
	

	 	
	 	 		 	 	 	

	

		

		

		

		

		

		

		

		

		
	
	

	

		

	

	

		

	

	

	

9

10
11

12

13

14

15

16

17

18

19

	 	 	 	 	 	 	 	 	 	
	

	

	 	
	 	 	

	
	 	 	 	 	

		

	
	
	
	
	
	

	

	

CHEXIA-FACE

1

2

3

4

5

6

7

8

An Evaluation Activity sponsored	by the DHS Science & Technology Directorate

Concept, Evaluation	 Plan	 and	 API
Version	 0.6,	 January 7, 2016

Patrick Grother and Mei Ngan

Contact	 via	 chexia-face@nist.gov

NIST Concept, Evaluation	 Plan	 and	 API Page	 1 of 37

mailto:chexia-face@nist.gov

	

	 	
	 	 		 	 	 	

	

	 	 	 	 	 		
	

	 	
	 	 	 	
	 	 	 	

	
	

	 	 		 	 	 	 	
	 	 	 	 	 	 	
	 	

	
	

	 	 	 	 	 	 	
	 	 	 	

	
	

	 	 	 	 	 	 	
	 	 	 	 	 	

		

		

		

	 	 	 	 		

	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 		

 	 	 	 	 	 	 		 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 				

 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 		 	 	 	 	 	 	 	 	 		

	 	 	 	 	 		

 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 		

 	 		

 	 	 	 	 	 	 		 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 		 	 	 		

 	 	 	 	 	 	 	 	 	 	 		
		

 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 		

 	 	 	 	 	 			

		

 	 	 	 	 	 	 	 	 	 	 	 		

	

20

CHEXIA-FACE

Provisional Timeline of the CHEXIA-FACE Evaluation
Phase	 0
API Development

2015-10-26 Draft evaluation plan

2015-11-16 Final evaluation plan

Phase	 1 2015-12-15 Participation starts: Algorithms	 may	 be sent to NIST

2016-01-20 Last day	 for	 submission of algorithms	 to Phase 1

2016-02-22 Interim 	results 	released 	to 	Phase 1 	participants
Phase	 2 2016-04-20 Last day	 for	 submission of algorithms	 to Phase 2

2016-05-20 Interim 	results 	released 	to 	Phase 2 participants
Phase	 3 2016-07-27 Last day	 for	 submission of algorithms	 to Phase 3

2016-Q4 Release of final public report

21

22

23

24 Notable differences from FRVT 2012

25 Anonymous participation	 is allowed	 – but see section 1.8.

26 Please	 note	 that this document is derived from the	 FRVT	 2012 API document for continuity and	 to	 aid	 implementers of
27 the CHEXIA-FACE API.

28 ― This evaluation is dedicated	 solely to	 imagery relevant to	 child	 exploitation. NIST seeks to	 assist developers in	 any
29 way	 possible to improve algorithm accuracy on	 this task, and	 is open	 to	 creative ideas on	 how to	 do	 so.

30 ― We	 anticipate	 running	 the	 algorithms only on child exploitation imagery. We may	 also run algorithms on other
31 images if 	that 	will	isolate relevant	 factors that	 will influence accuracy. We do not intend to run the algorithms on
32 cooperative images	 used in recent FRVT tests.

33 ― This evaluation drops the following:

34 − Facial age, gender, pose	 conformance, and expression estimation for still images	 (see section 1.9)

35 − The class F	 evaluation of frontal pose rendering algorithms

36 ― This evaluation:

37 − Merges the idea of “still” and “video”. This abstraction supports verification and identification functions
38 where either “sample” may be a still or video. See section 2.4.2.

39 − Adds a face detection	 task in 	which 	the 	algorithm 	reports locations 	of faces detected in images. See	 Section
40 3.3.

41 − Adds a clustering task in which the algorithm finds	 and groups	 images	 of an unknown number of identities.	
42 See	 section 3.4.

43 − Employs GPUs on some NIST machines.

44

45 ― The header/source files	 for the API will be made available to implementers	 at http://nigos.nist.gov:8080/chexia-face.	

46

NIST Concept, Evaluation	 Plan	 and	 API Page	 2 of 37

http://nigos.nist.gov:8080/chexia-face.	

	

	 	
	 	 		 	 	 	

	

		

	 	 	 		
	 	 	 		
	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 		
	 	 	 	 		
	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 		

	 	 	 	 	 	 	 		
	 	 	 		
	 	 	 		
	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 		

	 	 	 	 		
	 	 	 		
	 	 	 	 		
	 	 	 		
	 	 	 		

	 	 	 		
	 	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 		
	 	 	 	 	 	 	 		

		
		

	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 		

47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98

CHEXIA-FACE

Table	of	Contents
1. CHEXIA-FACE ...5

1.1. Scope..5
1.2. Audience ..5
1.3. Market drivers..5
1.4. Test datasets ..6
1.5. Offline testing ..6
1.6. Phased testing..6
1.7. Interim 	reports...7
1.8. Final reports ...7
1.9. Application	 scenarios ...7
1.10. Options for participation..8
1.11. Number and schedule of submissions ...8
1.12. Core accuracy metrics ..9
1.13. Reporting template size ...9
1.14. Reporting computational efficiency...9
1.15. Exploring the accuracy-speed trade-space ..9
1.16. Hardware specification ..9
1.17. Operating system, compilation, and linking environment...10
1.18. Software	 and Documentation..10
1.19. Runtime behavior...11
1.20. Threaded computations...12
1.21. Time limits..12
1.22. Ground truth integrity..13

2. Data structures supporting the API...13
2.1. Namespace...13
2.2. Overview ..13
2.3. Requirement ..13
2.4. File	 formats and data	 structures ..13
2.5. File	 structures for enrolled template	 collection...18

3. API Specification..19
3.1. 1:1	 Verification...19
3.2. 1:N Identification ...23
3.3. Face	 Detection ...29
3.4. Clustering ...31

4. References ..33
Annex A	 Submission	 of Implementations to	 the CHEXIA-FACE ..34

A.1 Submission of implementations to NIST...34
A.2 How to participate ..34
A.3 Implementation 	validation ...35

Annex B	 Effect of Age on	 Face Identification	 Accuracy ..36

List	of 	Tables
Table 1	 – Main image corpora (others may be used) ...6
Table 2	 – Subtests supported under the	 CHEXIA-FACE	 activity ..7
Table 3	 – CHEXIA-FACE	 classes of participation..8
Table 4	 – Cumulative total number of algorithms, by class..8
Table 5	 – Implementation 	library 	filename 	convention ...11
Table 6	 – Number of threads allowed for each application..12
Table 7	 – Processing time	 limits in milliseconds, 	per 	640 x 	480 	image...12
Table 8	 – Structure	 for a	 single	 image	 or video frame..14
Table 9	 – Structure	 for a	 set of images or video frames...14

NIST Concept, Evaluation	 Plan	 and	 API Page	 3 of 37

	

	 	
	 	 		 	 	 	

	

	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 		
	 	 	 	 		
	 	 	 	 	 		
	 	 	 	 		

			

	

100

105

110

115

120

125

130

CHEXIA-FACE

99 Table 10	 – Labels describing	 categories of Multifaces..14
Table 11	 – Structure	 for a	 pair of eye	 coordinates ...15

101 Table 12	 – PersonTrajectory typedef..15
102 Table 13	 - Class for representing a person ...16
103 Table 14	 – Structure	 for bounding	 box around a	 detected face...16
104 Table 15	 – Structure	 for a	 single	 hypothesized cluster membership..17

Table 16	 – Structure	 for hypothesized cluster membership for face(s) in an image ..17
106 Table 17	 – Structure	 for a	 candidate ..17
107 Table 18	 – Enumeration of return codes ..17
108 Table 19	 – ReturnStatus structure ..18
109 Table 20	 – Enrollment dataset template manifest ...18

Table 21	 – Functional summary of the	 1:1	 application...19
111 Table 22	 – Initialization...20
112 Table 23	 – GPU	 index specification...21
113 Table 24	 – Template generation...21
114 Table 25	 – Template matching ...21

Table 26	 – Procedural overview of the	 identification test..23
116 Table 27	 – Enrollment initialization ..25
117 Table 28	 – GPU	 index specification...25
118 Table 29	 – Enrollment feature extraction...26
119 Table 30	 – Enrollment finalization ..26

Table 31	 – Identification 	feature 	extraction 	initialization...27
121 Table 32	 – Identification 	feature 	extraction ...27
122 Table 33	 – Identification 	initialization...28
123 Table 34	 – Identification 	search..28
124 Table 35	 – SDK	 initialization..29

Table 36	 – GPU	 index specification...29
126 Table 37	 – Face	 detection ...30
127 Table 38	 – SDK	 initialization..31
128 Table 39	 – GPU	 index specification...32
129 Table 39	 – Clustering ..32

131

NIST Concept, Evaluation	 Plan	 and	 API Page	 4 of 37

	

	 	
	 	 		 	 	 	

	

	

	

		

 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
			

 		

 	 		

 	 		

 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 		
	 	 		 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 		

 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 		 	 	 	 	 	 	 	 	 	 	 	 		

	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 			

	 	 	 	 	 	 	 	 	 	 	 	 			
	 	 	 	 	 	 	 	 	 		

		

	 	 	 	
	

	
	

	
	

	 	 	 	 	 	
	

		 	

	 	
	

	 	
	

	
		

CHEXIA-FACE

132 	 1. CHEXIA-FACE	

133 	 1.1. Scope 	
134 	 This	 document	 establishes	 a	c oncept	 of	 operations	 and 	an 	application	 programming	 interface	 (API)	 for	e valuation 	of	 face 	
135 	 recognition 	(FR)	 implementations 	submitted 	to 	NIST's	 Child	E xploitation	 Image 	Analytics 	Face 	Recognition 	Evaluation 	
136 	 (CHEXIA-FACE).	

Child Exploitation Image Analytics
(CHEXIA)

1:1
Verification

1:N
Identification

API and Concept of Operations are	 defined	 in	 this
document

Clustering Face Detection

Face Recognition
(CHEXIA-FACE)

Text Recognition
(TRAIT-2016)

See
http://www.nist.gov/itl/iad/ig/trait-2016.cfm

137

138 1.2. Audience
139 Universities and commercial entities with capabilities in any of the	 following areas are invited to participate in the
140 CHEXIA-FACE	 test.	

141 ― Identity 	verification 	with 	face 	recognition 	algorithms.

142 ― Large	 scale identification 	implementations.

143 ― Face	 detection algorithms.

144 ― Implementations 	with 	an ability to cluster (find and group) images of an unknown number of identities.

145 Organizations will need to implement the API defined in this document. Participation is open worldwide. There	 is no
146 charge for participation. While NIST intends to evaluate technologies	 that could be readily	 made operational, the test	 is
147 also open to experimental, prototype and other technologies.

148 1.3. Market drivers
149 There is a	 growing market around digital forensics – the ability to extract	 semantic information from imagery that	 is useful
150 to an investigation. This test specifically is intended to assess the efficacy of	 face recognition algorithms on	 child	
151 exploitation imagery. These images are of interest to NIST's partner law enforcement agencies that seek to employ face
152 recognition in 	investigating 	this 	area 	of 	serious 	crime.		The 	primary 	applications 	are 	identification 	of 	previously 	known
153 victims and suspects,	detection 	of 	new 	victims and suspects. Given a collection of images, produce a cluster of identities,
154 from which (law enforcement)	 investigations can proceed.

155 A	 parallel effort, TRAIT 2016, seeks to	 improve the capability of algorithms to	 recognize text in	 unconstrained	 images.
156 Text appears frequently in child exploitation imagery. See http://www.nist.gov/itl/iad/ig/trait-2016.cfm .

157

NIST Concept, Evaluation	 Plan	 and	 API Page	 5 of 37

http://www.nist.gov/itl/iad/ig/trait-2016.cfm

	

	 	
	 	 		 	 	 	

	

	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 		 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 		 	 	 	 	

																																																																				
	 	 	 	 	 	 	 	 	 	 	 		

CHEXIA-FACE

158 	 1.4. Test	datasets	
159 	 NIST	 anticipates 	running 	the 	algorithms 	only 	on 	child 	exploitation 	imagery. 	NIST	 may	 also	 run	 algorithms	 on	 other	 images	
160 	 if 	that 	will	isolate 	factors 	that 	will	influence	 accuracy.	 	NIST	 does	 not	 intend	 to 	run 	the 	algorithms	 on 	cooperative 	images	
161 	 used	i n	r ecent	 FRVT	 tests. 		The	 data	h as,	 in 	some	 cases,	 been 	estimated 	from 	initial	 small	 partitions.	 The	 completion	of 	
162 	 this	 section 	depends	 on 	further	w ork.	 	The 	information 	is	 subject	to 	change. 	

163 	 Table	1 	– 	Main	 image	 corpora	 (others	 may	 be	us ed)	

Child	 exploitation TBD

Collection, environment Mostly inside a home, sometimes outdoors

Live	 photo,	Paper scan Live

Documentation See	 NOTE	 below

Compression	 from [MBE 2010]1 Variable

Maximum image size Some	 from contemporary SLR camera, some	 3000x4000	 and higher.

Minimum image size 240	 x 240

Eye to eye distance pixels 20	 to 1000	 approximately

Pose The images have compound roll, pitch	 and	 yaw rotations.

Full frontal geometry Rarely

Intended 	use All CHEXIA-FACE	 tasks

Age Many below 10, some to age 18. Rarely an adult.
164 	 	

165 	 NOTE	 on	 Child	 exploitation 	images:	 	These	 images	 are	 illicit 	pornographic 	images	 and 	video.	 The	i mages	 are 	present	 on	
166 	 digital	 media	 seized	i n	c riminal	 investigations.		 The	 files 	include 	children 	who	 range	 in	 age	 from 	infant	 through	 adolescent.	 	
167 	 In 	addition a	f ew 	adult 	faces 	sometimes 	occur	 also.	 	Some	o f	 the	i mages	 are	i nnocuous	 “family	 photographs”.	 The	
168 	 majority,	 however,	 feature 	coercion,	 abuse,	 and 	sexual	 activity.		

169 	 From 	a	f ace	r ecognition	 viewpoint,	 the	i mages	 will	 be	d ifficult	 for	 the	f ollowing	 reasons	 (in	 order):	 highly	 variable	 pose	
170 	 (including 	adverse 	compound 	roll,	 pitch	a nd	y aw);	 occlusion	(by	 hair,	 other	 persons,	 body	 parts	 and	obj ects);	 variable	 and	
171 	 directional	 lighting;	evidence 	that 	face 	recognition in	c hildren is	d ifficult 	even 	with 	cooperative 	photographs	 – 	see	
172 	 Annex	 B 	below 	which	e xcerpts	 [NIST8009].	

173 	 1.5. Offline	testing 	
174 	 While	 CHEXIA-FACE	is 	intended 	as 	much 	as 	possible 	to 	mimic 	operational	reality,	t his 	remains 	an 	offline 	test 	executed 	on 	
175 	 databases	 of	 images.	 The	 intent	 is	 to	as sess	 the	c ore	al gorithmic	 capability	 of	 face	de tection,	 recognition 	and 	clustering 	
176 	 algorithms.	 	This	 test	 does	 not	 include a	liv e 	human-presents-to-camera 	component. 		Offline 	testing 	is	a ttractive 	because 	
177 	 it 	allows 	uniform,	f air,	r epeatable,	a nd 	efficient 	evaluation 	of 	the 	underlying 	technologies.		Testing 	of 	implementations 	
178 	 under	 a 	fixed	AP I	 allows	 for	 a	 detailed	s et	 of	 performance	 related	pa rameters	 to	be 	 measured.		 The	 algorithms	 will	 be	 run 	
179 	 only	 on	N IST	 machines	 by	 NIST	 employees.	

180 	 1.6. Phased	t esting 	
181 	 To 	support	 development, 	CHEXIA-FACE	wi ll	 run 	in 	three 	phases.	In 	each 	phase,	 NIST	 will	 evaluate 	implementations 	on a	
182 	 first-come-first-served 	basis	a nd 	will	 return 	results 	to 	providers 	as 	expeditiously 	as 	possible.	 The 	final	 phase 	will	 result	i n 	
183 	 the 	release 	of 	public	 reports.		 Providers	 should 	not	 submit	 revised 	algorithms	t o 	NIST 	until	 NIST	 provides	 results	 for	 the	
184 	 prior	 phase. 			

185 	 For	 the	sch edule 	and 	number	 of	 algorithms 	of	 each	c lass	 that	m ay 	be 	submitted, 	see 	sections 	1.10 	and 	1.11. 			

