
Fit-for-purpose considerations for cell counting using image cytometry

April 10, 2017 Cell Counting Workshop

Jean Qiu, PhD CTO, Founder Nexcelom Bioscience

Does cell counting produce better results?

Which cell counter is right for me? It depends!

Cellometer Bright Field Cell Counters Cellometer Auto 2000 Cellometer K2 Cellometer X1 & X2 Cellometer Vision C Cellometer Mini, Auto T4 and Auto 1000. PBMCs, Stem Cells, Primary Hepatocytes, Stem Brewing Yeast, Wine Yeast, Apoptosis, Au Cell Lines, Purified Cells, Trypan Blue, Cell Splenocytes, Monocytes & Cells, Splenocytes, Tumor Platelets & Other Small Cycle, Prolifer Other Primary Cells Suspension & Other Primary Cells Transfection, Cells Others

Generalized framework for designing and conducting cell measurements

Well defined quality attribute

Size

- Well-designed measurement that are fit-for-purpose
- Robust measurement with built-in measurement assurance
- Appropriate documentation, reporting, and communication

Lin-Gibson et al., Cytotherapy. 2016 Oct; 18 (10):1241-4

Fit-for-purpose investigation is the most important work prior to verification and validation.

Three key fit-for-purpose considerations for cell counting

- 1. Understand cell preparation
 - What types of cells are in the cell preparation?
- 2. Evaluate cell counting assays for selectivity for the desired cell type
 - How do each cell counting assay work? Does it have the selectivity to count desired cell

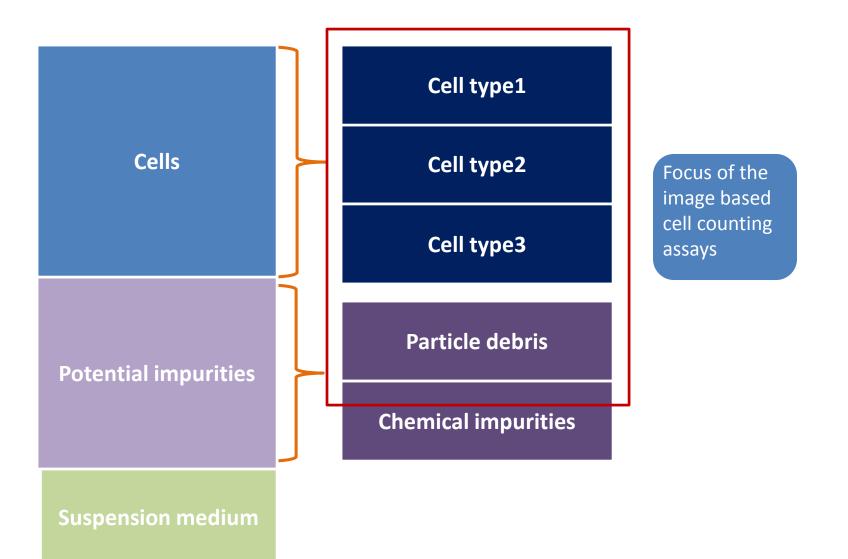
type within this cell preparation?

- 3. Determine tolerance in sample processing prior to cell counting
 - How much processing steps are acceptable before cell counting?

Three use cases to illustrate these key considerations for fit-for-purpose

- Case I: count cells for large tumor cell line panels used for oncology drug screening
- Case II: count cells for HPC based cellular processing
- Case III: count cells for mouse experiments

A few definitions



A laboratory conducts multiple biological operations with varied cell counting needs

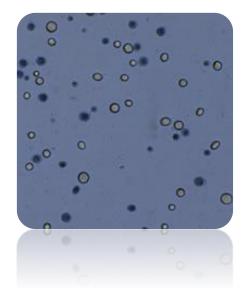
- Biological operation
 - A series of experiments to produce results
- Cell preparation
 - Cell sample to be analyzed for cell count
- Cell counting assay
 - The specific measurement to obtain cell counts
- Cell counting system
 - Hardware, software, reagents to produce cell counting results

