engineering laboratory

Grasping and Manipulation Performance Measures and Benchmarking

Joe Falco, Karl Van Wyk, Elena Messina, Kenny Kimble Intelligent Systems Division National Institute of Standards and Technology

- Overview of NIST Benchmarking work
 - Grasping and Manipulation (elemental level)
 - Robotic Assembly (functional/task level)
- Participant discussion of related work
- Formulation of a unified effort

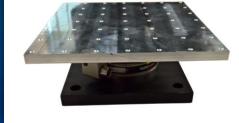
NIST Goals

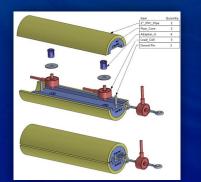
- Develop metrics, test methods and artifacts with example datasets to characterize the performance of grasping and manipulation with emphasis on deployment for manufacturing tasks.
- Provide the robotics community with unbiased measurement methods for both elemental characteristics and function-level performance capabilities.
- Short Term: Provide researchers and developers insight for improving their hardware and software designs
- Long Term: Used to develop specifications that will help match capabilities to end-user manufacturing needs

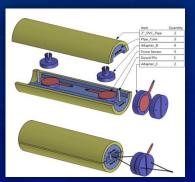
NIST Testbed

- Hands/Grippers
 - SCHUNK Dexterous Hand II
 - ROBOTIQ 3-Finger Gripper
 - Wonik Robotics Allegro Hand
 - Empire Robotics VERSABALL Gripper
 - Soft Robotics Inc.
 - Conventional parallel grippers
 - Tactile Sensors
 - Syntouch BioTac, BioTac SP, & Numatac
 - OptoForce 3D Force sensors
 - ATI Industrial Automation Nano17 F/T transducers
 - Weiss Robotics Tactile sensors
 - Arms
 - KUKA LWR 4+
 - Universal Robots UR5, UR10
 - ABB YuMi
 - Rethink Robotics Baxter

Elemental Test Methods

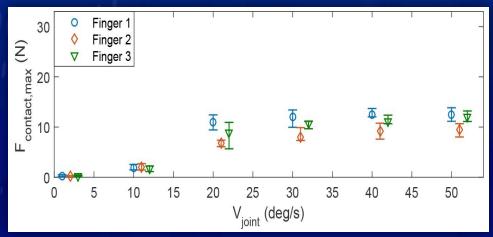

Test Method

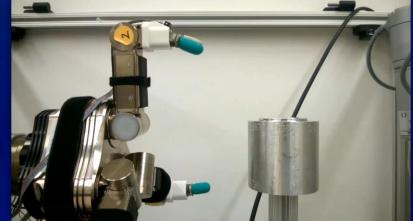

Measurement Instrument


- Finger Strength
- **Touch Sensitivity**
- **Finger Force Tracking**
- **Force Calibration**
- **Grasp Strength**
- **Slip Resistance**
- **Grasp Efficiency**
- Cycle Time

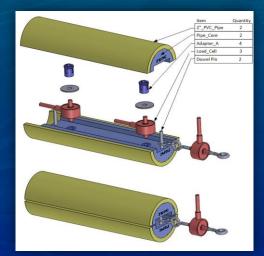
In-Hand Manipulation

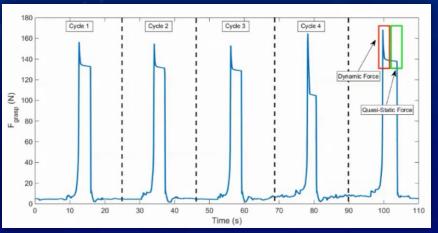
Object Pose Estimation


http://www.nist.gov/el/isd/grasp.cfm



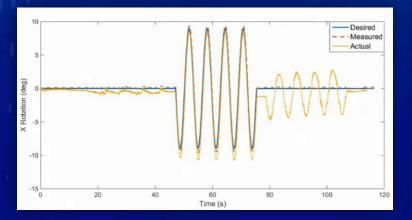
Touch Sensitivity


- <u>What:</u> A measure of the smallest, self-registered contact force exerted by a robotic finger on an object
- <u>How:</u> Measure maximum impact force at full finger extension at various joint speeds
- <u>Why:</u> Force dependent on speed, force maximized at full extension, minimize disturbance during object acquisition



Grasp Strength

- <u>What:</u> The maximum force a robotic hand can impose on an object
- <u>How:</u> Artifact with intrinsic force sensing
- <u>Why:</u> Estimate payload