1 Compression	 effects were studied	 under MBE 2010 in	 NIST Interagency Report 7830, linked	 from http://face.nist.gov/mbe

NIST Concept, Evaluation	 Plan	 and	 API Page	 6 of 37

http://face.nist.gov/mbe

	

	 	
	 	 		 	 	 	

	

	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 		 		
	 	 	 		 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 		

 	 		

	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 		

 	 	 	 	 	 		
	 	 		

 	 	 		

 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 		

	 	 	 	 	 	 		

	 	 	 	 	 	
	 	 	 	 	 		 	
	 	

	
	 	 	 	

	 	 	
	 	 	

	 	

	 	 	 	 	
	 	

	 	 	 	 	
	 	 	 	

	 	 	
	

	 	 	 	 	
	 	 	 	

	 	 	 	
	 	 	 	

	 	

	 	
	

	 	 	
	 	 	 	

	 	

	 	
	 	 	 	

	 	 	 	
	 	 	 	
	 	
	 	

	 	 	
	 	 	
	 	 	 	

	 	
	

	 	 	

	 	 	 	
	 	 	 		 	

	 	 	 	 	
	 	 	 	 	

	 	 	
	 	 	 	

CHEXIA-FACE

186 	 1.7. Interim 	reports	
187 	 The	 performance	 of	 each	 implementation 	will	 be	 reported 	in 	a 	"score-card".		 This	 will	 be	 provided	t o	t he	 participant. 		It is	
188 	 intended 	to 	facilitate 	research 	and 	development,	not 	for 	marketing.	 Score	 cards	wi ll:	 be	 machine	 generated	 (i.e.	 scripted); 	
189 	 be	 provided	t o	pa rticipants	 with	i dentification	of 	 their	 implementation, 	include 	timing,	 accuracy 	and 	other	p erformance 	
190 	 results,	 include 	results	 from 	other	i mplementations,	 but	w ill	 not	i dentify 	the 	other	 providers;	be 	expanded 	and 	modified 	
191 	 as	 revised	 implementations	 are	t ested,	 and	 as	 analyses	 are	i mplemented;	 be	 produced	i ndependently	 of	 the 	status	o f	
192 	 other	p roviders’	 implementations;	 be	 regenerated	on -the-fly,	 usually	 whenever	 any 	implementation 	completes 	testing,	or	
193 	 when	ne w	 analysis	 is	 added.	

194 	 NIST	 does	 not	 intend	 to	 release	 these	 test	 reports	 publicly.	 	NIST	 may	 release	 such	i nformation	t o	t he	U .S.	 Government	
195 	 test	s ponsors;	 NIST	 will	 request	th at	a gencies 	not	re lease 	this 	content. 		

196 	 1.8. Final	 reports	
197 	 NIST	 will	 publish 	one	 or	 more	 final	 public 	reports.		 NIST 	may 	also 	publish: 	additional	 supplementary	 reports	 (typically 	as 	
198 	 numbered 	NIST	 Interagency	 Reports);	 in 	other 	academic 	journals;	in 	conferences	a nd 	workshops	(ty pically 	PowerPoint).	

199 	 Our	 intention	 is	 that	 the	 final	 test	 reports	 will	 publish	 results	 for	 the	 best-performing	 implementation	 from 	each 	
200 	 participant. 		Because	 “best”	 is	 under-defined 	(accuracy 	vs.	 time 	vs.	 template 	size,	 for	e xample), 	the 	published 	reports 	may	
201 	 include 	results 	for	o ther	i mplementations. 		The 	intention 	is 	to 	report	re sults 	for	th e 	most	c apable 	implementations 	(see 	
202 	 section 	1.12,	on 	metrics). 		Other 	results 	may 	be 	included 	(e.g. 	in 	appendices) 	to 	show,	for 	example,	examples 	of 	progress 	
203 	 or	 tradeoffs.		 	

204 	 IMPORTANT: 	All	 Phase	3	 r esults	 will	 be	at tributed 	to 	the 	providers. 			

205
206
207
208
209

210 1.9. Application scenarios
211 The test will include	 one-to-one verification	 and one-to-many identification 	tests [MBE 2010, NIST8009] for	 still images
212 and video clips.	 As described in	 Table 2,	the 	test 	is 	intended 	to 	represent:

213 ― Close-to-operational use of face recognition	 technologies in	 identification	 applications in 	which 	the 	enrolled 	dataset	
214 could contain images	 in 	the 	hundreds 	of 	thousands.

215 ― Verification 	scenarios in 	which samples are	 compared.

216 ― Face	 detection in stills and videos with one	 or more	 persons in 	the 	sample.

217 ― Grouping (clustering) identities in mixed media.

218 Table	 2 – Subtests supported under the CHEXIA-FACE	 activity

IMPORTANT:		Phase 1 	and 	Phase 2 	results 	will	 be attributed	 to	 the providers UNLESS, ahead of the	 Phase	 3 submission
deadline, the participant emails NIST to request their organization name	 should NOT appear in the	 CHEXIA public reports
and presentations. In 	that 	case 	the 	quantitative 	results 	will	still	appear in 	the 	published 	report 	but 	without 	any
appearance	 of the participant’s name. This provision is being included in this evaluation because NIST	 understands that
this is a new and difficult	 application of	 face recognition technology.

A C D G

1. Aspect 1:1	 verification 1:N identification Detection Clustering

2. Enrollment
dataset

None (applies to single
samples; there is	 no
concept of gallery	 or
enrollment database)

N	 enrolled subjects None, application to
single images

The concepts of enrollment and
search sets	 do not exist

3. Prior NIST	 test
references

Equivalent to 1 to 1
matching in [MBE 2010]

Equivalent to 1	 to N
matching in [NIST 8009]

4. Example
application

Verification of e-Passport
facial image against	 a live
border-crossing image.

Open-set identification
of an	 image against a
central database, e.g. a
search of a mugshot
against a	 database	 of
known criminals.

Often used in
conjunction with face
recognition; also used in
video surveillance,
human	 computer
interaction, and image

Assign	 images to	 groups if they
contain the same individual. Given
many images or videos containing
many individuals, produce as many
clusters	 as	 there are unique
individuals, and associate which

NIST Concept, Evaluation	 Plan	 and	 API Page	 7 of 37

	

	 	
	 	 		 	 	 	

	

	 	 	 	 	 	
	 	

	 	

	

	
	 	

	 	 	
	 	

	

	 	 	 	
	

	 	
	 	
	

	 	 	 	 	 	
	

	

	 	
	 	
	

	 	 	 	 	
	 	 	 	

	 	
	

	 	 	 	

	 	 	
	 	

	

	 	 	
	 	 	 	 	
	

	 	 	 	
	 	 	 	 	
	

	 	

	 	 	
	 	
	

	 	 	 	 	 	 	 	

		

	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
		 	 	 	 	 	 	 	 	 	 		 	 	 	 	 		

	 	 	 	 	 	 	 	 	 		

 		

	 	 	 		

 	 	 	 		
	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 		

	 	 	 	 	 		

	 	 	 	 	 	
	 	 	 	 	 	

	 		 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 				 	 	 	 	 	 	 	 	 	 	

			 	
	 	 	 	 	 			 	 	 	 	 	 	 	 	 	 	

CHEXIA-FACE

database management. images they appear in.	
5. Score	 or

feature space
normalization	
support

If 	any, normalization	
techniques are	 only
possible over datasets
internal	 to the
implementation.

Any score or feature
based	 statistical
normalization	
techniques are	 applied
against enrollment
database

Any score or feature based	 statistical
normalization	 techniques-are	 applied
internally

6. Intended
number of
subjects

Up to O(104) Up to O(105)	 but	
dependence on	 N will be
computed. From O(102)	
upwards.

Expected O(104) Expected O(103)

7. Number of
images per
individual

Variable:	 one or more
still images, or a video
clip

Variable: one or more
still images, or a video
clip

Variable Variable

8 Number of
persons in	 one
sample

1 1	 or more	 persons 1	 or more	 persons 1	 or more persons

219

220 NOTE 1: The vast majority of images are color. The API supports both color and greyscale images.

221 NOTE 2: For the	 operational datasets, it is not known what processing was applied to the	 images before	 they were	
222 archived. So, for example, we do	 not know whether gamma correction	 was applied. NIST considers that best practice,
223 standards	 and operational activity in the area of image preparation remains	 weak.

224 1.10. Options	for	participation
225 The following rules apply:

226 ― A	 participant must properly follow,	complete 	and 	submit 	the 	Annex A 	Participation 	Agreement. 		This 	must 	be 	done
227 once,	not 	before January 1, 2016.	 It is 	not 	necessary 	to 	do 	this 	for 	each 	submitted implementation.

228 ― All participants shall submit at least one class D algorithm.

229 ― Class A	 (1:1)	 algorithms may be	 submitted only if at least 1	 class D (detection)	 algorithm is also submitted.

230 ― Class C	 (1:N)	 algorithms may be	 submitted only if 	at 	least 1 	class 	A (1:1)	 algorithm is also submitted.

231 ― Class G (clustering)	 algorithms may be submitted only if at least 1	 class C (1:N) algorithm is also submitted.

232 ― Class D (detection) algorithms may be submitted alone, without submission to any other	 classes of	 participation.

233 ― All submissions shall implement exactly one of the functionalities	 defined in Table 3.	 A	 library shall not implement
234 the API of	 more than one class.

235 Table	 3 – CHEXIA-FACE classes of participation

Function 1:1	 verification 1:N identification Detection Clustering

Class label A C D G

Co-requisite class D D	 + A None D	 + A	 + C

API requirements 3.1 3.2 3.3 3.4

236 	 1.11. Number 	and	schedule of	subm issions		
237 	 The	 test	 is	 conducted 	in 	three	 phases,	as 	scheduled 	on 	page	2 . 		The	 maximum 	total	 (i.e.	 cumulative)	 number	 of	
238 	 submissions	i s	r egulated 	in 	Table	 4. 	

239 	 Table	4 	– 	Cumulative	t otal	 number	 of	 algorithms,	 by	 class	

# Phase	 1 Total over Phases 1	 +	 2 Total over Phases 1	 +	 2	 +	 3
Class A	 : Verification 2 4 6 if at least 1 was successfully executed by end Phase	 1

2	 otherwise
Class C	 : Identification 2 4 6	 if at least 1 was successfully executed by end Phase	 1

NIST Concept, Evaluation	 Plan	 and	 API Page	 8 of 37

	

	 	
	 	 		 	 	 	

	

				 	
	 	 	 	 	 	 			 	 	 	 	 	 	 	 	 	

			 	
	 	 	 	 	 	 			 	 	 	 	 	 	 	 	 	 	 	

			 	

	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 		

 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 			
	 	 	 	 	 	 	 	 	 	 	 	 				

	 	 	 	 	 	 	 	 		
	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 		
		

	 	 	 	 	 	 	 		

 	 	 		

	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 		 	 	 		
	 	 	 	 	 	 	 	 		

 	 	 		

	 	 	 	 	 	 	 		 	 	 	 	 	 		
	 	 	 	 	 		 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 		

 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 		
	 	 	 	 	 	 		 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 		

	 	 	 	 		

 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		

		
 	 	 	 	 	 	 	 	 	 			

 	 	 	 	 	 	 	 	 	 	 	 	 		
																																																																				
	 	 	 	 	 	 	 	 		
	
	 	 	 	 	 	 	 	 	 		

240

245

250

255

260

265

270

275

CHEXIA-FACE

2 otherwise
Class D : Detection 2 2 3	

1	
if at least 1	 was successfully executed by end Phase	 1
otherwise

Class G : Clustering 2 2 4	
2	

if at least 1 was successfully executed by end Phase 1
otherwise

The numbers above may be increased as resources allow.

241 NIST cannot conduct surveys over runtime parameters – essentially to limit 	the 	extent 	to 	which 	participants 	are 	able 	to
242 train on the test data.

243 1.12. Core	accuracy 	metrics
244 Notionally the error rates for verification applications will be false match and false non-match error rates, FMR and FNMR.

These will be modified to include the effects of failure to make a	 template.

246 For identification	 testing, the test will target open-universe applications such	 as watch-lists.		It 	will	not 	address 	the 	closed-
247 set task because it is	 operationally uncommon. Metrics include false positive and negative identification rate (FPIR and
248 FNIR) that depend on threshold and rank.

249 Rank-based	 metrics are appropriate for one-to-many applications that	 employ human examiners to adjudicate candidate
lists.		Score 	based 	metrics 	are 	appropriate 	for 	cases 	where 	transaction 	volumes 	are 	too 	high 	for 	human 	adjudication 	or

251 when	 false alarm rates must otherwise be low. See	 [NIST8009].

252 1.13. Reporting template size
253 Because template size is influential on	 storage requirements and	 computational efficiency, this API supports
254 measurement of template size. NIST will report statistics on the actual sizes of	 templates produced by face recognition

implementations 	submitted 	to CHEXIA-FACE.	 NIST may report statistics on runtime memory usage. Template sizes were
256 reported in the FRVT	 2012 test2,	 IREX 	III test3 and the	 MBE-STILL 2010	 test4.

257 1.14. Reporting computational efficiency
258 As with	 other tests, NIST will compute and	 report recognition	 accuracy. In	 addition, NIST will also	 report timing statistics
259 for	 all core functions of	 the submitted implementations. This includes feature extraction, 1:1 and 1:N recognition,	

detection, and	 clustering.	 For an example of how efficiency can be reported, see the final	 report of the FRVT	 2012 test
261 [NIST8009]2,	 and the	 MBE-STILL 2010	 test4.

262 Note that face recognition applications optimized for pipelined 1:N	 searches may not demonstrate their efficiency in pure
263 1:1	 comparison applications.

264 1.15. Exploring	the 	accuracy-speed	trade-space
NIST will explore	 the accuracy vs. speed tradeoff for face	 recognition algorithms running on a fixed platform. NIST will

266 report	 both accuracy and speed of	 the implementations tested. While NIST cannot force submission	 of "fast vs. slow"
267 variants, participants may	 choose to submit variants on some other axis (e.g. "experimental vs. mature")
268 implementations.		NIST 	encourages 	“fast-less-accurate	 vs. slow-more-accurate” with a	 factor of three	 between the speed
269 of the fast and	 slow versions.

1.16. Hardware specification
271 NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of
272 computer blades	 that may	 be used in the testing. The following list gives some details about the hardware of each	 blade
273 type:
274 • Dell M610 - Dual Intel Xeon X5680	 3.3	 GHz CPUs (6	 cores each)

• Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each)

2 See	 the	 FRVT	 2012	 test report: NIST	 Interagency Report 8009, linked from http://www.nist.gov/itl/iad/ig/frvt-2013.cfm

4 See	 the	 MBE-STILL 2010	 test report, NIST	 Interagency Report 7709, linked from http://face.nist.gov/mbe

NIST Concept, Evaluation	 Plan	 and	 API Page	 9 of 37

http://face.nist.gov/mbe
http://www.nist.gov/itl/iad/ig/frvt-2013.cfm

	

	 	
	 	 		 	 	 	

	

CHEXIA-FACE

276 	 • Dual	 Intel	 Xeon 	E5-2695	3. 3	G Hz	 CPUs	 (14	c ores	 each;	56	 l ogical	 CPUs	 total)	w ith 	Dual 	NVIDIA 	Tesla 	K40 	GPUs	

277 	 NOTE:	 Implementations	 must	 be	 functional	 on	 machines	 with	 and	 without	 GPU	 capability.	 	

278 	 Each 	CPU 	has	 512K	c ache.	 The	 bus	 runs	 at	 667	M hz.	 	The	 main	m emory	 is	 192	 GB	M emory	 as	 24	 8GB	 modules.		 We	
279 	 anticipate 	that 	16	p rocesses 	can 	be 	run 	without	ti me 	slicing. 	

280	 NIST 	is	 requiring	 use	 of	 64	 bit	 implementations	 throughout.	 	This	 will	 support	 large	 memory	 allocation 	to 	support	 1:N	
281 	 identification 	task. 		For	 video,	 given 	the	d ata	ex pectations 	and 	the	o ccurrence	o f	 faces	 in 	the	i magery,	 we	 anticipate	 the	
282 	 developers 	will	 have 	sufficient 	memory 	for 	video	t emplates.		 Note 	that 	while 	the 	API	 allows 	read 	access 	of	 the 	disk 	during 	
283 	 the 	1:N 	search, 	the 	disk 	is, 	of	c ourse, 	relatively 	slow. 	

284 	 Some	o f 	the	se ction 	3 	API	 calls 	allow 	the 	implementation	t o	w rite 	persistent 	data 	to	ha rd	di sk.	 	The 	amount 	of 	data 	shall 	
285	 not 	exceed	2 00 	kilobytes 	per 	enrolled	i mage. 		NIST 	will 	respond	t o	pr ospective 	participants'	 questions 	on 	the 	hardware,	
286 	 by 	amending 	this 	section.	

287 	 1.17. Operating	system,	 compilation,	 and	 linking	 environment 	
288 	 The	 operating	 system 	that	th e 	submitted	i mplementations	 shall	 run	on	 wi ll	 be	 released	 as	 a	 downloadable	 file	 accessible	
289 	 from 	http://nigos.nist.gov:8080/evaluations/ 	which	 is 	the 	64-bit	 version 	of	 CentOS 	7 	running 	Linux 	kernel	 3.10.0.	

290	 For	 this	 test,	 Windows	 machines	 will	 not	 be	u sed.	 Windows-compiled 	libraries	a re 	not	 permitted.	 	All	software 	must 	run 	
291 	 under	 Linux. 	

292 	 NIST	 will	 link	 the	 provided	 library 	file(s)	to 	our	C+ +	 language	 test	 drivers.	 	Participants	 are	 required	t o	pr ovide	 their	 library	
293 	 in a	f ormat 	that is	lin kable 	using 	the 	C++11 	compiler,	 g++ 	version 	4.8.3.	 		

294 	 A	t ypical	 link	 line	 might	 be	

295	 g++ 	-std=C++11 	-I. 	-Wall	 -m64	 -o	ch exiaface 	chexiaface.cpp 		-L.	 	–lchexiaface_Enron_A_07		

296 	 The 	Standard 	C++	l ibrary 	should 	be	 used 	for	 development.	 	The	 prototypes	 from 	this	 document	 will	 be	 written	 to	 a	f ile	
297 	 "chexiaface.h" 	which 	will	b e 	included 	via 		

#include	 <chexiaface.h> 	

298 	 The	 header	 files	 will	 be 	made	 available	 to	 implementers	 at	 http://nigos.nist.gov:8080/chexia-face/ 	

299 	 NIST	 will	 handle	 all	 input	 of	 images	 via	 the	 JPEG	a nd	 PNG	l ibraries,	 sourced,	 respectively	 from 	http://www.ijg.org/	 and 	see	
300	 http://libpng.org. 	