Understand cell preparation for image-based cell counting

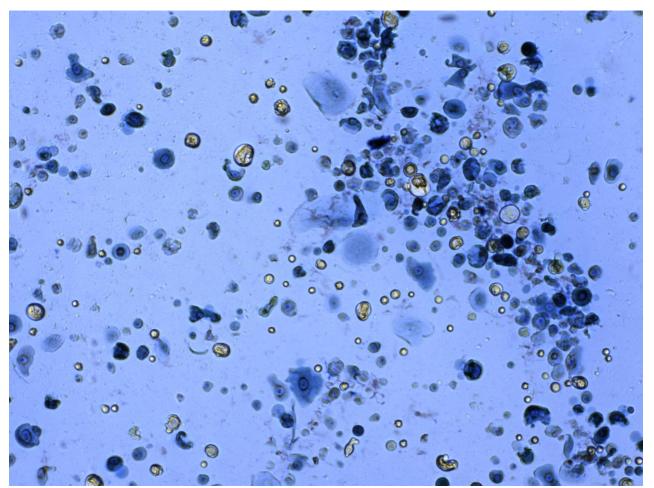
Image-based cell counting principles

1. Pipette 20uL of cells into disposable counting chamber

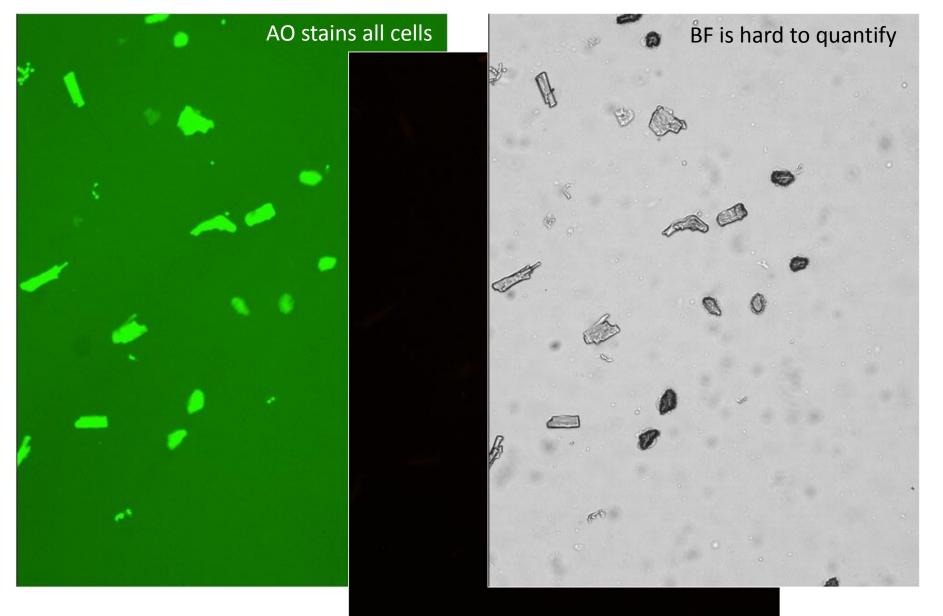
2. Insert chamber in Cellometer and click count


Live Cell Count	742
Adjusted Count	742
Mean Diameter Estimated (micron)	11.25
Viability (%)	74.3
Live Cell Concentration (cells/ml)	1.99 x10 ⁶

3. Cell count data is generated automatically

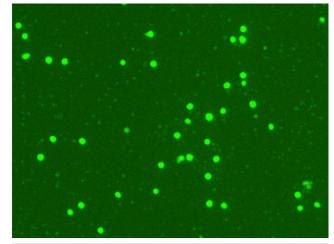

Cell counting assay using bright-field image

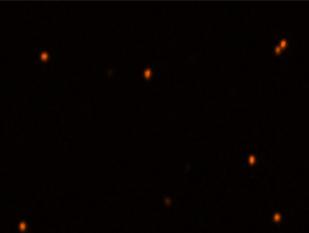
Most of the time you see this on a product literature