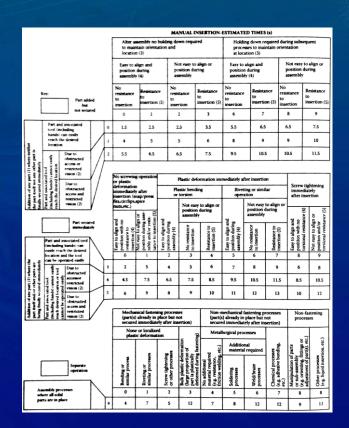
engineering laboratory

In-Hand Manipulation

- <u>What:</u> Measure of a robotic hand's ability to control the pose of an object
- <u>How:</u> MoCap system and objects with optical targets
- <u>Why:</u> Quantifies range-of-motion, frequency response, controller accuracy and repeatability, useful for functional-level tasks

Functional Performance Testing

- Quantify performance of a robotic system completing a task
- Tests target assembly operations: pick-place, insertion, fastening, meshing, wire harnessing, pulley belt routing
- Whole system-system testing
- Component testing


https://www.nist.gov/programs-projects/performance-metrics-and-benchmarks-advance-state-robotic-assembly

engineering laboratory

Test Design

- Assembly Operations
- Design for Assembly (DFA)
 - Human performance factor analysis
 - Parameterizes objects
 - Handling times
 - Insertion times
 - Guide design space
 - Direct human comparison

Geoffrey Boothroyd, Peter Dewhurst, and Winston Knight. *Product Design for Manufacture and Assembly. CRC press, 1994.*

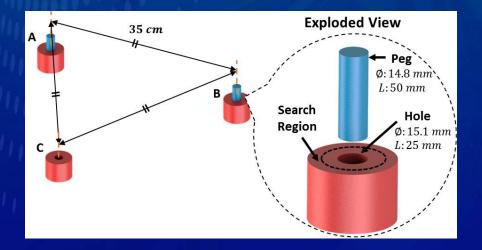
Performance Metrics

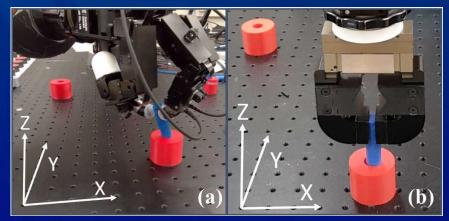
Modes

- Disassembly
- Assembly
- Primary metrics
 - Speed \rightarrow completion time
 - Reliability \rightarrow probability of success
 - Granularity
 - Per-part/operation
 - Whole board

Data Analytics

Ordinal or Attribute Data


- Detecting statistical difference in datasets Kolmogorov-Conover
- Check for differences as a whole or on a per rank basis
- Primary performance measure: probability of success (PS)
- Continuous Data
 - Detecting statistical difference in datasets Kolmogorov-Smirnov
 - Check for differences between sample means and variances
 - If no detectable differences, difference exists somewhere else (skewness, kurtosis)
- Matlab, R


http://www.nist.gov/el/isd/software.cfm

Example Peg-in-Hole

- Functional test method to measure the performance of robot systems at basic insertions
- Triangular design facilitates cyclical testing
- Peg-hole parameters, spacing based on human data

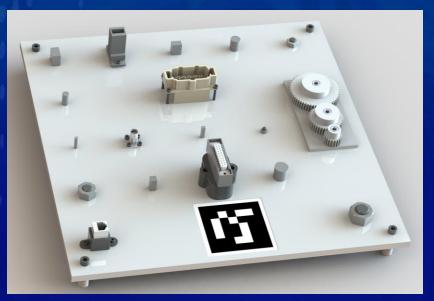
System 1

System 2

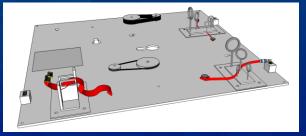
K. Van Wyk, M. Culleton, J. Falco, K. Kelley, "Comparative Peg-in-Hole Testing of a Force-based Manipulation Controlled Robotic Hand", *IEEE Transactions on Robotics*, 2018, DOI: 10.1109/TRO.2018.2791591.

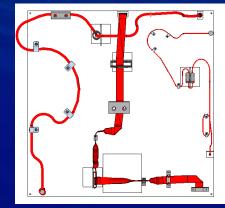
Example Peg-in-Hole

System 1


Robotic System	Correlation	KS	μ (s)	σ² (s)	PS (%)
System 1	0.01		18.31	107.3	87.6
System 2 Spiral	0.07	*	37.13*	399.6*	95.2
System 2 Random	-0.01	*	15.62	417.72	95.2
System 2 Quasi- Random	-0.11	*	8.2*	50.25*	95.2

*Indicates statistical significance in comparison with System 1.


engineering laboratory


Task Boards

- Series of themed boards
- Each instance focuses on particular assembly facets
- Design with reference to DFA
- Low-cost, internationally replicable
- Real components