301 	 All	 compilation	a nd	t esting	 will	 be 	performed	on	 x 86 	platforms.	 	Thus,	 participants	 are 	strongly	 advised	t o	v erify	 library-
302 	 level	compatibility 	with 	g++ 	(on 	an 	equivalent	p latform)	p rior	to 	submitting 	their	s oftware 	to 	NIST 	to	a void	l inkage 	
303 	 problems	 later	 on	(e.g.	 symbol	 name 	and	c alling 	convention	m ismatches,	 incorrect	 binary 	file 	formats,	 etc.).	

304 	 Dependencies	 on 	external	 dynamic/shared	 libraries	 such	 as	 compiler-specific	d evelopment	 environment	 libraries	a re 	
305	 discouraged.	 	If	 absolutely	 necessary,	 external	 libraries	 must	 be	p rovided 	to 	NIST	u pon 	prior	 approval	 by 	the	Tes t	 Liaison. 	

306 	 1.18. Software 	and	Documentation	

307 	 1.18.1. Library 	and 	Platform 	Requirements	
308 	 Participants	 shall	 provide	N IST	w ith 	binary	 code	o nly	 (i.e.	 no 	source	c ode).	 	Header	 files 	(“.h”)	 are	al lowed,	 but	 these	s hall	
309 	 not	 contain	i ntellectual	 property	 of	 the 	company	 nor	 any	 material	 that	 is	 otherwise	 proprietary.	 	The	 SDK	s hould 	be	
310	 submitted 	in 	the 	form 	of 	a 	dynamically 	linked 	library 	file. 	

311 	 The	 core	 library	 shall	 be	 named 	according	t o 	Table	 5.		 Additional	s hared 	object	 library 	files 	may 	be 	submitted 	that 	support 	
312 	 this 	“core” 	library 	file 	(i.e. 	the 	“core” 	library 	file 	may 	have 	dependencies 	implemented	 in	 these	 other	 libraries).	

313 	 Intel	Integrated 	Performance 	Primitives 	(IPP) 	libraries 	are 	permitted if	t hey 	are 	delivered 	as a	p art 	of 	the 	developer-
314 	 supplied 	library 	package.	It is	t he 	provider’s 	responsibility 	to 	establish 	proper 	licensing 	of 	all	libraries.	 	The 	use 	of	 IPP	
315	 libraries 	shall	not 	prevent 	run 	on 	CPUs 	that	d o 	not	s upport	I PP. 		Please	t ake	n ote	t hat 	some 	IPP 	functions	a re 	
316 	 multithreaded	 and	 threaded	 implementations	 may	 complicate	 comparative	 timing.	

NIST Concept, Evaluation	 Plan	 and	 API Page	 10 of 37

	

	 	
	 	 		 	 	 	

	

	 	 		

	 	
	

	 	
	 	

	 	 	 	 	

	 	 	 	
	

	 	

	 	 	
	 	

		 	

	 	
	 	 	

	
	 	

	 	
	 	 	 	 	
	 	 	

	 	 	 	 	
	 	

	

	 	
		

	 	 	 	 	 	 	 	 		

 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 		

 	 	 		

	 	 	 	 	 	 	 	 		
 	 	 	 	 	 		
 	 	 	 	 		
 	 	 	 	 		

 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 		

	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 		
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 		 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 		

 		
	 	 	 	 	 	 	 	 	 	 	 			

	 	 	 	 	 	 	 		

 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 		

 	 		

 		

	 	 	 	 	 	 	 		
		

 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 		

317

CHEXIA-FACE

Table	 5 – Implementation 	library 	filename 	convention

Form libCHEXIAFACE_provider_class_sequence.ending

Underscore
delimited	 parts of
the filename

libCHEXIAFACE provider class sequence ending

Description First part of the	
name, required	 to	
be this.

Single	 word name of
the main provider	
EXAMPLE: Acme

Function classes
supported in Table
3.
EXAMPLE: C

A	 two	 digit decimal
identifier to start at 00 and	
increment by 1	 every time	 a	
library is sent to NIST.	
EXAMPLE: 07

.so

Example libCHEXIAFACE_Acme_C_07.so

318

319 NIST will report the size of the supplied libraries.

320 1.18.2. Configuration and developer-defined	 data

321 The implementation under test may be supplied with configuration files and supporting data files.	 NIST will report the
322 size of the supplied configuration files.

323 1.18.3. Submission folder hierarchy

324 Participant submissions should contain the	 following folders at the	 top level
325 • lib/ - contains	 all participant-supplied software libraries
326 • config/	 - contains	 all configuration and developer-defined	 data
327 • doc/ - contains	 any	 participant-provided	 documentation	 regarding the submission

328 1.18.4. Installation 	and 	Usage

329 The implementation must install easily (i.e. one installation step with no participant interaction	 required) to	 be tested,
330 and shall be	 executable	 on any number of machines without requiring	 additional machine-specific	 license control
331 procedures or activation.

332 The implementation shall be installable using simple file copy methods. It shall not require	 the	 use	 of a	 separate	
333 installation 	program.		

334 The implementation shall not use nor enforce any usage controls or limits based	 on	 licenses, number of executions,
335 presence of temporary files, etc. It shall remain operable with no expiration date.

336 Hardware (e.g. USB) activation dongles are not acceptable.

337 1.18.5. Documentation

338 Participants shall provide	 documentation of additional functionality or behavior beyond that specified here. The	
339 documentation	 must define all (non-zero) developer-defined	 error or warning return	 codes.

340 1.18.6. Modes of operation

341 Implementations	 shall not require NIST to switch “modes”	 of operation or algorithm parameters.	 For example, the use of
342 two different feature extractors must either operate	 automatically or be	 split across two separate	 library submissions.

343 1.19. Runtime behavior

344 1.19.1. Interactive 	behavior,	stdout,	logging

345 The implementation will be tested in non-interactive 	“batch” 	mode 	(i.e.	without 	terminal	support).	Thus, the submitted	
346 library 	shall:

347 − Not use any interactive functions	 such as	 graphical user interface (GUI) calls, or any	 other calls	 which require
348 terminal interaction e.g. reads from “standard input”.

NIST Concept, Evaluation	 Plan	 and	 API Page	 11 of 37

	

	 	
	 	 		 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 		

 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 		

 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 		 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 		

		

 	 		
	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 		

		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 			

 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 		

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	
	 	 	 	 	 	

	 	 	

	 	 	 	
	 	 	

	 	 	 	 	 	 	
	 	 	

	 	 	 	 	

CHEXIA-FACE

349 − Run	 quietly, i.e. it should	 not write messages to	 "standard	 error" and	 shall not write to	 “standard	 output”.

350 − If 	requested 	by 	NIST 	for 	debugging,	include a 	logging 	facility in 	which debugging messages are	 written to a	 log	 file
351 whose name includes the provider and library identifiers and the process PID.

352 1.19.2. Exception Handling

353 The application should include error/exception handling so that in the case of a fatal error, the return code is	 still
354 provided	 to	 the calling application.

355 1.19.3. External communication

356 Processes running on NIST	 hosts shall not side-effect the	 runtime	 environment in any manner, except for memory
357 allocation and release. Implementations shall not write	 any data	 to external resource	 (e.g. server, file, connection, or
358 other process), nor read	 from such. If detected, NIST will take appropriate steps, including but not limited	 to, cessation	 of
359 evaluation of all implementations from the	 supplier, notification to the	 provider, and documentation of the	 activity in
360 published	 reports.

361 1.19.4. Stateless behavior
362 All components in	 this test shall be stateless, except as noted. Thus, all functions should give identical output, for a given	
363 input, 	independent 	of 	the 	runtime 	history.			NIST 	will	institute 	appropriate 	tests 	to 	detect 	stateful	behavior.	If 	detected,
364 NIST will take appropriate steps, including but not limited to, cessation of evaluation of all implementations from	 the
365 supplier, notification to the provider, and documentation of the activity in published reports.

366 1.20. Threaded 	computations
367 Table 6 shows	 the limits on	 the numbers of threads an implementation 	may 	use for	 each of	 the classes of	 participation.	 In
368 many cases multithreading is not permitted	 (i.e. T=1) because NIST will parallelize the test by dividing the workload	 across
369 many cores and many machines.

370 Table 6 – Number of threads allowed for each application

A C D G

Function 1:1	 verification 1:N identification Detection Clustering

Feature	 extraction 1 1

1 1	 ≤ T	 ≤ 16
Verification 1 NA

Finalize	 enrollment (before 1:N) NA 1	 ≤ T	 ≤ 16

Identification NA 1

371 	 For	 comparative	t iming,	 the	I REX 	III3 	test	re port	e stimated 	a 	factor	b y 	which 	the 	speed 	of	th readed 	algorithms 	would 	be 	
372 	 adjusted.		 Non-threaded 	implementations 	will	 eliminate 	the 	need 	for	N IST 	to 	apply 	such 	techniques 	[IREX 	III]. 	

373 	 NIST	 will	 not	 run	 implementations 	from 	participants 	X	an d 	Y	o n 	the 	same 	machine 	at	 the	 same	 time.	

374 	 To 	expedite	 testing,	 for	 single-threaded 	libraries,	 NIST 	will	 run 	P	>	 2 	 processes	 concurrently.	 	NIST's	 calling	 applications	 are	
375 	 single-threaded. 	

376 	 1.21. Time	limits 	
377 	 The	 elemental	 functions	 of	 the	 implementations	 shall	 execute	 under	 the	 time	 constraints	 of	 Table	 7. 		These	 time	 limits	
378 	 apply	 to 	the	f unction 	call	 invocations 	defined	i n	s ection	3 . 		Assuming	 the 	times 	are 	random 	variables,	 NIST 	cannot	 regulate 	
379 	 the 	maximum 	value,	 so 	the 	time 	limits 	are 	90-th 	percentiles. 		This	 means	 that	 90% 	of	 all	 operations	 should	 take	 less	 than 	
380 	 the 	identified	dur ation.	

381 	 The 	time 	limits	 apply 	per	 image 	or	 video	f rame.	 	When	 K	 images	 of	 a	 person	 are	 present,	 the	 time	 limits	 shall	 be	 increased	
382 	 by	 a 	factor	 K.	

383 	 Table	7 	– 	Processing 	time 	limits in	m illiseconds,	per 	640	x	 480	 im age 	

A C D G

NIST Concept, Evaluation	 Plan	 and	 API Page	 12 of 37

	

	 	
	 	 		 	 	 	

	

	 		 	 	 	 	
	 	 	

	
	
	

	 	
	 	 	

	

	
	
	
	

	
	 	

	 	 	
	 	 			

	 	 	 	
	

	
	

	
	

	 	 	
	

	 	 	
	 	

	 	
	 	 	 	

	 	 	
	 	 	

	 	 	 	

	 	 	 	 	
	

	 	

		

			 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 		 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 		

 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 		

 	 	 	 	 		

 	 		

		
	 	 	 	 		 	 	 	 	 	 	 		 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 		
	 	 	 	 		 	 	 	 	 	 		

			 	 	 	 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 		

 		

CHEXIA-FACE

Function 1:1	 verification 1:N identification Detection Clustering

Feature	 extraction enrollment 1000	 (1	 core)
600x480	 pixels

1000	 (1	 core)
600x480	 pixels

K*500	 (1	 core),	
where K=number
of persons in	 the

image

K*1000	 (1	 core)
where K=number
of persons in	 the
image.	 See NOTE.

Feature	 extraction for verification or
identification

1000	 (1	 core)
600x480	 pixels

1000	 (1	 core)
600x480	 pixels

Verification 5	 (1	 core) NA

Identification 	of 	one 	search 	image
against 1,000,000 single-image
Multiface records.

NA 10000	 (16	 cores)
or 160000 (1 core)

Enrollment finalization of 1,000,000	
single-image Multiface records
(including disk IO time)

NA 7,200,000 (up to 16
cores)

NA NA

384

385 NOTE: NIST anticipates that the duration of clustering calls	 will have linear and quadratic	 components, for template
386 generation and matching	 respectively. We	 will assess compliance	 with our time	 limit requirements based on small
387 clustering tasks	 where template generation duration dominates	 the total.

388 1.22. Ground 	truth 	integrity
389 Some	 of the	 test data is derived	 from operational systems and may contain ground truth errors in which

390 ― a	 single	 person is present under two different identifiers, or

391 ― two persons are present	 under	 one identifier,	or

392 ― in 	which a 	face is 	not 	present in 	the 	image.

393 If 	these 	errors 	are 	detected,	they 	will	be 	removed. 		NIST 	will	use 	aberrant 	scores 	(high 	impostor 	scores,	low 	genuine
394 scores) to detect such errors. This	 process	 will be imperfect, and residual errors	 are likely. For comparative testing,
395 identical	datasets will be used and the presence of	 errors should give an additive increment to all error rates. For very
396 accurate	 implementations this will dominate	 the	 error rate. NIST	 intends to attach appropriate	 caveats to the	 accuracy
397 results. For prediction of operational performance, the presence of errors gives incorrect estimates of performance.

398 2. Data structures supporting the API

399 2.1. Namespace
400 	 All	 data	 structures	 and	AP I	 interfaces/function	c alls	 will	 be	 declared	i n	t he	 CHEXIAFACE	namespace.	

401 	 2.2. Overview 	
402 	 This	 section 	describes	 separate	 APIs	 for	 the	 core	 face	 recognition	 applications	 described	 in	 section	 1.9.		 All	 submissions	 to 	
403 	 CHEXIA-FACE 	shall	 implement	 the	f unctions	 required	 by	 the	ru les 	for	 participation	l isted	be fore	 Table	 3. 			

404 	 2.3. Requirement	
405 	 CHEXIA-FACE 	participants	 shall	 implement	 the 	relevant	 C++	 prototyped	i nterfaces 	of	 section	 3.		 C++	 was	 chosen	i n	or der	
406 	 to 	make 	use	 of	 some	 object-oriented	f eatures.	

407 	 2.4. File	 formats 	and	 data	 structures 	

408 	 2.4.1. Overview 	
409 	 In 	this 	face 	recognition 	test,	an 	individual	is 	represented 	by K	 ≥ 	1	tw o-dimensional	 facial	 images	 (which 	may 	be 	video 	
410 	 frames),	and 	by 	subject 	and 	image-specific	m etadata.	 	

NIST Concept, Evaluation	 Plan	 and	 API Page	 13 of 37

	

	 	
	 	 		 	 	 	

	

 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 		
	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 		

		 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 		
	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 			

	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 		
	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 		

	 	 	 	 	
 	
 	
 	 	 	 	
 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		 	

		 	
 	

	 	 	 	 	 	 	 	 		

	 	 	 	 	

	

 	 	 	 	 		 	 	 	
	 	 	 	

 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	
		

	 	 	 	 	 	 	 	 	 	 			 	 	 	 		
	 	 	 	 	 	 		

	 	 	 	 	 		

	 	 	 	 	 	

																																																																				
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

426

CHEXIA-FACE

411 2.4.2. Data structures for encapsulating multiple images or video frames
412 Some	 of the	 proposed	 datasets includes K > 2 images per person	 for some persons. This affords the possibility to	 model a
413 recognition scenario in which a new image of	 a person is compared against	 all prior	 images5.	 Use of multiple images per
414 person	 has been	 shown	 to	 elevate	 accuracy over a	 single	 image	 [MBE 2010].

415 For still-face recognition in this test, NIST will enroll K ≥ 1	 images under each identity. Both	 enrolled	 gallery and	 probe
416 samples may consist of multiple images such that a	 template	 is the result	 of	 applying 	feature 	extraction 	to a 	set 	of K ≥ 1	
417 images and then integrating	 information from them. An	 algorithm might fuse K feature sets into a single model or might
418 simply maintain them	 separately - In 	any 	case 	the 	resulting proprietary template is contained in	 a contiguous block of
419 data. All verification	 and	 identification	 functions operate on	 such	 multi-image 	templates.

420 The number of images per person will vary, and images may not be acquired uniformly over time.	 NIST 	currently
421 estimates that the	 number of images K will never exceed 1000. For the	 CHEXIA-FACE	 API, K	 images of an individual are
422 contained in data structure of Table 13. Each file contains	 a standardized image format, e.g. PNG (lossless) 	or 	JPEG 	(lossy).

423 NOTE: For the	 1:1	 verification task, all images will contain one and only one face. For all other CHEXIA-FACE	 tasks, images
424 in 	the 	test may contain one or more faces in an image.	

425 Table	 8 – Structure for a	 single image or video	 frame

C++ code fragment Remarks
1. struct Image

{

uint16_t width;

uint16_t height;

uint16_t depth;

uint8_t format;

uint8_t *data;

};

2.

3. Number of pixels horizontally
4. Number of pixels vertically
5. Number of bits per pixel. Legal values are 8 and 24.
6. Flag indicating native	 format of the	 image as supplied to NIST

0x01	 =	 JPEG (i.e. compressed data)
0x02 =	 PNG (i.e. never compressed data)

7. Pointer to raster	 scanned data. Either RGB color or intensity.
If 	image_depth ==	 24	 this points to 3WH bytes RGBRGBRGB...
If 	image_depth 	== 8 	this 	points 	to 		WH 	bytes IIIIIII

8.