Real life can be messy

FL staining can be more specific for some cell types - cadiomyocytes




Cell counting assay using dual fluorescence nuclear stains

- AO is permeable to both live and dead cells
- AO binds to DNA and fluoresce bright green
- PI can only enter dead cells
 - Binds to DNA of the dead cells
 - Absorbs the green fluorescence of AO
 - Produces bright orange / red color
- No signal is generated from non-nucleated cells and debris
- Original AO/EB staining protocol developed at Stanford, Prof. Leonard Herzenberg's lab
- Nature Protocols, Vol 8.No. 1, 33, 2013

Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells

Enrico Lugli, Luca Gattinoni, Alessandra Roberto, Domenica Mavilio, David A Price, Nicholas P Restifo & Mario Roederer

Cell counting fit-for-purpose case I: oncology screening projects using human cell line panels

NCI 60 cancer cell line panel

.

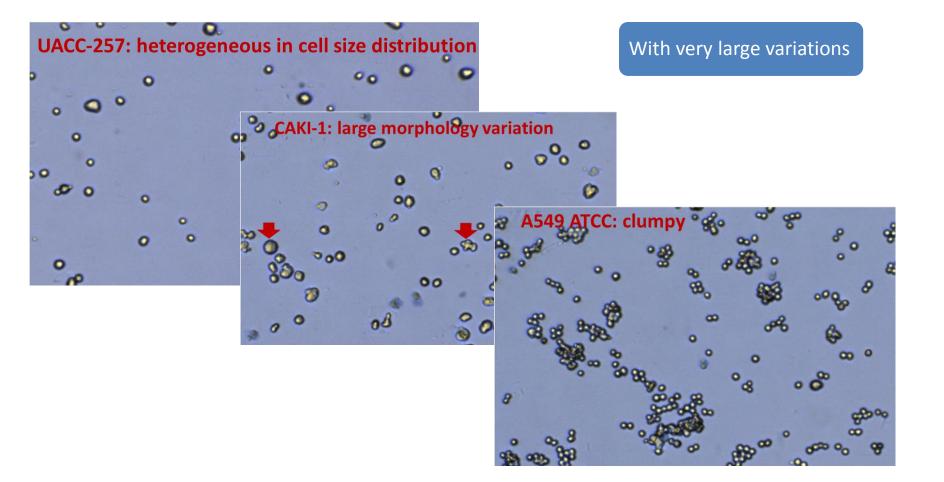
- NCI-60 cancer cell line panel defined by National Cancer Institute
- Used for screening of promising cancer therapeutics
- Over 3,000 distinct compounds screened each year

Source	Cell Lines
Lung	NCI-H23, NCI-H522, A549-ATCC, EKVX, NCI-H226, NCI-H332M, H460, H0P62, HOP92
Colon	HT29, HCC-2998, HCT116, SW620, COLO205, HCT15, KM12
Breast	MCF7, MCF7ADRr, MDAMB231, HS578T, MDAMB435, MDN, BT549, T47D
Ovarian	OVCAR3, OVCAR4, OVCAR5, OVCAR8, IGROV1, SKOV3
Leukemia	CCRFCEM, K562, MOLT4, HL60, RPMI8266, SR
Renal	UO31, SN12C, A498, CAKI1, RXF393, 7860, ACHN, TK10
Melanoma	LOXIMVI, MALME3M, SKMEL2, SKMEL5, SKMEL28, M14, UACC62, UACC257
Prostate	PC3, DU145
CNS	SNB19, SNB75, U251, SF268, SF295, SM539

