Measurement Assurance for Cell-based Assays: Cell Count

John T. Elliott Jr., Cell Systems Science Group Leader National Institute of Standards and Technology (NIST), Department of Commerce, Gaithersburg, MD 20899

What is Measurement Science?

- A systematic approach that informs on the comparability and trust in a measurement result
 - Data-based decision making
- Components of a measurement:
 - Value- it is on a scale; enables compared to other measurements
 - Uncertainty- variability in the measurement; enables statistics
 - Evidence- evaluation of the measurement system; confidence

What is Measurement Science?

- Treat the assay as a measurement <u>process</u>
- Control experiments provide evidence that the measurement process is proceeding as expected
- Adapt the process quality tools to cell assays
 - Cause and effect diagram
 - In-line controls
 - Control charting
 - Sensitivity analysis
 - Experimental design
 - Interlaboratory testing
 - Acceptance specifications
- Increases confidence in the measurement

A Cell Count Measurement Process

- Biological and non-biological reference materials
- Charting and specification

Lin-Gibson, S., Sarkar, S., Elliott, J. T., & Plant, A. L. (2016). Understanding and managing sources of variability in cell measurements. *Cell Gene Therapy Insights* 2016;2(6),663-673.

Cause and Effect Diagram for Generalized Cell Count Measurement

Simon, C. G., Lin-Gibson, S., Elliott, J. T., Sarkar, S., & Plant, A. L. (2016). Strategies for Achieving Measurement Assurance for Cell Therapy Products. *Stem Cells Translational Medicine*, *5*(6), 705-708.

Use Case: Expanding a Stock Cell Line

 Thaw a stock vial of cells, expand cells for 4 days, count cell concentration

- Is this right?
- What evidence do I have that provides measurement assurance (i.e. confidence)?

Dissecting the Cell Count Measurement

Assumptions:

- 1. Single cell suspension
- 2. Count all cells
- 3. Known volume tested
- 4. Reagents/Instrument work as expected
- 5. Linear range, above LOD, etc.
- Measurement science approach (i.e. what is evidence that these assumptions are true?)
- Are there control experiments that can detect the following?

Reagents bad
Cells in aggregates
clog in fluidics
Change in instrument
detection

Not in linear range Volume detection bad Fluidics malfunction

What does the evidence look like?

- Data from control experiments provide the evidence for measurement assurance.
- They are method dependent and inform on parts of the measurement process.
- Can be in-frequent measurements (i.e. linear range, LOD, instrument settings, matrix effects)
- Can be in-line measurements that provide confidence in the measurement system/process

Example: Cell Count via Imaging

TABLE 1

Examples of in process controls for an automated imaging cell counting measurement process.

Aspect to be validated	Specific concerns	In-process control	Specifications
Reagent quality	Reagents are free of contami- nants and precipitants	Running a reagent only control	Object count and object size distribution are with-in specification for a nocell control experiment
Image back- ground intensity and distribution	Imaging chamber is clean and illumination is even across image to ensure proper image analysis	Review of raw image data	Raw image background intensity is within specification
Object spatial distribution	Flow into the imaging chamber is unobstructed	Review of pro- cessed image data	Objects are distributed randomly and within specification
Object size distribution	No large aggregates or small debris	Review of pro- cessed image data	Object sizes are within specification
Camera focus/ magnification	Image is in focus and magnifi- cation is correctly set	Running a con- trol material with known size	A control material of known size is within specification

Lin-Gibson, S., Sarkar, S., Elliott, J. T., & Plant, A. L. (2016). Understanding and managing sources of variability in cell measurements. *Cell Gene Therapy Insights* 2016;2(6),663-673.

What might the data look like?

Evidence for:

Count Image

Measurement

Reagent quality, illumination and detection system

Cell clump, sample prep

Evidence provides Confidence in the Measurement!

Summary

- Treat the assay as a measurement process.
- What are the sources of variability?
- Dissect the primary measurement and think about assumptions.
- Design sensitivity experiments and in-line measurements to validate assumptions. Evidence!
- Method dependent, cell dependent, sample prep dependent, but identification of generalized methods used for measurement assurance in cell counting would be applicable to many use cases.
- Research in these measurement assurance strategies could lead to standards in the future.