Table	 9 – Structure for a	 set of images or video	 frames

C++ code fragment Remarks
1. struct Multiface

{
typedef std::vector<Image> images;

MultifaceLabel description;

uint16_t framesPerSec;

};

2. Vector containing F pre-allocated face	 images. The number of
items is accessible	 via	 the	 vector::size() function.

3. Single	 description of the	 Multiface.	 The allowed values for	
this field are specified in the enumeration in Table 10.

4. The frame rate of the video sequence in frames-per-second.
Only defined if description==Video;	otherwise set	 to -1.

5.

427
428 A	 Multiface will be accompanied by one of the labels given below. Face	 recognition implementations submitted to
429 CHEXIA-FACE should tolerate Multifaces of any category.

430 Table	 10 – Labels	 describing categories of Multifaces

Label as C++ enumeration Meaning

5 For example, if a	 child	 is subject to	 a new exploitation	 event then imagery from that	 event	 can be searched against	 a database of	 all
prior instances of exploitation, including from that child.

NIST Concept, Evaluation	 Plan	 and	 API Page	 14 of 37

	

	 	
	 	 		 	 	 	

	

	 C++	 code 	fragment	 	 Remarks	
1. struct EyePair 	
2. { 	
3. If 	the 	subject’s 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
4. bool isRightAssigned; 	

	 	 	 	 	 	 	 	
5. int16_t xleft; X	a nd	Y	 c oordinate	 of	 the 	center	 of	 the 	subject's	 left	 eye.	 	Out-of-range 	values	(e.g.	 x	< 	0 	
6. int16_t yleft; or	 x	 >=	 width)	 indicate	 the	 implementation	be lieves	 the	 eye	 center	 is	 outside	 the	 image.	
7. int16_t xright; X	a nd	Y	 c oordinate	 of	 the 	center	 of	 the 	subject's	 right	 eye.	O ut-of-range 	values 	(e.g.	x 	< 	0 	
8. int16_t yright; or	 x	 >=	w idth)	 indicate 	the 	implementation 	believes 	the 	eye 	center 	is 	outside 	the 	image.	 	
9. uint16_t frameNum For	 Multifaces	w here 	description==Video, 	this	 would 	be	 the	 frame	 number	

that	c orresponds	 to	 the	 video 	frame	 from 	which	 the	 eye	 coordinates	 were	 generated.	 	
(i.e.,	 the	 i-th	 frame	 from 	the	 video	 sequence).	 	This	 field	 should	 not	b e	 set	fo r	e ye	
coordinates	f or	 a	 single	 still	 image.	

10. }; 	

 	 	 	 	 	 	 	 	 		

	 	 	 		

	 	 	 		 	

	 	 	 	 	 	 	 	 	 		 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

CHEXIA-FACE

1. 	
enum class MultifaceLabel {

2. Unknown=0, Either	 the	 label	 is	 unknown 	or	 unassigned.	
3. Fixed=1, Images 	are 	still	photos 	from a	n on-moving	 camera. 	
4. Event=2, Images 	are 	still	phot os	 from 	the	 same	 event,	 possibly	 from 	several	 cameras	 or	 with	

camera	 movement.	
5. Group=3, Still	 photos	 from 	one	p erson 	on 	arbitrary	 occasions.	
6. Video=4 Images 	are a	s equence 	of 	video 	frames.	
7. }; 	

431 	 	

432 	 2.4.3. Data	 structure	 for	 eye	 coordinates	
433 	 Implementations 	should 	return 	eye 	coordinates	o f	 each 	facial	 image.	 	This	f unction,	 while 	not	 necessary 	for	 a 	recognition 	
434 	 test,	 will 	assist	N IST 	in 	assuring 	the 	correctness 	of	th e 	test	d atabase.	 	The 	primary 	mode 	of	u se 	will	 be 	for	N IST 	to 	inspect 	
435 	 images 	for	 which	e ye 	coordinates	 are	 not	 returned,	 or	 differ	 between	im plementations.	

436 	 The 	eye 	coordinates	 shall	 follow 	the 	placement	 semantics	 of	 the 	ISO/IEC 	19794-5:2005	s tandard 	-	the 	geometric 	
437 	 midpoints	 of	 the	 endocanthion	 and	 exocanthion	 (see	 clause	 5.6.4	 of	 the 	ISO 	standard). 	

438 	 Sense:	 The	l abel	 "left" 	refers 	to 	subject's 	left	 eye	(and	s imilarly	 for	 the	 right	 eye),	 such	t hat	 xright	 < 	xleft.	

439 	 Table	11 	– 	Structure 	for 	a	p air	 of	 eye	c oordinates	

440 2.4.4. Data type for representing eye coordinates from a Multiface

441 Table	 12 – PersonTrajectory typedef

C++ code fragment Remarks
1. using PersonTrajectory =

std::vector<EyePair>;
Vector of EyePair objects for a	 Multiface where eyes were detected. This data
structure should store eye coordinates	 for each video frame or image where eyes
were detected for a particular person. For Multifaces where the person’s eyes
were not detected, the SDK shall not add an EyePair to this data structure.

If a 	face 	can 	be 	detected, 	but 	not 	the 	eyes, 	the 	implementation 	should 	nevertheless
fill this data structure with (x,y)LEFT ==	 (x,y)RIGHT representing some point	 on the
center of the face.

NIST Concept, Evaluation	 Plan	 and	 API Page	 15 of 37

bool isLeftAssigned;

value should be set to true, otherwise false.

value should be set to true, otherwise false.
If 	the 	subject’s 	right 	eye 	coordinates 	have 	been 	computed 	and 	assigned 	successfully, 	this

	 left eye	 coordinates have	 been computed and assigned successfully, this

	

	 	
	 	 		 	 	 	

	

 	 	 	 	 	 	 		

	 	 	 	 	 	 		

	 C++	 code	 	fragment 	 Remarks	
 1. class PersonRep 	
 2. { 	

 private:
 3. PersonTrajectory eyeCoordinates; Data	 structure	 	for capturing	 eye	 coordinates	
 4. PersonTemplate proprietaryTemplate; 	 	PersonTemplate is 	a 	wrapper 	to 	a uint8_t*	 	for

capturing	 proprietary	 	template data	 	representing 	a
person	 	from 	a 	Multiface.

 5. uint64_t templateSize; Size	 	of 	PersonTemplate
 6. public: 	

 PersonRep(); Default	 constructor	
	7. void pushBackEyeCoord(const EyePair &eyes); This	 function	 should	 be	 used	 to	 add	 EyePairs	 for	

	the 	video 	frames or	 	images 	where 	eye 	coordinates
	were detected.	

 8. void setTemplate(PersonTemplate templ, uint64_t size); This	 function	 should	 be	 used	 to	 set	 the	 template	
		data. After	 the	 implementation	 calls	 setTemplate(),	
	they 	should not	 attempt	 to	 	modify or	 delete	 	the

	template 	data that	 	the 	managed pointer	 	refers 	to.
 8. std::shared_ptr<uint8_t> resizeTemplate(uint64_t size); This	 function	 takes	 a	 	size 	parameter and	 	allocates

memory	 of	 	size and	 	returns a	 managed	 	pointer 	to
	the 	newly 	allocated 	memory for	 	SDK manipulation.	 	

Please	 note	 	that 	this 	class 	will take	 care	 	of 	all
memory	 	allocation and	 de-allocation	 of	 its	 own	
memory.	 	The	 SDK	 	shall 	not de-allocate	 	memory

	created by	 this	 	class.
 9. std::shared_ptr<uint8_t> getPersonTemplatePtr(); This	 	function 	returns a	 managed	 pointer	 to	 uint8_t	

	to 	the 	template 	data.
 10. uint64_t getPersonTemplateSize() const; This	 function	 returns	 the	 size	 	of the	 template	 data.	
	11. //… getter methods, copy constructor, 	
 //… assignment operator

	12. }; 	

	 C++	 code	 fragment	 Remarks	
1. struct BoundingBox 	

{

2. uint16_t x; x-coordinate 	of	 top-left 	corner	 of	 bounding 	box	a round 	face	
3. uint16_t y; y-coordinate 	of	 top-left 	corner 	of 	bounding 	box 	around 	face	
4. uint16_t width; width,	 in	 pixels,	 of	 bounding	 box	 around	 face	
5. uint16_t height; height,	 in	pi xels,	 of	 bounding	 box	 around	f ace	
6. 	 	 	 	 	 	 	 	 	 	 	
7. }; 	

 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 		 	 		
	 		

CHEXIA-FACE

442 2.4.5. Class for representing a person detected in a 	Multiface

443 Table	 13 - Class for representing a person

444 	 2.4.6. Data	 Structure	 for	 detected	 face	
445 	 For	 face	d etection,	 implementations	 shall	 return 	bounding 	box 	coordinates	 of	e ach 	detected 	face 	in 	an 	image.		 See	
446 	 section 	3.3	 for	A PI	 details. 	

447 	 Table	14 	 – 	Structure	 for	 bounding	 box	 around	 a	d etected	 face 	

448 2.4.7. Data Structure for hypothesized cluster membership

449 For clustering, implementations shall assign image samples	 to clusters	 using the structure of Table 15. See	 section 3.4 for	
450 API details.

NIST Concept, Evaluation	 Plan	 and	 API Page	 16 of 37

double confidence; Higher value indicates more certainty that this region contains a face

	

	 	
	 	 		 	 	 	

	

	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	
 	
 	
 	 	 	 	 	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	

	
 	

	 	 	 	 	
 	
 	
 	

	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	

 	 	 	 	 	 	 	 		

	 	 	 	 		

	 	 	 	 	
 	

 	

451 	 Table	15 	 – 	Structure 	for	 a	si ngle 	hypothesized	c luster	 membership 	

	 C++	 code 	fragment	 Remarks	
1. struct ClusterMember 	
2. { 	
3. uint32_t clusterId; 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
4. double similarityScore;

5. BoundingBox face; Bounding	 box	 coordinates	 corresponding	 to	 the 	face/identity 	belonging	 to	clusterI d	from 	
the 	image.	

6. }; 	

452

CHEXIA-FACE

Table	 16 – Structure for hypothesized	 cluster membership for face(s) in an image

C++ code fragment Remarks
1. struct ClusterMembersInImage

2. {

3. ReturnStatus status; status.code should be set as	 follows:

ReturnCode::Success if the input sample was processed successfully
ReturnCode::NoFaceError if no faces could be detected in the input
ReturnCode::ExtractError if the software failed to process the image
ReturnCode::RefuseInput if the software detects malformed input

4. std::vector<ClusterMember> members; For each person found in an image, the	 list of hypothesized cluster
membership(s).

5. };

453 	 2.4.8. Data	 structure	 for	 result	 of	 an	 identification	 search	
454 	 All	 identification	s earches	 shall	 return	a 	 candidate	 list	 of	 a	 NIST-specified 	length.	 	The 	list	 shall	 be 	sorted 	with 	the 	most	
455 	 similar	 matching 	entries	l ist	 first	 with 	lowest	 rank.	 	The	 data	 structure	 shall	 be	 that	 of	 Table	 17. 		See	s ection	 3.2	 for	A PI	
456 	 details.	

457 	 Table	17 	 – 	Structure	 for	 a	can didate 	

C++ code fragment Remarks
1. struct Candidate

2. {

3. bool isAssigned; If 	the 	candidate is 	valid, 	this 	should 	be 	set 	to 	true. If 	the 	candidate 	computation 	failed, 	this
should be set to false.

4. std::string templateId; The Template ID from the enrollment database manifest defined in section 2.5.
5. double similarityScore; Measure of similarity between	 the identification	 template and	 the enrolled	 candidate. Higher

scores	 mean more likelihood that the samples	 are of the same person.

An	 algorithm is free to	 assign	 any value to	 a candidate. The distribution	 of values will have an	
impact on the appearance	 of a	 plot of false-negative and	 false-positive identification	 rates.

6. };

458 2.4.9. Data structure return value of API function calls

459 Table	 18 – Enumeration of return	 codes

Return	 code as C++	 enumeration Meaning
enum class ReturnCode {

Success=0, 1. Success

NIST Concept, Evaluation	 Plan	 and	 API Page	 17 of 37

Non-negative integer assigned by the	i mplementation indicating a cluster label.	 All	im ages of a
person	s hould	s hare this same integer.
Measure	 of	 similarity	 between	 the	 input	 sample	 and	 other	 images	 of	 the	 same	 cluster	
(presumably 	of	th e 	same 	person).	T he 	score 	should 	be 	a 	non-negative	 value	 on	a 	 continuous	
range.		 The 	score 	will	 be 	used 	to 	perform 	threshold-based	a nalysis	 of	 algorithm 	performance.	
For	 example,	 NIST	m ay 	perform 	analyses	 that	 assigns 	samples	t o 	clusters	o nly	w hen 	their	
corresponding 	similarly	sco re 	is	a t	 or	 above 	a 	threshold.	 	

	

	 	
	 	 		 	 	 	

	

 	 	 	 	
 	 	 	 	 	 	
 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	

	 	
 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	
 		 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
 	

		

	 	 	 		

	 	 	 	 	
 	

 	
 	 	 	
 	
 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

CHEXIA-FACE

460

461

2. ConfigError=1, Error reading configuration files
3. RefuseInput=2, Elective refusal to process the input
4. ExtractError=3, Involuntary 	failure 	to 	process the image
5. ParseError=4, Cannot parse the input data
6. TemplateCreationError=5, Elective refusal to produce a	 template (e.g. insufficient pixels between the

eyes)
7. VerifTemplateError=6, For matching,	either or both of the input templates were result	 of	 failed

feature extraction
8. EnrollDirError=7, An	 operation	 on	 the enrollment directory failed	 (e.g. permission, space)
9. NumDataError=8, The SDK	 cannot support the number of persons or images
10. TemplateFormatError=9, One or more template files are in an incorrect format or defective
11. InputLocationError=10, Cannot locate the input data - the input	 files or	 names seem incorrect
12. NoFaceError=11, Cannot detect face in	 image
13. VendorError=12 Vendor-defined	 failure. Failure codes must be documented	 and	

communicated to NIST with the submission of the implementation under test.
14. };

Table	 19 – ReturnStatus structure

C++ code fragment Meaning
struct ReturnStatus {

1. CHEXIAFACE::ReturnCode code; Return	 Code
2. std::string info; Optional information string
3. // constructors

4. };

462 	 	

463 	 2.4.10. Data	 type	 for	 similarity	 scores	
464 	 Identification 	and 	verification 	functions 	shall	return 	a 	measure	 of	 the	 similarity	 between	 the	 face	d ata 	contained 	in 	the 	
465 	 two 	templates.	 	The 	datatype 	shall	 be 	an	e ight	 byte	 double	 precision	r eal.		 The 	legal	r ange 	is 	[0,	 DBL_MAX],	where 	the 	
466 	 DBL_MAX	 constant	 is	l arger	 than 	practically	n eeded 	and 	defined 	in 	the 	<limits.h> 	include 	file. 	Larger	 values	 indicate	m ore	
467 	 likelihood 	that 	the 	two 	samples 	are 	from 	the 	same 	person.	

468 	 Providers	 are	c autioned 	that	 algorithms	 that	 natively 	produce	f ew 	unique	v alues	 (e.g.	 integers 	on 	[0,127]) 	will	b e 	
469 	 disadvantaged	by 	 the 	inability	 to	s et	 a	 threshold	pr ecisely,	 as	 might	 be	 required	t o	a ttain	a 	 false	 match	r ate	 of	 exactly	
470 	 0.0001,	 for	 example.	

471 	 2.5. File	 structures 	for 	enrolled	 template	 collection	
472 	 An	S DK	 converts 	a	Multiface 	into a	t emplate,	u sing,	f or 	example 	the 	
473 	 convertMultifaceToEnrollmentTemplate	function 	of	s ection 	3.2.2.3.		 To	 support	 the	 class	 C	 identification 	
474 	 functions	 of	Tab le	 3,	NI ST	 will	 concatenate	 enrollment	 templates	 into	 a	 single	 large	 file, 	the	 EDB	 (for	e nrollment	
475 	 database).	 	The	 EDB	 is	 a	s imple	 binary	 concatenation 	of	 proprietary	t emplates.		 There	 is	 no	 header.	 There	 are	 no 	
476 	 delimiters.	 The	 EDB	m ay	 be	 hundreds	 of	 gigabytes	 in	l ength. 	

477 	 This	 file	 will	 be	 accompanied	 by	 a	m anifest;	 this	 is	 an	 ASCII	 text	 file	 documenting	 the	 contents	 of	 the	 EDB.	 	The	 manifest	
478 	 has	 the	 format	 shown	a s	 an	e xample	 in	Tab le	 20.		 If 	the 	EDB 	contains N	t emplates,	the 	manifest 	will	contain N	lin es.	 	The	
479 	 fields	 are	 space	 (ASCII	 decimal	 32)	 delimited.		 There	 are	 three	 fields.	 	Strictly	 speaking,	 the	 third	 column	 is	 redundant. 	

480 	 Important:	If a	c all	to 	the 	template 	generation 	function 	fails,	or 	does 	not 	return a	t emplate,	NIST 	will	include 	the 	Template	
481 	 ID in	t he 	manifest 	with 	size 	0. 		Implementations 	must 	handle 	this 	appropriately.	