Much larger cell line panels

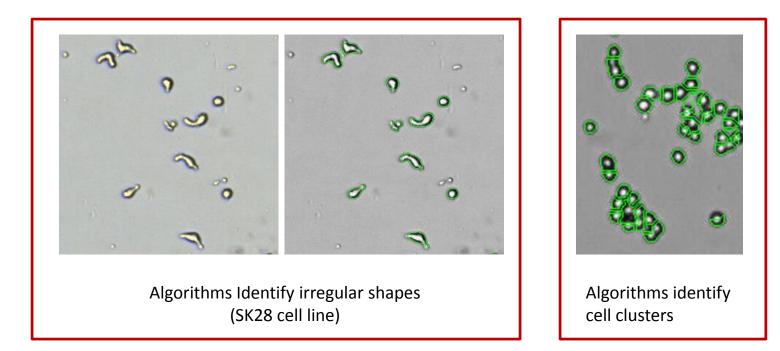
			BFTC-905	Ca Ski	CCLP-1
	rates and	ny const		C	CCRF-CEM
	bl 1	EFO-27	EW-7	GMS-10	CCRF-HSB-2
-	əl 2	EGI-1	FaDu	GOS-3	CCRF-SB
	Hs 505.T	Hs 845.T	НТ	GOTO	CCSWI
	Hs 518.T	Hs 852.T	HT 1080	GOTO.P3	CEM/C1
MY-M13	NCI-H1048	NCI-H1693	HT 1376	Gp2D	CEM/C2
MZ1-PC	NCI-H1092	NCI-H1694	HT 1417	GP5d	CESS
MZ2-MEL.	NCI-H1105	NCI-H1703	HT 728.T	GRANTA-519	CFPAC-1
MZ7-mel	NCI-H1155	NCI-H1734	HT115	GR-ST	CGTH-W-1
NAE	NCI-H1184	NCI-H1755	HT-1197	GT3TKB	Ch1
NALM-1	NCI-H1238	NCI-H1770	HT-144	GTL-16	Ch8
NALM-19	NCI-H128	NCI-H1781	HT-29	H2052	ChaGo-K-1
NALM-6	NCI-H1299	NCI-H1792	HT-3	H2369	CHL-1
NAMALWA	NCI-H1304	NCI-H1793	HT55	H2373	CHP-126
AMALWA.CSN/70	NCI-H1341	NCI-H1819	HTC-C3	H2461	
AMALWA.IPN/45	NCI-H1355	NCI-H1836	HuCCT1	H2591	
NAMALWA.KN2	NCI-H1385	NCI-H1838	huH-1		
NAMALWA.PNT	NCI-H1395	NCI-H1869	HuH28		
NB(TU)1-10	NCI-H1404	NCI-H187			

- Novartis /Broad (CCEL) 1,000 cell types
- MGH/Sanger more than 1,600 cell types


Purpose of the cell counting

- Count cells for cell line expansion
- Count cells to seed assay plates (1536w, 384w, 96w)

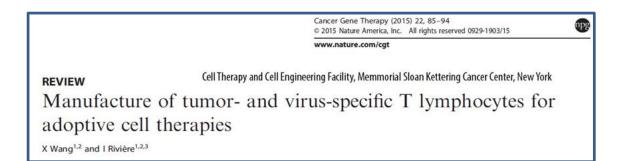
What do cell preparations look like for NCI-60 cell lines?


Summary of NCI 60 diverse morphologies

Cell Characteristics	% Total	
Round with narrow size distribution	Cells with round shape, not sticking to each other Not a very large size distribution	43%
Clumpy	Cells stick to each other forming clumps, typically more than 5 cells per clump	
Clustering	Cells stick to each other forming clusters, typically less than 5 cells per cluster	57%
Debris	Dead cells form debris in suspension	
Large Morphology Variation	Cells vary in size and shape	

Cell Membrane Outline Algorithm to address the morphological diversity for counting

Advanced imaging and analysis algorithms are necessary to address the cell morphology diversity in the large tumor cell lines.


