry. The figures shown in section 6 of this report show examples of
these plots together with large-scale simulation data for these perturbations.

1The transition probabilities were not perturbed to equal one because this often caused a drastic change in the
proportion of tasks completed that was not reflective of the change that occurred when the transition probability
was just fractionally smaller.

80

It is important to note that the large-scale simulation data was obtained by manually adjusting
different aspects of the grid simulation such as the length of time required to negotiate an SLA,
etc. in order to mimic the effect of decreasing (or increasing) a particular transition. As mentioned
earlier, these changes often affected transition probabilities other than the particular transitions to
be perturbed, and thus the perturbed TPMs are not an exact reflection of the TPMs that would
be derived for the altered large-scale simulation. As a result, with the simple perturbation method
used here, the data from the perturbed Markov model does not match that of the perturbed
large-scale simulation as well as in the unperturbed case. The qualitative behavior does appear
to match, however, and thus the perturbed Markov model provides a useful tool for determining
which state transitions have the greatest deleterious effects on the proportion of tasks completed
by the grid system.

81