482 	 Table	20 	 – 	Enrollment	 dataset	 template	 manifest	

Field name Template ID Template Length Position of first byte	 in EDB
Datatype required std::string Unsigned decimal integer Unsigned decimal integer
Datatype length required 4	 bytes 8	 bytes

NIST Concept, Evaluation	 Plan	 and	 API Page	 18 of 37

	

	 	
	 	 		 	 	 	

	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	
	 	 	

	 	 	
	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		 	 	

	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		 	 	

	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	
	

	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 		

	 	 	 	 	 	
	 	 	 	 	

	 	 	 		 	

	

	

	

	

	

	

CHEXIA-FACE

Example lines of a	 manifest file appear 90201744 1024 0
to the right. Lines 1, 2, 3 and N appear. person01 1536 1024

7456433 512 2560
...
subject12 1024 307200000

483 	 	
484 	 The	 EDB 	scheme 	avoids	 the 	file 	system 	overhead 	associated 	with 	storing 	millions	 of	 individual	 files.	

485 	 3. API	 Specification	

486 	 3.1. 1:1	Verification	

487 	 3.1.1. Overview 	
488 	 The	 1:1	t esting	 will	 proceed	 in	 three	 phases:	 preparation	 of	 enrollment	 templates;	 preparation	 of	 verification	 templates;	
489 	 and 	matching.	 	These	ar e	d etailed 	in 	Table	 21. 	

490 	 Table	21 	 – 	Functional	 summary 	of	 the	1: 1	a pplication 	

Phase Description Performance	 Metrics to be	 reported by NIST

Initialization Function to read configuration data, if	 any. None

Enrollment Given K ≥ 1	 input images of an individual, the	 implementation
will create a proprietary enrollment template. NIST will
manage storage of these templates.

Statistics of the	 time	 needed	 to	 produce a template.
Statistics of template	 size. Rate of failure to	 produce a
template

Verification Given K ≥ 1	 input images of an individual, the	 implementation
will create a proprietary verification template. NIST will
manage storage of these templates.

Statistics of the	 time	 needed to produce	 a	 template.
Statistics of template	 size. Rate of failure to	 produce a
template.

Matching (i.e.
comparison)

Given a proprietary enrollment and a proprietary verification
template, compare them to produce a similarity score.

Statistics of the	 time	 taken to compare	 two templates.
Accuracy measures, primarily reported	 as DETs.

491 	 	
492 	 NIST	 requires	 that	 these	 operations	 may	 be	 executed	 in	 a	 loop	 in	 a	 single	 process	 invocation,	 or	 as	 a	 sequence	 of	 independent	 process	
493 	 invocations,	 or 	a 	mixture 	of 	both.	

494 	 3.1.2. API	

495 	 3.1.2.1. Interface 	
496 	 The	 Class	 A 	1:1	v erification 	software 	under	 test	 must	 implement	 the 	interface 	VerifInterface	by	 subclassing	 this	
497 	 class	a nd 	implementing 	each 	method 	specified 	therein. 		See		

C++ code fragment Remarks
1. class VerifInterface;

typedef std::shared_ptr<VerifInterface> ClassAImplPtr;

class VerifInterface
2. {

public:
3. virtual ReturnStatus initializeVerification(

const std::string &configurationLocation) = 0;

4. virtual ReturnStatus convertMultifaceToEnrollmentTemplate(
const Multiface &inputFaces,
PersonRep &templ) = 0;

virtual ReturnStatus convertMultifaceToVerificationTemplate(
const Multiface &inputFaces,
PersonRep &templ) = 0;

NIST Concept, Evaluation	 Plan	 and	 API Page	 19 of 37

getImplementation()

	

	 	
	 	 		 	 	 	

	

	

	 	
	 	 	 	 	 	 	

	 	 	 		 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

 	
		

	 	 	 	 	 	 	 	 	 	 	 	 		
		

		
		
	 	 	 		 	

	

		

 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 			

	 		 	 	
	 	 	 	

	
	

	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 		
	

	
	 	 	 	 	 	 	 	 	

	 		 	 	 	 	 	 	 	 	 	 	 	 	 		 	
	 	 	 	 	 	 	 	 	 	 	

	
	

	 	

	
	 	 	 	 	 	 	 	

 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
		 	 	 	 	 	 	 	 	 	 		

CHEXIA-FACE

5. virtual ReturnStatus matchTemplates(
const uint8_t *verificationTemplate,
const uint32_t verificationTemplateSize,
const uint8_t *enrollmentTemplate,
const uint32_t enrollmentTemplateSize,
double &similarity) = 0;

6. virtual void setGPU(uint8_t gpuNum) = 0;

7. static ClassAImplPtr getImplementation(); Factory method to return a	 managed pointer
to the VerifInterface object. This
function is implemented by the submitted
library and must return a managed pointer to
the VerifInterface object.

8. };

498
499 There is one class (static) method declared in VerifInterface,	 which must also be
500 implemented 	by 	the 	SDK.	This 	method 	returns a 	shared 	pointer 	to 	the 	object 	of 	the 	interface 	type, 	an 	instantiation 	of 	the
501 implementation 	class.	A 	typical	implementation 	of 	this 	method is 	also 	shown 	below 	as 	an 	example.
502

C++ code fragment Remarks
#include "chexiafaceNullImplClassA.h"

using namespace CHEXIAFACE;

NullImplClassA::NullImplClassA() { }

NullImplClassA::~NullImplClassA() { }

ClassAImplPtr
VerifInterface::getImplementation()
{

NullImplClassA *p = new NullImplClassA();
ClassAImplPtr ip(p);
return (ip);

}

// Other implemented functions

503

504 3.1.2.2. Initialization

505 The NIST test harness will call the initialization function in Table 22 before calling template generation	 or matching.

506 Table	 22 – Initialization

Prototype ReturnStatus initializeVerification(
const std::string &configurationLocation); Input

Description This function initializes the SDK	 under test. It will be called by the NIST	 application before any call to the Table 24
functions convertMultifaceToEnrollmentTemplate or
convertMultifaceToVerificationTemplate.	 The implementation under test should	 set all parameters.

Input configurationLocation A	 read-only directory containing any developer-supplied configuration parameters	 or run-time
Parameters data files. The name of this directory is assigned by NIST, not hardwired	 by the provider. The

names of the files in	 this directory are hardwired	 in	 the implementation and are	 unrestricted.
Output none
Parameters
Return	 See	 Table 18 for all valid return code values.
Value

507 3.1.2.3. GPU	 Index Specification

508 For implementations using GPUs, the	 function of Table 23 specifies	 a sequential index for which GPU device to execute
509 on. This enables the test software to	 orchestrate load	 balancing across multiple GPUs.

NIST Concept, Evaluation	 Plan	 and	 API Page	 20 of 37

	

	 	
	 	 		 	 	 	

	

	

	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	

	 	 		 	
	

	
	 	

	 	

	 	 	 	
	 	 	 	

	 	 	
		 	 	

	 	 	 	
	 	 	

	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 		 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	
	

	 	
	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 		 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	

	
	 	 	 	 	 	 	

510

CHEXIA-FACE

Table	23 	 – 	GPU	i ndex	 specification	

Prototypes void setGPU (
uint8_t gpuNum); Input

Description This function sets the GPU device number to be used by all subsequent implementation function calls. gpuNum is
a	 zero-based	 sequence value of which	 GPU device to	 use. 0 would mean the first detected GPU, 1 would be the
second GPU, etc. If 	the 	implementation 	does 	not 	use 	GPUs, 	then 	this 	function 	call	should 	simply 	do 	nothing.

Input
Parameters

gpuNum Index 	number 	representing 	which 	GPU 	to 	use.

511 	 3.1.2.4. Template	gener ation 	
512 	 The	 functions	 of	 Table	 24	 support	ro le-specific	g eneration 	of	 template 	data.	 	Template	 format	 is 	entirely 	proprietary.	

513 	 Table	24 	– 	Template	g eneration	

Prototypes ReturnStatus convertMultifaceToEnrollmentTemplate(
const Multiface &inputFaces, Input
PersonRep &templ); Output
int32_t convertMultifaceToVerificationTemplate(
const Multiface &inputFaces, Input
PersonRep &templ); Output

Description Takes a	 Multiface and populates a	 PersonRep object. In 	all	cases, 	even 	when 	unable 	to 	extract 	features, the
template generated for the PersonRep should be a	 template that	 may be passed to the matchTemplates function
without error. That is, this routine must internally encode "template creation failed" and the	 matcher must
transparently handle this.

Input
Parameters

inputFaces Implementations 	must 	alter 	their 	behavior 	according 	to 	the 	number 	of 	images
contained in the structure,	and 	the types per Table 10.

Output
Parameters

templ A	 PersonRep object that	 represents	 a single template generated from the	
Multiface.	

Return	 Value See	 Table 18 for	 all valid return code values.

514 	 3.1.2.5. Matching	
515 	 Matching	 of	 one	 enrollment	 against	 one	 verification	 template	 shall	 be	 implemented	 by	 the	 function	 of	 Table	 25. 	

516 	 Table	25 	 – 	Template	m atching	

Prototype ReturnStatus matchTemplates(
const uint8_t *verificationTemplate, Input
const uint32_t verificationTemplateSize, Input
const uint8_t *enrollmentTemplate, Input
const uint32_t enrollmentTemplateSize, Input
double &similarity); Output

Description Compare two proprietary templates and output a	 similarity score,	 which need	 not satisfy the metric properties. When
either or both of the	 input templates are	 the	 result of a	 failed template	 generation (see	 Table 24), the similarity score
shall be -1	 and the	 function return value shall be VerifTemplateError.

Input
Parameters

verificationTemplate A	 template generated from a	 call to
convertMultifaceToVerificationTemplate().

verificationTemplateSize The size, in bytes, of the input verification template 0	 ≤	 N ≤	 232 - 1

enrollmentTemplate A	 template generated from a	 call to
convertMultifaceToEnrollmentTemplate().

enrollmentTemplateSize The size, in bytes, of the input enrollment template 0	 ≤	 N ≤	 232 - 1

Output
Parameters

similarity A	 similarity score resulting from comparison of	 the templates, on the range [0,DBL_MAX].	
See	 section 0.

Return	
Value

See	 Table 18 for	 all valid return code values.

NIST Concept, Evaluation	 Plan	 and	 API Page	 21 of 37

	

	 	
	 	 		 	 	 	

	

	 		517

CHEXIA-FACE

NIST Concept, Evaluation	 Plan	 and	 API Page	 22 of 37

	

	 	
	 	 		 	 	 	

	

 		

 		
	 	 	 	 	 	 	 		 	 	 	 	 		

	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	

 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	

 	 	 	 	 	

	 	 	 	 	 	 		

	 	 	 	 	 	 	
	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 		 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	

	

	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 		 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
		 	 	 	 	 	 		 	

	 	 	 	 	 	 		

	 	 	
	 	 	

	 	 	 	 	
	

	

	

	 	 	 	
	

	 	 	 	 		 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	
	 	 	 	

	 	 	 	 	

	 	 	 		 	
	 	 	 	 	

	 	 	 	 	
	 	 	

CHEXIA-FACE

518 3.2. 1:N	Identification

519 3.2.1. Overview

520 The 1:N application proceeds	 in two phases, enrollment and	 identification. The identification phase includes separate
521 pre-search feature extraction stage, and a search stage.

522 The design reflects the following testing objectives for 1:N implementations.

− support distributed enrollment on multiple machines, with multiple processes running in parallel

− allow recovery after a	 fatal exception, and measure	 the	 number of occurrences

− allow NIST	 to copy enrollment data	 onto many machines to support parallel testing

− respect	 the black-box nature of biometric templates

− extend complete	 freedom to the	 provider to use	 arbitrary algorithms

− support measurement of duration of core function calls

− support measurement of template size

523 Table	 26 – Procedural overview of the	 identification test

Ph
as
e # Name Description Performance	 Metrics to be

reported by NIST

En
ro
llm

en
t

E1 Initialization Give the implementation advance notice of the number of individuals
and images that will be	 enrolled.

Give the implementation the name of	 a directory where any provider-
supplied configuration data will have been placed by	 NIST.	 This location
will otherwise be empty.

The implementation is permitted read-write-delete access to the	
enrollment directory during this phase. The implementation is
permitted	 read-only access to	 the configuration directory.

After enrollment, NIST may rename and	 relocate the enrollment
directory - the implementation should not	 depend on the name of	 the
enrollment directory.

E2 Parallel
Enrollment

For each of N individuals, pass multiple	 images of the	 individual to the	
implementation for conversion to a combined template.	 The
implementation will	 return a template to the calling application.

The implementation is permitted read-only access to the enrollment
directory during this phase. NIST's calling application	 will be responsible
for	 storing all templates as binary files.	 These will not	 be available to the
implementation during this enrollment phase.

Multiple instances of the calling application may run simultaneously or
sequentially. These may	 be executing on different computers. The
same person will not be enrolled twice.

Statistics of the	 times needed	 to	
enroll an individual.

Statistics of the	 sizes of created
templates.

The incidence of failed template	
creations.

E3 Finalization Permanently finalize	 the	 enrollment directory. This supports, for
example, adaptation of the	 image-processing functions, adaptation	 of
the representation, writing of a manifest, indexing, and computation of
statistical information over the enrollment dataset.

The implementation is permitted read-write-delete	 access to the
enrollment directory during	 this phase.

Size of the enrollment database
as a	 function of population size	
N	 and the number of images.

Duration of this operation. The
time needed to execute this
function shall be reported with
the preceding enrollment	 times.

NIST Concept, Evaluation	 Plan	 and	 API Page	 23 of 37

	

	 	
	 	 		 	 	 	

	

	
	 	 	 	 	 	 	 	 	 	 		 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	

	 	 	 	
	 	

	

	 	
	

	 	 	 	 	 	 	 	 	 	 	 		 	
	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	

	 	 	 	
	 	

	 	 	
	 	

	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	
	 	

	

	 	 	 	 	 	 	 			

	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	
	 	

	 	 	 	 	 	
	 	

	

 		

 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 		 		

	 	 	 		 	

	

	

	

	

	

	

	

	

	

	

CHEXIA-FACE

Pr
e-
se
ar
ch

S1 Initialization Tell the implementation the location of an enrollment directory. The

implementation could look at the enrollment	 data.

The implementation is permitted read-only access to the enrollment	
directory during this phase. Statistics of the	 time	 needed for this
operation.

Statistics of the	 time	 needed for
this operation.

S2 Template
preparation

For each probe, create a template from a set of input images. This
operation	 will generally be conducted	 in	 a separate process invocation	
to step S3.

The implementation is permitted	 no	 access to the enrollment	 directory
during this phase.

The result of this step is	 a search template.

Statistics of the	 time	 needed for
this operation.

Statistics of the	 size	 of the	
search template.

Se
ar
ch

S3 Initialization Tell the implementation the location of an enrollment directory.	 The
implementation should read all or	 some of	 the enrolled data into	 main	
memory, so that searches can commence.

The implementation is permitted read-only access to the enrollment	
directory during this phase.

Statistics of the	 time	 needed for
this operation.

S4 Search A	 template is searched	 against the enrollment database.

The implementation is permitted read-only access to the enrollment	
directory during this phase.

Statistics of the	 time	 needed for
this operation.

Accuracy metrics - Type I +	 II
error rates.

Failure	 rates.

524 3.2.2. API

525

526
527

3.2.2.1. Interface

The Class C 1:N identification software under test must implement the interface IdentInterface by subclassing this
class	 and implementing each method specified therein. See	

C++ code fragment Remarks
1. class IdentInterface;

typedef std::shared_ptr<IdentInterface> ClassCImplPtr;

class IdentInterface
2. {

public:
3. virtual ReturnStatus initializeEnrollmentSession(

const std::string &configurationLocation,
const std::string &enrollmentDirectory,
const uint32_t numPersons,
const uint32_t numImages) = 0;

4. virtual ReturnStatus convertMultifaceToEnrollmentTemplates(
const Multiface &inputFaces,
std::vector<PersonRep> &templates) = 0;

5. virtual ReturnStatus finalizeEnrollment (
const std::string &enrollmentDirectory,
const std::string &edbName,
const std::string &edbManifestName) = 0;

6. virtual ReturnStatus initializeFeatureExtractionSession(
const std::string &configurationLocation,
const std::string &enrollmentDirectory) = 0;

7. virtual ReturnStatus convertMultifaceToIdentificationTemplates(
const Multiface &inputFaces,
std::vector<PersonRep> &templates) = 0;

8. virtual ReturnStatus initializeIdentificationSession(
const std::string &configurationLocation,
const std::string &enrollmentDirectory);

NIST Concept, Evaluation	 Plan	 and	 API Page	 24 of 37

	

	 	
	 	 		 	 	 	

	

	

	 	
	 	 	 	 	 	

	 	 	
		 	 	

	 	 	 	
	 	 	 	 	

	 		 	
	 	 	 	 	

	 	 	 	
 	

		

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

	
	

	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 				

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 		 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 			 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	
	

	
	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 		 	 	 	 	 	 	 	

	 	 		 	
	 	 	 	

CHEXIA-FACE

9. virtual ReturnStatus identifyTemplate(
const PersonRep &idTemplate,
const uint32_t candidateListLength,
std::vector<Candidate> &candidateList);

10. virtual void setGPU(uint8_t gpuNum) = 0;

11. static ClassCImplPtr getImplementation(); Factory method to return a	 managed
pointer to	 the IdentInterface
object. This function	 is implemented	
by the submitted	 library and	 must
return a managed pointer	 to the
IdentInterface object. See	 section
3.1.2.1 for	 an example of	 a typical
implementation of this method.