- Each cell preparation contains only one cell type
- Cell preparation is generally in heathy conditions with viability higher than
 90%
- Bright-field based cell counting assay can be used
- Special image analysis capability is required for devise morphologies

Cell counting fit-for-purpose case II: cell therapy bio-processing

Examples of cell therapy production processes

- CAR-T manufacturing
- Hematopoietic stem cell
- Therapeutic cancer vaccine

Cancer Gene Therapy (2015) 22, 95–100 © 2015 Nature America, Inc. All rights reserved 0929-1903/15

www.nature.com/cgt

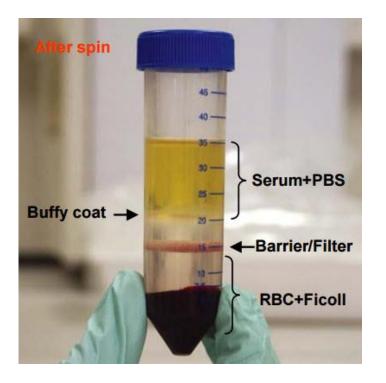
The University of Texas MD Anderson Cancer Center, Houston, TX, USA

npg

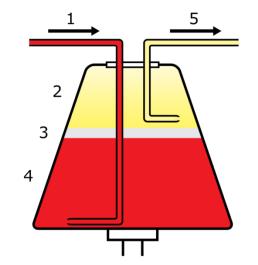
REVIEW

Manufacture of T cells using the *Sleeping Beauty* system to enforce expression of a CD19-specific chimeric antigen receptor

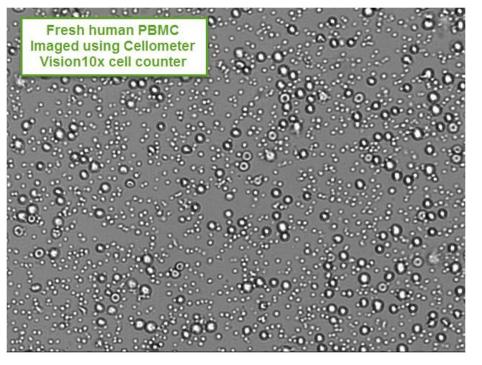
H Singh¹, JSE Moyes¹, MH Huls¹ and LJN Cooper^{1,2}

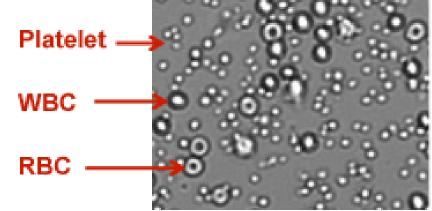


 Count cells from starting material, in-processing material and the final products

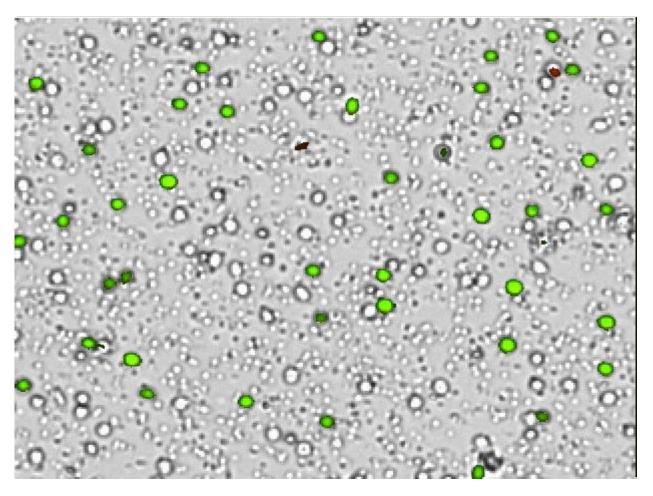

Source of the starting material

PBMC by Ficoll separation


Leukopak from leukophoresis



Other source materials: bone marrow, cord blood


What cell types are in the starting material?

Is the bright-field based counting method selective enough for staring materials?

