

Thermo Fisher S C I E N T I F I C

NIST-FDA Cell Counting Workshop: Sharing practices in cell counting measurements

April 10, 2017
Mike O'Grady
ThermoFisher Scientific

Cell Counting Counter Considerations

Zoom Count cells

- Manual
- Variable
- Personal bias affects count
- **Automated**
- 10⁴-10⁷ Concentration and 3-25 µM sizem range accuracy
- Brightfield count only

- Automated
- 10⁴-10⁷ Concentration and 3-25 µM size range accuracy
- Brightfield and Fluorescence capabilities

Cell Counting Measurement Considerations

Area: 2.15 mm x 1.62 mm (3.48 mm²)

- Reusable Hemacytometer
- Dedicated machine slides

- Test and retest to users gold standard
- Automated faster over larger area
- Options matter for users- "Trust but verify" cell count

Cell Counting Cell prep and variability

- Higher variability with manual counting
- Sample prep continues to be an issue
- Size variability within sample
- Autofocus and counting algorithms improve accuracy and repeatability

Cell Counting User Needs and Variability

Focusing - Get what you "auto focus" for

- Users need flexibility-But introduces variability
- Gating on size, circularity, brightness, and fluorescent intensity
- Training and examples
 - Applications and White Papers
 - Field Support
- Ability to customize and save protocols

Light intensity- Difficult to predict what users will do

Gating in or out of cell populations

Flexibility allows for options and better cell counts

Cell Counting | PBMC User Issues

- Difficult for users because of sample variability and differences between preps
- Precious sample with limited quantity
- Provide "Flow-Like" gating capability for inclusion/exclusion
- Cross validate between instruments

Automated Counter Flow Cytometer

Cell Counting | Stem Cell User- iPSC to Cardiomycte

CELL COUNTS COUNTESS 1 L: 2.55E+06; V: 89% COUNTESS 2 L: 3.1E+06; V:91%

LOT 1	LOT 4	LOT 1	LOT 4
1	2	3	4
A (40K)(40K)((100K)	100K
B 60K	60K	120K	120K
C (80K	80K	140K	140K

CONF	40K	60K	80K	100K	120K	140K
24 HOURS	0.7712	1.9145	3.9441	5.7771	6.8433	10.803
48HOURS	3.7933	7.7911	10.127	15.979	21.279	22.995
72 HOURS	6.8057	14.914	17.634	19.747	24.53	23.668

0

40K

60K

80K

- Counting for original Seeding of iPSCs critical to Cardiomyocyte differentiation
- 40K in 12 well plate gives optimal results

100K 120K 140K

Imaging of TnT

Cell Counting Cell Health

Live/Dead - Metabolism/Membrane Integrity

150 -100 -102 102 104 109

Fixable Live/Dead - Membrane Integrity

- Cell health important for downstream uses
- Need accurate cell #s and accurate picture of cell health
- Traditional imaging and flow cell health reagents can be used

Cell Counting Cell Health is a Continuum

Continuum of Cell Health

Viable

- -RNA/Protein quality control
- -Polarized mitochondria
- -[ATP] high
- -Reducing cytoplasm
- -Regulated proliferation
- -Morphology

Apoptotic

- -Caspase activation
- -DNA Damage
- -Removal of DAMPs

Necrotic/Necroptotic

- -RIP kinase (PCD)
- -DAMPs present

Pre-lethal

- -Loss of protein quality control
- -Depolarized mitochondria
- -Oxidizing cytoplasm
- -[ATP] low
- -Oxidative/nitrative stress
- -Perturbation of lipid metabolism
- -Deregulated proliferation

-Loss of PM integrity

<u>Immunological</u> <u>consequence</u>

- -Phagocytosis
- -Inflammatory

response (DAMPs)

Cell Counting | Apoptosis

- Cells apoptotic?
- Cell Therapy Need to know
- Untreated cells show some apoptosis
 - Normal for functional cells, but how much?

Cell Counting Oxidative Stress & Mitochondrial Function

- Reagents for Pre Lethal readouts
- Combine in counting with gating for desired assay?
- Control population with User defined protocol

Cell Counting Major challenges and recommendations

- Sample prep and user variability
- Cell type and form (Spheroids/Organoids) constantly changing
 - Best way to count for desired outcome difficult to predict
- Counting platforms becoming more of hybrid
 - Imaging
 - Flow
 - Classic counter
- When using limited sample how representative of entire population?
 - User training and developer agility necessary
 - Needs/Wants make it hard to establish standard across uses
 - Adaptability of instrument and user saved protocols help
- Continuum of Cell Health has to be considered with counting needs
 - Cell Therapy will need more than cell # and whether Live/Dead