12. };

528

529 	 3.2.2.2. Initialization 	of 	the 	enrollment 	session 	
530 	 Before	 any	 enrollment	 feature 	extraction 	calls	a re	 made,	 the 	NIST 	test	h arness	 will	 call	 the	 initialization	 function 	of	 Table	
531 	 27. 	

532 	 Table	27 	 – 	Enrollment	 initialization	 	

Prototype ReturnStatus initializeEnrollmentSession(
const std::string &configurationLocation, Input
const std::string &enrollmentDirectory, Input
const uint32_t numPersons, Input
const uint32_t numImages); Input

Description This function initializes the SDK	 under test and	 sets all needed	 parameters. This function will be called N=1	 times by
the NIST application immediately before any M	 ≥ 1	 calls to convertMultifaceToEnrollmentTemplate.	
Caution:	The implementation should tolerate execution of P > 1	 processes on the	 one or more machines each of which
may be reading and writing to this same enrollment directory in parallel.	 File locking or process-specific	 temporary	
filenames would be needed to safely write content	 in the enrollmentDirectory.

Input	
Parameters

configurationLocation A	 read-only directory containing any developer-supplied configuration parameters	 or
run-time data files.

enrollmentDirectory The directory will be initially empty, but may have been initialized and populated by
separate invocations	 of the enrollment process. When this function is called, the SDK
may populate this folder in any manner it sees fit. Permissions will be	 read-write-delete.

numPersons The number of persons who will be enrolled 0	 ≤	 N ≤	 232 - 1 (e.g.	 1 million)
numImages The total number of images that will be enrolled,	summed 	over 	all 	identities 0 ≤ M ≤ 232 -

1	 (e.g. 1.8	 million)
Output
Parameters

none

Return Value See	 Table 18 for	 all valid return code values.

533 	 3.2.2.3. GPU	I ndex	 Specification	
534 	 For	 implementations	 using	 GPUs,	 the	f unction 	of	 Table	 28	 specifies	a 	 sequential	 index 	identifying 	which	 GPU	 device	 to	
535 	 use.		 This 	enables 	the 	test	 software 	to 	orchestrate 	load 	balancing 	across 	multiple 	GPUs. 	

536 	 Table	28 	 – 	GPU	i ndex	 specification	

Prototypes void setGPU (
uint8_t gpuNum); Input

Description This function sets the GPU device number to be used by all subsequent implementation function calls. gpuNum is
a	 zero-based	 sequence value of which	 GPU device to	 use. 0 would	 mean	 the first detected	 GPU, 1 would	 be the
second GPU, etc. If 	the 	implementation 	does 	not 	use 	GPUs, 	then 	this 	function 	call	should 	simply 	do 	nothing.

Input Parameters gpuNum Index 	number 	representing 	which 	GPU 	to 	use.

NIST Concept, Evaluation	 Plan	 and	 API Page	 25 of 37

	

	 	

	 	 	 	
	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 		 	 	 	
	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 		

	
		 	 	 	 	 	 		 	 	 	 	 	 	 	

	 	 	 	 	 		 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 		 	 	 	 	 	 	 	
	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 		 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
		 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	

CHEXIA-FACE

537 	 3.2.2.4. Enrollment	
538 	 A 	Multiface	 is 	converted 	to 	one 	or	 more	 enrollment	 templates	(based 	on 	the 	number	 of	 persons	f ound 	in 	the 	
539 	 Multiface) 	using	 the	 function	of 	 Table	 29. 	

540 	 Table	29 	– 	Enrollment	 feature 	extraction	

Prototypes ReturnStatus convertMultifaceToEnrollmentTemplates(
const Multiface &inputFaces, Input
std::vector<PersonRep> &templates); Output

Description This function takes a	 Multiface and outputs a	 vector of PersonRep objects. If the function	 executes correctly (i.e.
returns a successful exit status), the	 NIST calling	 application will store	 the	 template. The	 NIST application will
concatenate the templates	 and pass	 the result to the enrollment finalization function. For a Multiface in which no
persons appear, a valid	 output is an	 empty vector (i.e. size() ==	 0).

If 	the 	function 	gives a 	non-zero exit status:

− the test	 driver	 will ignore the output	 template (the template may have any size including zero)
− the event	 will be counted as a failure to enroll.

IMPORTANT: NIST's application writes	 the template to disk. The implementation must not attempt writes	 to the
enrollment directory (nor to other resources). Any data needed	 during subsequent searches should	 be included	 in	 the
template, or	 created from the templates during the enrollment	 finalization	 function	 of section	 3.2.2.5.

Input
Parameters

inputFaces An	 instance of a Table 9 structure. Implementations	 must alter their behavior according to the
number of images contained	 in	 the structure.

Output
Parameters

templates For each person	 detected in the	 Multiface,	 the function shall identify the person’s estimated
eye	 centers for	 each images/video frame where the person’s eye coordinates can be calculated.	
The eye coordinates shall be captured in the PersonRep.eyeCoordinates variable, which is	 a
vector of EyePair objects. For videos, the frame number from the video	 of where the eye
coordinates	 were detected shall be captured in the EyePair.frameNum variable for each pair of
eye	 coordinates. In the	 event the	 eye	 centers cannot be	 calculated (ie. the	 person becomes	 out of
sight for a few frames	 in the video), the SDK shall not store an EyePair for	 those frames.	

Return	 Value See	 Table 18 for	 all valid return code values.

541 	 3.2.2.5. Finalize	enr ollment	
542 	 After	 all	 templates	 have	 been	c reated,	 the	 function	of 	 Table	 30 	will	 be	 called.	 	This	 freezes	 the	 enrollment	 data.	 	After	 this	
543 	 call	 the	 enrollment	 dataset	 will	 be	 forever	 read-only.	 		

544 	 The	 function 	allows	 the	 implementation 	to 	conduct,	 for	 example,	 statistical	processing 	of 	the 	feature 	data,	in dexing 	and 	
545 	 data	 re-organization.	 	The	 function	m ay	 alter	 the	 file	 structure.	 	It	 may	 increase	 or	 decrease	 the	 size	 of	 the	 stored	da ta.		
546 	 No	 output	 is 	expected 	from 	this 	function,	 except	a 	return 	code.		 	

547 	 Implementations 	shall 	not 	move	 the 	input	d ata. 			Implementations 	shall 	not	p oint	to 	the 	input	d ata. 		Implementations 	
548 	 should 	not 	assume	t he	i nput 	data 	would 	be	re adable 	after 	the 	call. 		Implementations 	must, 	at 	a	m inimum, 	copy	t he 	
549 	 input 	data 	or 	otherwise 	extract 	what is	n eeded	f or 	search.	

550 	 Table	30 	– 	Enrollment 	finalization 	

Prototypes	 ReturnStatus	 finalizeEnrollment	 (
const	 std::string 	&enrollmentDirectory, 	 Input 	
const	 std::string 	&edbName, 	 Input 	
const	 std::string 	&edbManifestName);	 Input 	

Description	 This	 function 	takes	 the 	name 	of	th e 	top-level	d irectory 	where 	enrollment 	database	 (EDB)	 and	i ts	 manifest	 have	 been	
stored.	 		These	 are	 described 	in 	section 	2.5. 		The	 enrollment	 directory	 permissions	 will	 be	 read	+ 	 write.	 		

The 	function 	supports	 post-enrollment, 	developer-optional, 	bookkeeping	 operations, 	including 	indexing,	 tree-building,	
statistical	 processing 	and 	data	r e-ordering	 for	 fast	 in-memory	 searching.	 		The	 function 	will	 generally	 be	 called 	in 	a	

	 	
NIST	 Concept,	 Evaluation	P lan	a nd	AP I	 	 Page	26 	 of	 37	
	

	

	 	
	 	 		 	 	 	

	

 	 	 		

 		

	 	 	 	 	 	 	 	 	 	 		
	 	 	 		

	 	 			

	 	 	 	
	 	 	 	
	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 		 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	 	

	 	 	 	 	 	 	 	

 		
	 	 	 	 		 	 	 	 	 		
	 	 	 		 	 	 	 	 	 	 	 		

	 	 	 	 		

	 	 	 	
	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

CHEXIA-FACE

separate 	process	a fter	 all	 the 	enrollment	 processes	a re 	complete.	

This	 function 	should 	be	 tolerant	 of	 being	 called 	two 	or	 more	 times.		 Second 	and 	third 	invocations	 should 	probably	 do 	
nothing.	

Input 	 enrollmentDirectory 	 The	 top-level	d irectory 	in 	which 	enrollment	 data 	was 	placed.	T his 	variable 	allows 	an 	
Parameters	 implementation 	to 	locate 	any 	private 	initialization 	data	 it	 elected	t o	pl ace 	in 	the 	directory.	

edbName 	 The	 name	 of	 a	s ingle	 file	 containing	 concatenated 	templates,	 i.e.	 the	 EDB	o f	 section	 2.5. 	
While	 the	 file	 will	 have	 read-write-delete	 permission,	 the	 SDK	 should	onl y	 alter	 the	 file	 if	 it	
preserves	 the	 necessary	 content,	in 	other 	files 	for 	example.	
The	 file	 may	 be	 opened	 directly.	 	It is	n ot 	necessary 	to 	prepend a	d irectory 	name.		 This	 is	 a	
NIST-provided	i nput	 – 	implementers	 shall	n ot	 internally	 hard-code	 or	 assume	 any	va lues.	

edbManifestName	 The	 name	 of	 a	s ingle	 file	 containing	 the	 EDB	ma nifest	 of	 section	 2.5. 	
The	 file	 may	 be	 opened 	directly.	 	It	 is	 not	 necessary	 to	 prepend	 a	d irectory	 name.		 This	 is	 a	
NIST-provided	i nput	 – 	implementers 	shall	n ot	 internally 	hard-code	 or	 assume	 any	 values.	

Output	 None	 	
Parameters	
Return	V alue	 See	Tab le	 18 	for	a ll	 valid 	return 	code 	values. 	

551 3.2.2.6. Pre-search feature extraction

552 3.2.2.7. Initialization

553 Before Multifaces	 are	 sent to the	 identification feature	 extraction function, the	 test harness will call the	 initialization
554 function in Table 31.

555 Table	 31 – Identification 	feature 	extraction 	initialization

Prototype ReturnStatus initializeFeatureExtractionSession(
const std::string &configurationLocation, Input
const std::string &enrollmentDirectory); Input

Description This function initializes the SDK	 under test and sets all needed parameters. This function will be called once by the
NIST application immediately before any M ≥ 1	 calls to convertMultifaceToIdentificationTemplate.	
Caution:	The implementation should tolerate execution	 of P > 1 processes on	 the one or more machines each of
which may be reading from this same enrollment directory in parallel.	

The implementation has read-only access to its prior enrollment data.
Input 	Parameters configuration_location A	 read-only directory containing any developer-supplied configuration parameters	 or

run-time data files.
enrollment_directory The read-only top-level	 directory in which	 enrollment data was placed	 and	 then	

finalized by the implementation. The implementation can parameterize subsequent
template production on the basis of	 the enrolled dataset.

Output none
Parameters
Return	 Value See	 Table 18 for	 all valid return code values.

556 3.2.2.8. Feature	 extraction

557 A Multiface is 	converted 	to 	an 	atomic 	identification 	template 	using 	the 	function 	of Table 32. The result may be stored
558 by NIST, or used	 immediately. The SDK	 shall not attempt to store any data.

559 Table	 32 – Identification feature extraction

Prototypes ReturnStatus convertMultifaceToIdentificationTemplates(
const Multiface &inputFaces, Input
std::vector<PersonRep> &templates); Output

Description This function takes a	 Multiface as input and populates a	 vector of PersonRep with the number of persons
detected	 from the Multiface.	 The implementation could call	 vector::push_back to insert	 into the vector.

NIST Concept, Evaluation	 Plan	 and	 API Page	 27 of 37

	

	
	 	 	 	 	 	 	 	 	 	 		 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 		

	
	

	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	
	 	 	 	

	 	
	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 		 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

CHEXIA-FACE

If 	the 	function 	executes 	correctly, it 	returns a 	zero 	exit 	status. 	The 	NIST 	calling 	application 	may 	commit 	the 	template 	to
permanent storage, or may keep	 it only in	 memory (the implementation	 does not need	 to	 know). If the function	
returns a non-zero exit status, the output template will be not be used in subsequent search operations.

The function shall not have access to the enrollment data, nor shall it attempt access.
Input
Parameters

inputFaces One or more faces, or a video clip.

Output
Parameters

templates For each person detected in the	 video, the	 function shall create	 a	 PersonRep
object, populate it with	 a template and	 eye coordinates for each	 image or video
frame where eyes were detected, and add it	 to the vector.	

Return	 Value See	 Table 18 for	 all valid return code values.

560 	 3.2.2.9. Initialization 	
561 	 The	 function 	of	 Table	 33	 will	 be	 called	 once	 prior	 to	one 	 or	 more	 calls 	of	 the 	searching	 function 	of	 Table	 34. 		The	 function	
562 	 might	 set	 static	i nternal	 variables	so 	 that	 the	 enrollment	 database	 is	a vailable	 to	 the	 subsequent	 identification	 searches. 	

563 	 Table	33 	 – 	Identification 	initialization 	

Prototype	 ReturnStatus	 initializeIdentificationSession(
const	 std::string 	&configurationLocation,	 Input 	
const	 std::string 	&enrollmentDirectory);	 Input 	

Description	 This	 function 	reads	 whatever	 content	 is	 present	 in 	the	 enrollmentDirectory,	for 	example a	m anifest 	placed 	
there 	by 	the 	finalizeEnrollment	function. 	

Input 	Parameters 	 configurationLocation	 A	r ead-only	 directory	 containing	 any	 developer-supplied 	configuration 	parameters	o r	
run-time 	data 	files.	

enrollmentDirectory 	 The	 read-only	 top-level	d irectory 	in 	which 	enrollment 	data 	was 	placed.	
Return	V alue	 See	Tab le	 18 	for	a ll	 valid 	return 	code 	values. 	

564 	 3.2.2.10. Search 	
565 	 The 	function 	of	 Table	 34	 compares	a 	proprietary	 identification 	template 	against 	the 	enrollment 	data	 and	 returns	 a	
566 	 candidate	l ist.	

567 	 Table	34 	 – 	Identification 	search 	

Prototype ReturnStatus identifyTemplate(
const PersonRep &idTemplate, Input
const uint32_t candidateListLength, Input
std::vector<Candidate>	 &candidateList); Output

Description This function searches an	 identification template against	 the enrollment	 set, and outputs a vector containing
candidateListLength Candidates. Each candidate shall be populated by the implementation and added to
candidateList.	 Note that candidateList will be	 an empty	 vector when passed into this function. The candidates
shall appear in descending order of similarity	 score - i.e.	 most similar entries appear first.

Input 	Parameters idTemplate A	 template from convertMultifaceToIdentificationTemplates() -
If 	the 	value 	returned 	by 	that 	function 	was 	non-zero the contents	 of idTemplate
will not be used and this function (i.e. identifyTemplate)	 will not	 be called.

candidateListLength The number of candidates the search should return.
Output candidateList A	 vector containing candidateListLength objects of candidates. The
Parameters datatype is defined	 in	 Table 17 .	 Each candidate shall	 be populated by the

implementation.	 The candidates shall	 appear in descending order of similarity
score - i.e.	 most similar entries appear first.

Return	 Value See	 Table 18 for	 all valid return code values.

568 	 NOTE:	 Ordinarily	 the	 calling	 application	 will	 set	 the	 input	 candidate	 list	 length	 to	 operationally	 typical	 values,	 say	 0	 ≤ 	L	 	≤ 	
569 	 200,	 and	 L	 <<	N .	 	However,	 there	 is	 interest	 in 	the	 presence	 of	 mates	 much	 further	 down	 the	 candidate	 list.	 	We	 may	
570 	 therefore 	extend 	the 	candidate 	list 	length 	such 	that L	a pproaches 	N.		We 	 may	 measure	 the	 dependence	 of	 search	
571 	 duration	on	 L .	 	

	 	
NIST	 Concept,	 Evaluation	P lan	a nd	AP I	 	 Page	28 	 of	 37	
	

	

	 	
	 	 		 	 	 	

	

	 	 	 		 	

	

	

	

	

	 	
	 	 	 	 	 	 	 	

	 		 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 		
	 	 	 	 	 	

	 	 	 	
 	

	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 		 	 	 	 	 	 	 	

	 	 		 	

CHEXIA-FACE

572 	 3.3. Face 	Detection 	

573 	 3.3.1. API	

574 	 3.3.1.1. Interface 	
575 	 The	 Class	 D 	detection 	software 	under	 test	 must	 implement	 the 	interface 	DetectInterface	by	 subclassing	 this	 class	
576 	 and 	implementing	eac h 	method 	specified 	therein.	 	

C++ code fragment Remarks
1. class DetectInterface;

typedef std::shared_ptr<DetectInterface> ClassDImplPtr;

class DetectInterface
2. {

public:
3. virtual ReturnStatus initializeDetection(

const std::string &configurationLocation) = 0;

4. virtual ReturnStatus detectFaces(
const Image &inputImage,
std::vector<BoundingBox> &boundingBoxes) = 0;

5. virtual void setGPU(uint8_t gpuNum) = 0;

6. static ClassDImplPtr getImplementation(); Factory method to return a	 managed pointer to the	
DetectInterface object. This function	 is
implemented by the submitted library and must return a
managed pointer to the DetectInterface object. See	
section 3.1.2.1 for	 an example of	 a typical
implementation of this method.