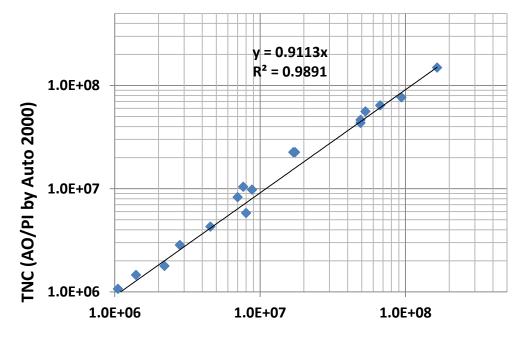
Starting material from Leukopheresis

Total cells: 119

Total FL cells: 39

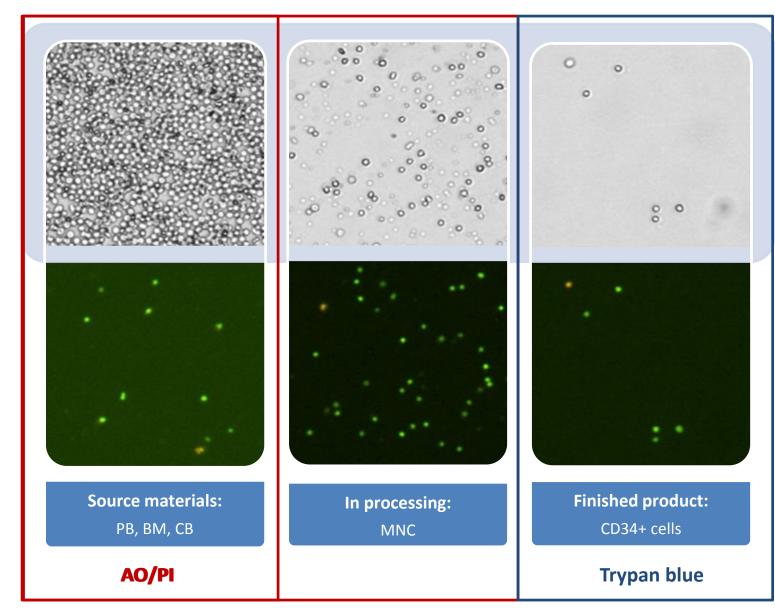
Over counted cells: 80 They are not nucleated. Over counting: 3x

Multiple Leuokopheresis samples shown varied amount of RBC


- Manual counting using Hemacytometer and trypan blue
- Automatic cell counting using Cellometer Vision and AO/PI stains
- Experiment using Leukopheresis samples

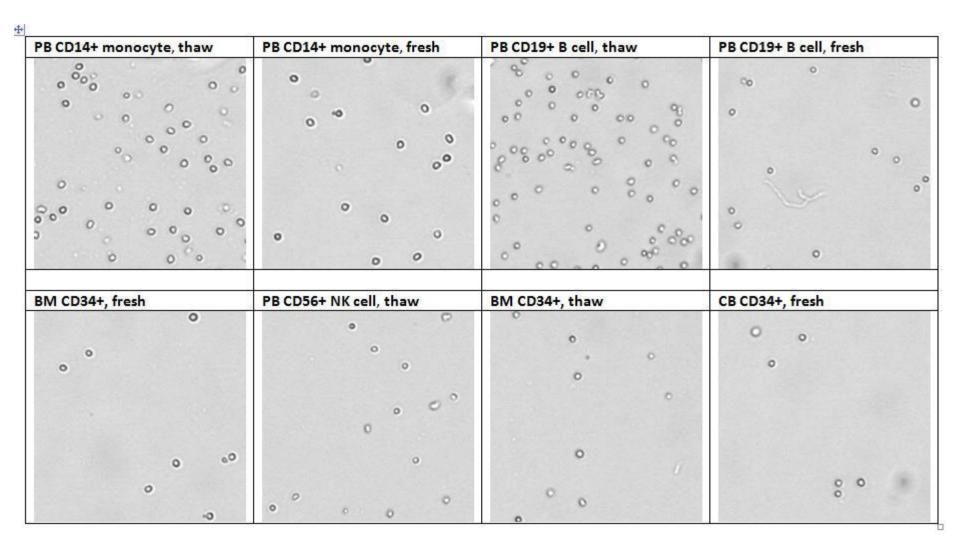
Sample ID	Α	В	С	D	E	F
Ratio						
(Manual counting to Cellometer AO/PI)	7	5	12	3	7	5

