SESSION 4: NEXT STEPS

Moderator: Sheng Lin-Gibson, NIST

- Meeting summary
- Key concepts / outline for whitepaper
- Other businesses

https://www.surveymonkey.com/r/CCW_idea_box

Workshop Goals	Actions and potential solutions	
Raise awareness of the importance and challenges associated with cell counting measurements	 Whitepaper Additional NIST-FDA workshops 	
Develop and document best practices for cell counting	 Whitepaper Develop methods of general use through appropriate forums 	
Discuss options to address measurement challenges through collaborative studies (NIIMBL)	 Send R&D topics to NIIMBL/TAC for funding to advance biomanufacturing 	
Workshop outcomes to support the development of international standards and more specific measurement challenges	 Cell counting serves as a use case for upcoming ISO standard effort for cell characterization 	

Recap

- Overarching theme: Counting is important
- Many use cases, important considerations, lessons learned, opportunities/new technologies
- FDA does not require prescriptive methods:
 - fit for purpose
 - system suitability
- Example of measurement assurance strategies for cell counting

Terminology

 What is required during qualification, validation, and verification

Fit for purpose

 I would like to count <u>AA</u> cells in media/matrix <u>BB</u> using <u>CC</u> methods for <u>DD</u> purpose

AA	BB	CC	СС
MSC	Universal	Manual	Release
iPSC	media	Automated	Dose
Car-T	Cryo-	Impedance	In process
p	preservant	Imaging	Compability
		Flow	R&D

What is good enough – how to set specification using meaningful parameters

Various approaches

- General framework vs. individualized methods
- total cell count → → various stages of cell health
- Improving the quality of "gold standard" methods → → new counting technologies

3. ACCURACY

The accuracy of an analytical procedure expresses the closeness of agreement between the value which is accepted either as a conventional **true value** or an **accepted reference value** and the value found.

This is sometimes termed trueness.

Ref: VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1)

Role of reference material/reference standards

- Beads and their roles in calibration, comparability
- Cells RM as an in process control, proficiency testing
- Opportunities for new, better reference materials/what is NIST doing

Evaluating the quality of cell counting methods in the absence of a ground truth

ISO/WD 20391-2 [Under development: 20.60]

Biotechnology -- Cell Counting -- Part 2: Experimental design and statistical analysis to quantify counting method performance

Cell Counting Results for 4 methods

- Comparability between methods
- Accuracy
- Precision

- Linearity (proportionality)
- Reproducibility

Tools to get to "good enough"

- Strategies for better measurements
- Education materials
- Reference materials/reference standards
- Bioprocessing control (equipment, reagent, etc.)
- Competency
- Method standards

What works well?

(ripe for standardization / best practices / SOP)

What are ongoing efforts

- Methods and funding to keep the discussions going
- NIST certified beads consortium
- ISO Cell Counting Part 1– definitions and general considerations
- ISO Cell Counting Part 2 method to evaluate the quality of cell counting

What is needed?

(common understanding, methods, guidance, etc.)

- Deep dive on several case studies
- Best practices
- Spike in or other methods
- Minimum information for a specific method to provide confidence
- Inter-laboratory study / formation of consortium

Additional Topics for NIST-FDA workshop

FIGURE 2

An example of a generalized cell counting process that involves an automated imaging device, and where potential controls and standards for managing and minimizing sources of variability could be used.

NIST

Lin-Gibson, et al. Bioinsights 2016.

Working with NIST

Laboratory collaborations via joint studies, CRADA, consortium, post-doctoral opportunities, etc.

Participate in NIST workshops

ISO

Participate in standards development efforts, including inter-laboratory studies

National Institute of Standards and Technology U.S. Department of Commerce Learn more @ www.nist.gov or search NIST Advanced Therapies

Contact: Sheng Lin-Gibson @ slgibson@nist.gov

Outline of a whitepaper

- Brief recap of workshop
- Key concepts
 - What works well
 - What is ongoing
 - ISO Cell Counting Part 1– definitions and general considerations
 - ISO Cell Counting Part 2 method to evaluate the quality of cell counting
 - What is needed
 - Gaps in current guidance (communication, technical, guidance?)
 - Additional tools to improve measurement assurance

Cell Counting Standards are under development; all others are listed as examples