7. };

577 	 3.3.1.2. Initialization 	
578 	 Before	 any	 calls	 to 	detectFaces	are	m ade,	 the	N IST	t est	 harness	 will	 make	a	 c all	 to 	the	i nitialization 	of	 the	f unction 	in 	
579 	 Table 	35. 	

580 	 Table	35 	– 	SDK 	initialization 		

Prototype	 ReturnStatus 	initializeDetection(
const	 std::string 	&configurationLocation);	 Input 	

Description	 This	 function 	initializes	 the	 SDK	u nder	 test.	 	It	 will	 be	 called 	by	 the	 NIST	ap plication 	before	 any	 call	 to 	the 	function 	
	 detectFaces.		 The 	SDK 	under	t est 	should 	set 	all	p arameters.		
Input 	Parameters 	 configurationLocation	 A	r ead-only	 directory	 containing	 any	 developer-supplied 	configuration 	parameters	o r	 run-

time 	data.	 	The 	name 	of	th is	 directory	 is	 assigned 	by	 NIST,	not	 hardwired	by 	 the	 provider.	 	
The	 names	 of	 the	 files	 in	 this	 directory	 are	 hardwired	 in	 the	 SDK	an d	 are	 unrestricted.	

Output	 none	 	
Parameters	
Return	V alue	 See	Tab le	 18 	for	a ll	 valid 	return 	code 	values. 	

581 	 3.3.1.3. GPU	I ndex	 Specification	
582 	 For	 implementations	 using	 GPUs,	 the	f unction 	of	 Table	 36	 specifies	a 	 sequential	 index 	for	 which 	GPU 	device 	to 	execute 	
583 	 on.	 	This	 enables	 the	 test	 software	 to	or chestrate	 load	ba lancing	 across	 multiple	 GPUs.	

584 	 Table	36 	 – 	GPU	i ndex	 specification	

Prototypes void setGPU (
uint8_t gpuNum); Input

Description This function sets the GPU device number to be used by all subsequent implementation function calls. gpuNum is
a	 zero-based	 sequence value of which	 GPU device to	 use. 0 would	 mean	 the first detected	 GPU, 1 would	 be the
second GPU, etc. If 	the 	implementation 	does 	not 	use 	GPUs, 	then 	this 	function 	call	should 	simply 	do 	nothing.

NIST Concept, Evaluation	 Plan	 and	 API Page	 29 of 37

	

	 	
	 	 		 	 	 	

	

 	 		
	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 		

	 	 	 		

	 	 	 	
	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	

	 		588

CHEXIA-FACE

Input 	Parameters	 gpuNum 	 Index 	number 	representing 	which 	GPU 	to 	use.	

585 3.3.1.4. Face detection

586 The function of Table 37 supports the detection of	 faces in an image. An image may contain one or	 more faces.

587 Table	 37 – Face detection

Prototypes ReturnStatus detectFaces(
const Image &inputImage, Input
std::vector<BoundingBox>	 &boundingBoxes); Output

Description This function takes an Image as input, and populates a	 vector of BoundingBox with the number of faces detected
from the input	 image.	 The implementation could call vector::push_back to insert	 into the vector.

Input inputImage An	 instance of a struct representing a single image from Table 8.
Parameters
Output boundingBoxes For each face	 detected in the	 image, the	 function shall create	 a	 BoundingBox (see Table 14),
Parameters populate it with a confidence score,	 the x, y, width, height	 of	 the bounding box, and add it	 to

the vector.
Return	 Value See	 Table 18 for	 all valid return code values.

NIST Concept, Evaluation	 Plan	 and	 API Page	 30 of 37

	

	 	
	 	 		 	 	 	

	

 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 		 		

	 	 	 		 	

	

	

	

	

	 	
	 	 	 	 	 	 	 	

	 		 	 	
	 	 	 	 	 	 	

	 	 	 	 	
		 	 	

	 	 	 	 	
	 	

 	

	 	 	 	
	 	 	 	

	
	

	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 		 	 	 	 	 	 	 	 		 	 	

	 	 		 	 	 	 	 	 	 	 	 	 	
	

CHEXIA-FACE

589 	 3.4. Clustering 	

590 	 3.4.1. Definitions	
591 	 Clustering	 is	 the	 act	 of	 grouping	 imagery	 of	 the	 same	 individuals.		 If a	la rge 	image 	collection 	has	 N	 images 	in 	which 	P 	≥	0	
592 	 subjects 	appear,	an 	 implementation 	should 	return 	N	lis ts.		 The	 n-th 	list	c ontains	 zero 	or	m ore 	hypotheses	 about	w ho 	
593 	 appears	 in 	the	n -th 	input 	image.	 	Each 	hypothesis	 is	 comprised 	of:	 a	b ounding 	box;	 an 	integer	 subject	 identifier;	and a	
594 	 similarity 	score.	 	A	s imilarity	 is	 a	 measure	 of	 confidence	 that	 a	 hypothesized	i dentity	 truly	 shares	 the	 same	 face	 as	 others	
595 	 in 	that 	cluster. 		Subject	 identifiers 	are	l abels	 assigned 	by 	the	al gorithm.	

596 	 Clustering 	will,	 in 	general, 	produce 	detection	e rrors	 (where 	a 	person	i s	 not	 found	a t	 all), 	and 	both 	false 	positive 	and 	
597 	 negative 	associations	 where,	 respectively,	 multiple 	persons	 appear	 in	one 	cluster,	 one 	person	e xists	 in	s everal	 clusters.		 A	
598 	 single 	image 	can 	contain 	one 	or 	more 	faces	i n 	it. 			

599 	 3.4.2. API	

600

601
602

3.4.2.1. Interface

The Class G clustering software under test must implement the interface ClusterInterface by subclassing this class
and implementing	 each method specified therein. See	

C++ code fragment Remarks
1. class ClusterInterface;

typedef std::shared_ptr<ClusterInterface> ClassGImplPtr;

class ClusterInterface
2. {

public:
3. virtual ReturnStatus initializeClustering(

const std::string &configurationLocation) = 0;

4. virtual ReturnStatus clusterIdentities(
const std::vector<Image> &inputFaces,
std::vector<ClusterMembersInImage> &assignments) = 0;

5. virtual void setGPU(uint8_t gpuNum) = 0;

6. static ClassGImplPtr getImplementation(); Factory method to return a	 managed pointer to
the ClusterInterface object. This function	 is
implemented by the submitted library and must
return a managed pointer	 to the
ClusterInterface object. See	 section 3.1.2.1
for	 an example of	 a typical implementation of	
this method.

7. };

603 	 	

604 	 3.4.2.2. Initialization 	
605 	 Before	 any	 calls	 to 	clusterIdentities	are	m ade,	 the	N IST	t est	 harness	 will	 make	a	 c all	 to 	the	i nitialization 	of	 the	
606 	 function 	in 	Table	 38. 	

607 	 Table	38 	 – 	SDK 	initialization	 	

Prototype ReturnStatus initializeClustering(
const std::string &configurationLocation); Input

Description This function initializes the SDK	 under test. It will be called by the NIST	 application before any call to the function
clusterIdentities.	 The SDK under	 test should set all	 parameters.	

Input 	Parameters configurationLocation A	 read-only directory containing any developer-supplied configuration parameters	 or
run-time data files. The name of	 this directory is assigned by NIST. It	 is not	 hardwired
by the provider. The names of the files in	 this directory are hardwired	 in	 the SDK and	
are	 unrestricted.

NIST Concept, Evaluation	 Plan	 and	 API Page	 31 of 37

	

	 	
	 	 		 	 	 	

	

	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	
	 	 	 	 	 		 	 	 	 	 	 	 	

	 	 		 	
	 	 	 	

	 	 	 	
		 	 	 	
	 	 	 	

	 	
	

	
	 	 	 	 	 	 	 	 	 				 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	
		 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 		 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		 	 	 	 	 	 	 	
	 	 	 	 	 	 		 	 	 	 	

	
	

	 	 	 	 	

	 	 	 	 	 	 	 	
		
	 		

CHEXIA-FACE

Output	 none	 	
Parameters	
Return	V alue	 See	Tab le	 18 	for	a ll	 valid 	return 	code 	values. 	

608 	 3.4.2.3. GPU	I ndex	 Specification	
609 	 For	 implementations	 using	 GPUs,	 the	f unction 	of	 Table	 39	 specifies	a 	 sequential	 index 	for	 which 	GPU 	device 	to 	execute 	
610 	 on.	 	This	 enables	 the	 test	 software	 to	or chestrate	 load	ba lancing	 across	 multiple	 GPUs.	

611 	 Table	39 	 – 	GPU	i ndex	 specification	

Prototypes void setGPU (
uint8_t gpuNum); Input

Description This function sets the GPU device number to be used by all subsequent implementation function calls. gpuNum is
a	 zero-based	 sequence value of which	 GPU device to	 use. 0 would	 mean	 the first detected	 GPU, 1 would	 be the
second GPU, etc. If 	the 	implementation 	does 	not 	use 	GPUs, 	then 	this 	function 	call	should 	simply 	do 	nothing.

Input Parameters gpuNum Index 	number 	representing 	which 	GPU 	to 	use.

612 	 3.4.2.4. Cluster	 Identities 	
613 	 The	 implementation 	shall	 implement	 the	 function 	given 	in 	Table	 40. 	

614 	 Table	40 	 – 	Clustering	

Prototype ReturnStatus clusterIdentities(
const std::vector<Image> &inputFaces, Input
const int32_t numClusters, Input
std::vector<ClusterMembersInImage>	 &assignments Output

Description This function takes a	 collection of images and outputs cluster hypotheses. This function is not mediated by a	
separate template generation step: All detection, template generation and matching occurs internal	 to this function.

NIST will pre-allocate	 the	 assignments vector to have size equal to input_faces.size().	 It is up to the
implementations to populate the assignments vector based	 on	 the number of faces found	 in	 the images.

For each input image, inputFaces[i],	 the implementation should assign hypothesized cluster assignment(s) in
assignments[i]. There may be zero or more persons in each image. If this image contained three faces, then
assignments[i].members.size() should be 3.

When greater than 0, the value numClusters represents an upper bound on the number	 of	 individuals that might
be present in	 the entire collection. This value assumes that an	 investigator with	 domain-specific	 knowledge would
be able to	 estimate the number of subjects present, at least to	 an	 order-of-magnitude. NIST will set numClusters
to 10, 100, 1000, 10000, 100000. The actual number of individuals will be less than this.

NIST will also set numClusters to -1	 which represents the case where the number of subjects is truly unknown.

Input 	Parameters inputFaces N	 Images from P ≥ 0 subjects. There are ni ≥	 1	 images from individual i.
numClusters Upper bound on	 the number of clusters. -1	 represents an unset value.

Output
Parameters

assignments N	 lists of cluster assignments.

Return	 Value See	 Table 18 for	 all valid return code values.
615

616

NIST Concept, Evaluation	 Plan	 and	 API Page	 32 of 37

	

	 	
	 	 		 	 	 	

	

 		

		618

CHEXIA-FACE

617 4. References
FRVT	2002 	 Face	R ecognition 	Vendor	 Test	 2002:	 Evaluation 	Report,	 NIST	I nteragency 	Report	 6965,	 P.	 Jonathon 	Phillips,	 Patrick 	Grother,	

Ross 	J.	 Micheals,	 Duane	 M.	 Blackburn,	 Elham 	Tabassi,	 Mike	 Bone	

FRVT	2002b 	 Face	R ecognition 	Vendor	 Test	 2002:	 Supplemental	 Report,	 NIST	I nteragency 	Report	 7083,	 Patrick 	Grother	

FRVT 	2012 	 Patrick	 Grother	 and 	Mei	 Ngan,	 Face	R ecognition	 Vendor	 Test	 (FRVT)	 Performance	o f	 Face	I dentification 	Algorithms,	 NIST	
Interagency 	Report 	8009,	 May	 26,	 2014.	

AN27	 NIST	 Special	 Publication	 500-271:	 	American 	National	 Standard 	for	 Information 	Systems 	— 	Data	 Format	 for	 the	 Interchange	
of	 Fingerprint,	 Facial,	 & 	Other	 Biometric	 Information 	– 	Part	 1.	 (ANSI/NIST	I TL	 1-2007).	 	Approved 	April	 20,	 2007.	

IJBA 	 See	f or	 example	t he	i mages	 here:	 http://www.nist.gov/itl/iad/ig/facechallenges.cfm 		

As	 documented	he re:	 	Klare	et 	 al.	 Pushing	 the	Fr ontiers	 of	 Unconstrained	 Face	D etection	 and	 Recognition:	 IARPA	 Janus	
Benchmark	 A,	CVPR,	June 	2015.	

MEDS	 NIST	 Special	 Database	 32,	 Volume	 1	 and	 Volume	 2	 are	 available	 at:	 http://www.nist.gov/itl/iad/ig/sd32.cfm.		 MEDS-II	is 	an 	
update	 to	M EDS-I	and 	was 	published in	F ebruary 	2011. 		Note 	that 	NIST 	does 	not 	provide 	"training" 	data 	per 	se 	-	this	 differs 	
from 	the 	paradigm 	often 	used 	in 	academic	 research 	where	 a	 model	 is	 trained,	 tested	 and	 validated.	 Instead	 CHEXIA-FACE	
follows	 operational	 reality:	 software	 is	 typically	 shipped	 "as	 is"	 with	 a	 fixed	 internal	 representation	 that	i s	 designed	 to	 be	
usable	 "off	 the	 shelf"	 without	 training	 and	w ith	onl y	 minimal	 configuration.	

MBE	 P.	 Grother,	 G 	.W.	 Quinn,	 and 	P.	 J.	 Phillips, 	Multiple-Biometric	 Evaluation	(MBE)	 2010,	 Report	 on	t he 	Evaluation	of 	 2D 	Still 	
Image 	Face 	Recognition 	Algorithms,	N IST 	Interagency 	Report 	7709,	R eleased 	June	22, 	 2010.	 Revised 	August	 23,	 2010.	 		

http://face.nist.gov/mbe	 		

NIST Concept, Evaluation	 Plan	 and	 API Page	 33 of 37

	

	 	
	 	 		 	 	 	

	

	 	 	 	
	 	

	
	

	 	
	

	 	
	 	 	 	 	 	 	 	 	

	

																																																																				
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

CHEXIA-FACE

619 	 Annex A
620 	 Submission of Implementations to the CHEXIA-FACE

621 	 A.1 Submission of implementations to NIST

622 	 NIST	 requires	 that	 all	 software,	 data	 and	 configuration	 files	 submitted	 by	 the	 participants	 be	 signed	 and	 encrypted.	 	
623 	 Signing 	is 	done	w ith 	the	p articipant's	 private	k ey,	 and 	encryption	 is	 done	w ith	 the	N IST	p ublic	 key.	 	The	d etailed	
624 	 commands	f or 	signing 	and	e ncrypting 	are 	given	he re:	 http://www.nist.gov/itl/iad/ig/encrypt.cfm	

625 	 NIST 	will	 validate 	all	 submitted 	materials	 using	 the 	participant's	 public	 key,	 and 	the 	authenticity	 of	 that	 key	 will	 be 	verified 	
626 	 using 	the 	key	 fingerprint.	 	This	 fingerprint	 must	 be 	submitted	t o	N IST	 by	 writing	 it	 on	t he	 signed	pa rticipation	a greement.	

627 	 By	 encrypting 	the 	submissions,	 we 	ensure 	privacy;	 by 	signing 	the 	submission,	 we 	ensure 	authenticity 	(the 	software 	
628 	 actually 	belongs 	to 	the	s ubmitter).	 	NIST 	will	 reject 	any 	submission 	that	 is 	not 	signed 	and 	encrypted.	 	NIST	ac cepts 	no 	
629 	 responsibility 	for	a nything 	that	i s 	transmitted 	to 	NIST 	that	i s 	not	s igned 	and 	encrypted 	with 	the 	NIST 	public 	key. 	

630 	 A.2 How to participate

631 	 Those	 wishing	 to 	participate	 in 	CHEXIA-FACE	te sting 	must	d o 	all	 of	th e 	following,	 on 	the 	schedule 	listed 	on 	Page 	2. 	

632 	 ― IMPORTANT:	Follow 	the 	instructions 	for 	cryptographic 	protection 	of	 your	 SDK	an d 	data	h ere.	
633 	 http://www.nist.gov/itl/iad/ig/encrypt.cfm	 			

634 	 ― Send 	a	s igned 	and 	fully	 completed 	copy 	of	 the 	Application 	to 	Participate	 in 	the	 Child 	Exploitation 	Image	 Analytics	 – 	
635 	 Face 	Recognition 	Evaluation 	(CHEXIA-FACE).	 This 	is 	available	 at	 http://www.nist.gov/itl/iad/ig/chexia-face.cfm. 		This	
636 	 must	 identify,	 and	 include	 signatures	 from,	 the	 Responsible	 Parties	 as	 defined	in 	the 	application.	T he 	properly 	signed	
637 	 CHEXIA-FACE 	Application	t o	P articipate 	shall	 be 	sent	 to	N IST 	as	 a 	PDF.	 	

638 	 ― Provide	an 	SDK	(Software	D evelopment	 Kit)	 library 	which 	complies 	with 	the	A PI	 (Application 	Programmer	 Interface)	
639 	 specified 	in 	this	d ocument. 	

640 	 • Encrypted 	data	an d 	SDKs 	below 	20MB 	can 	be 	emailed 	to 	NIST	at 	 chexia.face@nist.gov. 	