TNC using manual and automatic cell counting with good correlation


- Manual counting using Hemacytometer post lysing red blood cells
- Automatic cell counting directly stain starting material with AO/PI prior to cell counting
- Starting materials were bone marrow, leukopak, cord blood

Manual TNC (cells/ml)

Select a cell counting system with multiple cell counting assays



Bright-field image

Fluorescent image

More finished products with cell preparation containing only one cell type, no particle debris

Bright-field cell counting assay using trypan blue works well with finished products.

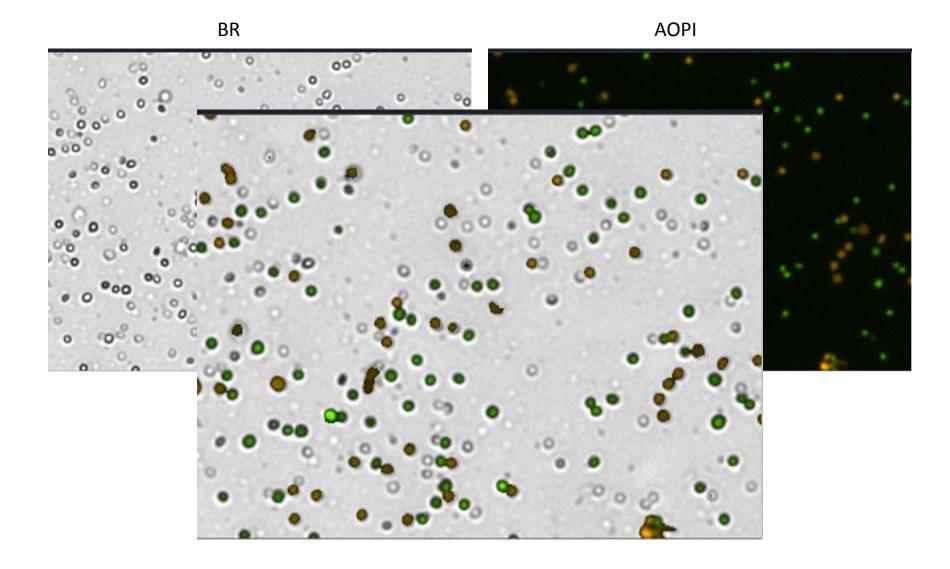
- Cell preparation changes though cell process
- Without lysing, fluorescence staining method is more selective
- Bright-field based cell counting assay can be used for finished product when cell preparation is
- Cell counting system provides multiple assays are essential to satisfy varied cell preparation conditions

Cell counting fit-for-purpose case III: primary cells from mouse models

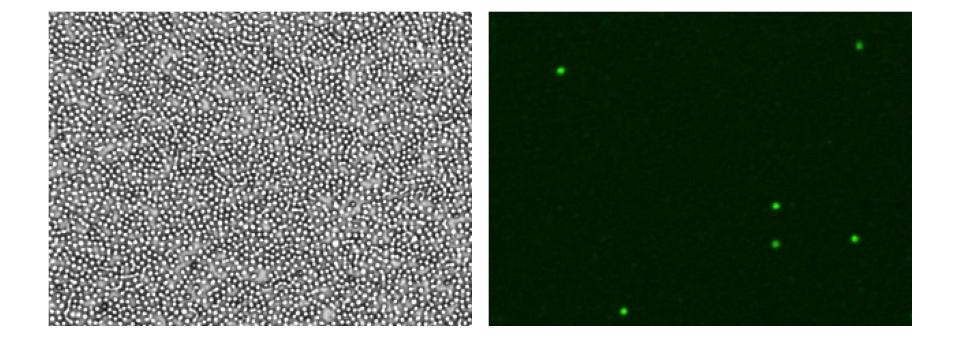
Example cell types and assays from mouse models