Task Board #1

engineering laboratory

Task Board #1

- Focuses simple insertions, nut threading, gear meshing, plug connections
- Design intersection
 - Spans DFA tables
 - Real components
 - Low-cost
 - Internationally replicable
 IROS 2017 competition
 Distribution

Documentation

Grasping and Manipulation

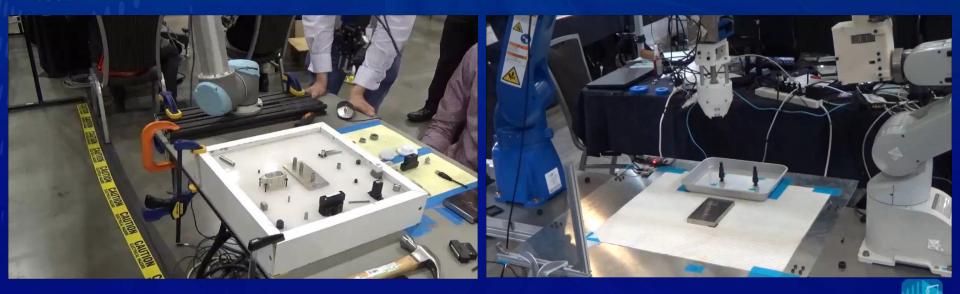
https://www.nist.gov/programs-projects/performance-metrics-andbenchmarks-advance-state-robotic-grasping

Robotic Assembly

https://www.nist.gov/programs-projects/performance-metrics-andbenchmarks-advance-state-robotic-assembly

Working Publications – (*NIST Special Publication Format*):
 <u>Terminology document</u> – Proposed Standard Terminology for
 Robotic Hands and Associated Performance Metrics
 <u>Test method document</u> – Performance Metrics and Test Methods
 for Robotic Hands

Publications


- K. Van Wyk, M. Culleton, J. Falco, K. Kelley, "Comparative Peg-in-Hole Testing of a Force-based Manipulation Controlled Robotic Hand", *IEEE Transactions on Robotics*, *2018*, DOI: 10.1109/TRO.2018.2791591.
- J. Falco, K. Van Wyk, S. Liu, S. Carpin, "Robotic Grasping: Facilitating Replicable Performance Measures via Benchmarking and Standardized Methodologies", *IEEE Robotics and Automation Magazine*, December 2015.
- Stefano Carpin, Shu Liu, Joe Falco, Karl Van Wyk, "Multi-Fingered Robotic Grasping: A Primer," *arXiv* 1607.06620, online.
- Shneier, Michael, et al., "Measuring and Representing the Performance of Manufacturing Assembly Robots", *NIST Interagency/Internal Report (NISTIR)-8090*, 2015.
 - J. Falco, J. Marvel, R. Norcross, K. Van Wyk, "Benchmarking Robot Force Control Capabilities: Experimental Results", *NIST IR 8097*, January, 2016.
- Falco, J., Marvel, J., Messina, E., A Roadmap to Progress Measurement Science in Robot Dexterity and Manipulation, NISTIR 7993, May 2014.
- Falco, Marvel, J., Messina, E., Dexterous Manipulation for Manufacturing Applications Workshop, NISTIR 7940, June 2013.

Competitions

- Mechanism for introducing benchmarking concepts to the research community in a competitive environment
- IROS 2016 household tasks with some manufacturing tasks introduced
- IROS 2017 dedicated manufacturing track
- World Robot Summit (WRS) Industrial Robotics 2018
- IROS 2019 TBD
- WRS Industrial Robotics 2020
- European Robotics League

IROS 2017

 Robotic Grasping and Manipulation Competition: Manufacturing Track <u>https://www.nist.gov/el/intelligent-systems-</u> <u>division-73500/robotic-grasping-and-</u> <u>manipulation-competition-manufacturing</u>

WRS 2018

 WRS 2018 World Robot Challenge (WRC) Industrial Robotics Category http://worldrobotsummit.org/en/wrc2018/industrial/

 \mathbb{R} is a set of \mathbb{R}

Related Work

- Yale-CMU-Berkley (YCB) Object Benchmarks for Robotic Manipulation
- Advanced Robotics for Manufacturing (ARM) Institute
- Berkeley led open discussion of robot grasping benchmarks, protocols and metrics
- UMass Lowell NERVE Center
- Other?

Formulation of Unified Effort

- Propose unifying efforts with regular meetings under IEEE RHGM TC
- Periodic NIST hosted online
 - What is an appropriate frequency?
 - Sub-focus areas/sub-working groups could meet independently
- Yearly face-to-face at an IEEE robotics conference
- Consensus on tests, metrics, analyses will facilitate benchmarking
- Working publications as precursors to standards efforts
- Competitions