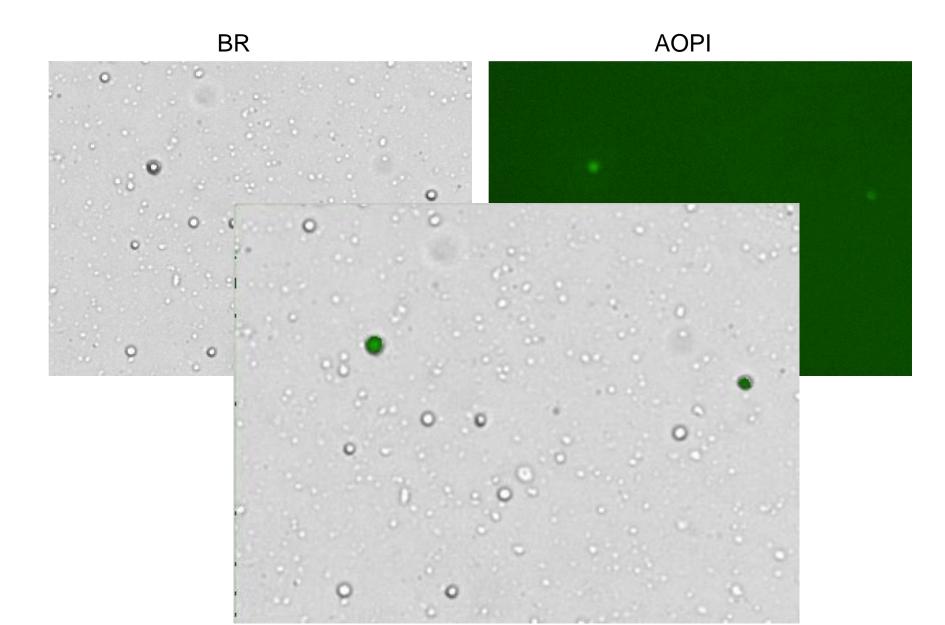
- Tissues
 - Blood, Spleen, BAL, Lung
 - Axillary LN, Mesenteric LN, Inguinal LN, Obturator LN, Iliac (Internal) LN,
 Cervical LN, Mesenteric LN, Bronchial LN
 - Primary bronchi, Tonsils, Nares Mucosa, Trachea, Rectum, Jejunum, Cervix,
 Vagina, Uterus, Ileac

- Cells are used for:
 - FACs Surface and Intracellular Staining
 - Elispots
 - qPCR


Cell preparation evaluation

- The operation contains multiple cell preparations
- All cell preparation contains multiple cells types
- Most cell preparation contains particular debris from tissue digestion process
- The amount of cells vary from one animal to another animal


What is in a spleenocyte cell preparation?


What is in mouse tail blood?

What is in BAL?

Requirements from mouse samples: large dynamic range in both cell count and viability

Results from analysis of 30 distinct lymphocyte samples

	Sample # 7	Sample # 6	Sample # 2	Sample # 5
Total cell count	49	1419	10635	24245
Live cell concentration	1.07E+05	2.84E+06	3.11E+07	6.75E+07
Viability	63.2%	58.0%	84.4%	80.3%
Bright field cell image	0	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		
Counted live /dead cell image	G G			

- No tolerance in lysing and other cell processing steps prior to counting –
 large number of samples per run
- Large variation in the amount and type of particle debris due to tissue source and dissociation processes
- Cell concentration and viability vary in several order of magnitude
- Bright-field based cell counting assay cannot be used
- Dual FL stain provided good cell counting assay

Q&A

Three key fit-for-purpose considerations for cell counting using imaging cytometry

- 1. Understand cell preparation
- 2. Evaluate cell counting assays for selectivity
- 3. Determine tolerance in sample processing

Jean Qiu jqiu@nexcelom.com