641 	 • Encrypted 	data	an d 	SDKS	ab ove 	20MB 	shall 	be 	

642 	 EITHER 	

643 	 • Split 	into 	sections 	AFTER 	the	en cryption 	step. 		Use 	the 	unix 	"split" 	commands 	to 	make 	9MB 	chunks, 	
644 	 and 	then 	rename 	to 	include 	the 	filename 	extension 	need 	for	p assage 	through 	the 	NIST 	firewall. 	
645 	 • you% split –a 3 –d –b 9000000 libCHEXIAFACE_enron_A_02.tgz.gpg

646 	 • you% ls -1 x??? | xargs –iQ mv Q libCHEXIAFACE6_enron_A_02_Q.tgz.gpg

647 	 • Email	 each 	part	 in 	a	s eparate	 email.	 Upon 	receipt	 NIST	w ill
648 	 • nist% cat chexiaface_enron_A02_*.tgz.gpg >
649 	 libCHEXIAFACE_enron_A_02.tgz.gpg

650 	 OR	

651 	 • Made	 available	 as	 a	 file.zip.gpg	 or	 file.zip.asc	 download	 from	 a	 generic	 http	 webserver6, 	

652 	 OR	

653 	 • Mailed	 as	 a	 file.zip.gpg 	or	fi le.zip.asc 	on 	CD 	/ 	DVD 	to 	NIST 	at	th is 	address: 	

CHEXIA-FACE Test Liaison (A203) In 	cases 	where a 	courier 	needs a 	phone 	number, please
100	 Bureau Drive use NIST shipping and	 handling on: 301 -- 975	 -- 6296.
A203/Tech225/Stop	 8940
NIST
Gaithersburg, MD	 20899-8940
USA

6 NIST will not register, or establish any kind of membership, on the provided website.

NIST Concept, Evaluation	 Plan	 and	 API Page	 34 of 37

	

	 	
	 	 		 	 	 	

	

 	

	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 		 	 		

	 	 		
	 		

CHEXIA-FACE

654 A.3 Implementation validation

655 Registered	 Participants will be provided	 with a	 small validation dataset and test	 program available	 on the	 website	

656 http://www.nist.gov/itl/iad/ig/chexia-face.cfm shortly after the final evaluation plan is	 released.

657 The validation test programs shall be compiled by the provider. The output of these programs shall be submitted to NIST.

658 Prior to submission of the SDK and	 validation	 data, the Participant must verify that their software executes on	 the
659 validation images, and produces correct similarity	 scores and templates.

660 Software	 submitted shall implement the	 CHEXIA-FACE API Specification as detailed in the body of this document.

661 Upon receipt of the SDK and validation output, NIST will attempt to reproduce the same output by executing the SDK on	
662 the validation imagery, using a NIST computer. In 	the 	event 	of 	disagreement in 	the 	output,	or 	other 	difficulties, the
663 Participant will be	 notified.
664

NIST Concept, Evaluation	 Plan	 and	 API Page	 35 of 37

http://www.nist.gov/itl/iad/ig/chexia-face.cfm

	

	 	
	 	 		 	 	 	

	

 	

 	

	 	 	 	 	 	 	 	 	 	 	 	 		
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 		 	 	 	 	 	 	 		

	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 		

 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 		
 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 			

 	 	 	 		
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 		

		

		

																																																																				
	 	

CHEXIA-FACE

665 Annex B
666 Effect of Age on Face Identification Accuracy

667 For the	 most accurate	 algorithm provided to NIST’s FRVT	 evaluation in late	 2013	 the Figure below shows	 the one-to-many
668 identification accuracy for subjects from particular age groups.		The images are visa images.		We enrolled a first image
669 from each of	 N	 = 19972 individuals. Thereafter, we executed one mated	 search	 from those individuals to allow estimation
670 of False Negative Identification	 Rate (FNIR, aka “miss rate”). We also executed 203,082	 non-mated searches to allow
671 computation of the False Positive Identification Rate (FPIR,	aka “false alarm rate”).

672 Results for 40 algorithms appear in	 Annex A	 of NIST Interagency Report 80097.	 The discussion from that report is:

673 ― Recognition is progressively easier with advancing age:	All	algorithms exhibit a strong dependence of FNIR on age. This effect is
674 very	 large, spanning	 a factor of ten from infant to senior, and a factor of around five from teen to senior. Miss	 rates	 for older
675 persons are very low: at a fixed	 FPIR	 of 0.005, the most accurate algorithm, E30C, gives FNIR	 of 0.008 for persons over age 55,
676 0.027	 for young 20-somethings, and 0.057 for teenagers. For younger persons, the	 miss rates climb rapidly	 to 0.29 for pre-teens,
677 0.4	 for kids,	to 0.7 for babies.	 This progression is common to all	 algorithms.	
678 ― Young	 children	 are more difficult to	 recognize:	Identification miss rates (FNIR) ascend rapidly for pre-teens, kids	 and the	 youngest
679 individuals.	 For the baby group, 0 to about 3 years old, identification fails more	 often that it succeeds, i.e. FNIR is above	 50%.
680 While the sample size is small (57 subjects), error rates are so high that the result remains significant. This result applies for image	
681 pairs collected	 on	 average 1.6 years apart (Table 13) and	 will be in	 considerable part due to	 the craniofacial shape change
682 associated with rapid growth. The	 extent to which smooth “feature-less” skin texture affects FNIR is unknown. Likewise	 the	 pose	
683 variations	 inherent in photographing	 children have not been quantified.
684 ― Young	 children	 are more difficult to	 discriminate:	All	of the algorithms exhibit higher false positive identification rates for younger
685 subjects.	The grey lines in Figure 11, which link points of equal	threshold, slope upwards to the right, indicating simultaneously
686 that	 younger	 subjects are less easy to recognize as themselves but	 also less easy to tell apart. This indicates that	 younger	
687 individuals are more difficult to discriminate from other individuals.
688

False Positive Identification Rate (FPIR), E30C

Fa
ls

e
N

eg
at

ive
 Id

en
tif

ic
at

io
n

R
at

e
(F

N
IR

),
E3

0C

0.001

0.002

0.005

0.01

0.02

0.05

 0.1

 0.2

 0.5

0.001
0.001 0.003 0.01 0.03 0.1 0.3

●

●

●

●

●

●

●

0.5083
●

●

●

●

●

●

●

0.5117

●

●

●

●

●

●

●

0.515
●

●

●

●

●

●

●

 0.52

●

●

●

●

●

●

●

0.5232

●

●

●

●

●

●

●

0.5264

●

●

●

●

●

●

●

0.5295

baby
kid
pre
teen
young
parents
older

7 http://biometrics.nist.gov/cs_links/face/frvt/frvt2013/NIST_8009.pdf

NIST Concept, Evaluation	 Plan	 and	 API Page	 36 of 37

689

 1

http://biometrics.nist.gov/cs_links/face/frvt/frvt2013/NIST_8009.pdf

	

	 	
	 	 		 	 	 	

	

		690

CHEXIA-FACE

NIST Concept, Evaluation	 Plan	 and	 API Page	 37 of 37

	Structure Bookmarks
	1 2 3 4 5 6 7 8
	An Evaluation Activity sponsored.by the DHS Science & Technology Directorate
	Figure
	Concept, Evaluation. Plan. and. API
	Version. 0.6,. January 7, 2016
	Patrick Grother and Mei Ngan Contact. via.
	chexia-face@nist.gov
	chexia-face@nist.gov

	Figure
	Provisional Timeline of the CHEXIA-FACE Evaluation
	Provisional Timeline of the CHEXIA-FACE Evaluation
	Phase. 0 API Development
	Phase. 0 API Development
	Phase. 0 API Development
	2015-10-26
	Draft evaluation plan

	2015-11-16
	2015-11-16
	Final evaluation plan

	Phase. 1
	Phase. 1
	2015-12-15
	Participation starts: Algorithms. may. be sent to NIST

	TR
	2016-01-20
	Last day. for. submission of algorithms. to Phase 1

	TR
	2016-02-22
	Interim .results .released .to .Phase 1 .participants

	Phase. 2
	Phase. 2
	2016-04-20
	Last day. for. submission of algorithms. to Phase 2

	TR
	2016-05-20
	Interim .results .released .to .Phase 2 participants

	Phase. 3
	Phase. 3
	2016-07-27
	Last day. for. submission of algorithms. to Phase 3

	2016-Q4
	2016-Q4
	Release of final public report

	21
	22
	23 24 Notable differences from FRVT 2012 25 Anonymous participation. is allowed. – but see section 1.8. 26 Please. note. that this document is derived from the. FRVT. 2012 API document for continuity and. to. aid. implementers of 27 the CHEXIA-FACE API. 28 ― This evaluation is dedicated. solely to. imagery relevant to. child. exploitation. NIST seeks to. assist developers in. any 29 way. possible to improve algorithm accuracy on. this task, and. is open. to. creative ideas on. how to. do. so. 30 ― We. antic
	http://nigos.nist.gov:8080/chexia-face
	http://nigos.nist.gov:8080/chexia-face

	46
	Table.of.Contents
	Table.of.Contents
	Table.of.Contents

	1.
	1.
	CHEXIA-FACE
	...
	5

	1.1.
	1.1.
	Scope
	..
	5

	1.2.
	1.2.
	Audience
	..
	5

	1.3.
	1.3.
	Market drivers
	..
	5

	1.4.
	1.4.
	Test datasets
	..
	6

	1.5.
	1.5.
	Offline testing
	..
	6

	1.6.
	1.6.
	Phased testing
	..
	6

	1.7.
	1.7.
	Interim .reports
	...
	7

	1.8.
	1.8.
	Final reports
	...
	7

	1.9.
	1.9.
	Application. scenarios
	...
	7

	1.10.
	1.10.
	Options for participation
	..
	8

	1.11.
	1.11.
	Number and schedule of submissions
	...
	8

	1.12.
	1.12.
	Core accuracy metrics
	..
	9

	1.13.
	1.13.
	Reporting template size
	...
	9

	1.14.
	1.14.
	Reporting computational efficiency
	...
	9

	1.15.
	1.15.
	Exploring the accuracy-speed trade-space
	..
	9

	1.16.
	1.16.
	Hardware specification
	..
	9

	1.17.
	1.17.
	Operating system, compilation, and linking environment
	...
	10

	1.18.
	1.18.
	Software. and Documentation
	..
	10

	1.19.
	1.19.
	Runtime behavior
	...
	11

	1.20.
	1.20.
	Threaded computations
	...
	12

	1.21.
	1.21.
	Time limits
	..
	12

	1.22.
	1.22.
	Ground truth integrity
	..
	13

	2.
	2.
	Data structures supporting the API
	...
	13

	2.1.
	2.1.
	Namespace
	...
	13

	2.2.
	2.2.
	Overview
	..
	13

	2.3.
	2.3.
	Requirement
	..
	13

	2.4.
	2.4.
	File. formats and data. structures
	..
	13

	2.5.
	2.5.
	File. structures for enrolled template. collection
	...
	18

	3.
	3.
	API Specification
	..
	19

	3.1.
	3.1.
	1:1. Verification
	...
	19

	3.2.
	3.2.
	1:N Identification
	...
	23

	3.3.
	3.3.
	Face. Detection
	...
	29

	3.4.
	3.4.
	Clustering
	...
	31

	4.
	4.
	References
	..
	33

	Annex A. Submission. of Implementations to. the CHEXIA-FACE
	Annex A. Submission. of Implementations to. the CHEXIA-FACE
	..
	34

	A.1
	A.1
	Submission of implementations to NIST
	...
	34

	A.2
	A.2
	How to participate
	..
	34

	A.3
	A.3
	Implementation .validation
	...
	35

	Annex B. Effect of Age on. Face Identification. Accuracy
	Annex B. Effect of Age on. Face Identification. Accuracy
	..
	36

	List.of .Tables
	List.of .Tables

	Table 1. – Main image corpora (others may be used)
	Table 1. – Main image corpora (others may be used)
	...
	6

	Table 2. – Subtests supported under the. CHEXIA-FACE. activity
	Table 2. – Subtests supported under the. CHEXIA-FACE. activity
	..
	7

	Table 3. – CHEXIA-FACE. classes of participation
	Table 3. – CHEXIA-FACE. classes of participation
	..
	8

	Table 4. – Cumulative total number of algorithms, by class
	Table 4. – Cumulative total number of algorithms, by class
	..
	8

	Table 5. – Implementation .library .filename .convention
	Table 5. – Implementation .library .filename .convention
	...
	11

	Table 6. – Number of threads allowed for each application
	Table 6. – Number of threads allowed for each application
	..
	12

	Table 7. – Processing time. limits in milliseconds, .per .640 x .480 .image
	Table 7. – Processing time. limits in milliseconds, .per .640 x .480 .image
	...
	12

	Table 8. – Structure. for a. single. image. or video frame
	Table 8. – Structure. for a. single. image. or video frame
	..
	14

	Table 9. – Structure. for a. set of images or video frames
	Table 9. – Structure. for a. set of images or video frames
	...
	14

	99
	99
	Table 10. – Labels describing. categories of Multifaces
	..
	14

	Table 11. – Structure. for a. pair of eye. coordinates
	Table 11. – Structure. for a. pair of eye. coordinates
	...
	15

	101
	101
	Table 12. – PersonTrajectory typedef
	..
	15

	102
	102
	Table 13. -Class for representing a person
	...
	16

	103
	103
	Table 14. – Structure. for bounding. box around a. detected face
	...
	16

	104
	104
	Table 15. – Structure. for a. single. hypothesized cluster membership
	..
	17

	Table 16. – Structure. for hypothesized cluster membership for face(s) in an image
	Table 16. – Structure. for hypothesized cluster membership for face(s) in an image
	..
	17

	106
	106
	Table 17. – Structure. for a. candidate
	..
	17

	107
	107
	Table 18. – Enumeration of return codes
	..
	17

	108
	108
	Table 19. – ReturnStatus structure
	..
	18

	109
	109
	Table 20. – Enrollment dataset template manifest
	...
	18

	Table 21. – Functional summary of the. 1:1. application
	Table 21. – Functional summary of the. 1:1. application
	...
	19

	111
	111
	Table 22. – Initialization
	...
	20

	112
	112
	Table 23. – GPU. index specification
	...
	21

	113
	113
	Table 24. – Template generation
	...
	21

	114
	114
	Table 25. – Template matching
	...
	21

	Table 26. – Procedural overview of the. identification test
	Table 26. – Procedural overview of the. identification test
	..
	23

	116
	116
	Table 27. – Enrollment initialization
	..
	25

	117
	117
	Table 28. – GPU. index specification
	...
	25

	118
	118
	Table 29. – Enrollment feature extraction
	...
	26

	119
	119
	Table 30. – Enrollment finalization
	..
	26

	Table 31. – Identification .feature .extraction .initialization
	Table 31. – Identification .feature .extraction .initialization
	...
	27

	121
	121
	Table 32. – Identification .feature .extraction
	...
	27

	122
	122
	Table 33. – Identification .initialization
	...
	28

	123
	123
	Table 34. – Identification .search
	..
	28

	124
	124
	Table 35. – SDK. initialization
	..
	29

	Table 36. – GPU. index specification
	Table 36. – GPU. index specification
	...
	29

	126
	126
	Table 37. – Face. detection
	...
	30

	127
	127
	Table 38. – SDK. initialization
	..
	31

	128
	128
	Table 39. – GPU. index specification
	...
	32

	129
	129
	Table 39. – Clustering
	..
	32

	131
	131

	132 .1. CHEXIA-FACE. 133 .1.1. Scope .134 .This. document. establishes. a.c oncept. of. operations. and .an .application. programming. interface. (API). for.e valuation .of. face .135 .recognition .(FR). implementations .submitted .to .NIST's. Child.E xploitation. Image .Analytics .Face .Recognition .Evaluation .136 .(CHEXIA-FACE)..
	Child Exploitation Image Analytics (CHEXIA) 1:1 Verification 1:N Identification API and Concept of Operations are. defined. in. this document Clustering Face Detection Face Recognition (CHEXIA-FACE) Text Recognition (TRAIT-2016) See http://www.nist.gov/itl/iad/ig/trait-2016.cfm
	137
	138 1.2. Audience
	138 1.2. Audience
	139 Universities and commercial entities with capabilities in any of the. following areas are invited to participate in the 140 CHEXIA-FACE. test.. 141 ― Identity .verification .with .face .recognition .algorithms. 142 ― Large. scale identification .implementations. 143 ― Face. detection algorithms. 144 ― Implementations .with .an ability to cluster (find and group) images of an unknown number of identities. 145 Organizations will need to implement the API defined in this document. Participation is open wor
	146 charge for participation. While NIST intends to evaluate technologies. that could be readily. made operational, the test. is 147 also open to experimental, prototype and other technologies.
	148 1.3. Market drivers 149 There is a. growing market around digital forensics – the ability to extract. semantic information from imagery that. is useful 150 to an investigation. This test specifically is intended to assess the efficacy of. face recognition algorithms on. child. 151 exploitation imagery. These images are of interest to NIST's partner law enforcement agencies that seek to employ face 152 recognition in .investigating .this .area .of .serious .crime...The .primary .applications .are .identi
	155 A. parallel effort, TRAIT 2016, seeks to. improve the capability of algorithms to. recognize text in. unconstrained. images. 156 Text appears frequently in child exploitation imagery. See .
	http://www.nist.gov/itl/iad/ig/trait-2016.cfm
	http://www.nist.gov/itl/iad/ig/trait-2016.cfm

	157
	158 .1.4. Test.datasets. 159 .NIST. anticipates .running .the .algorithms .only .on .child .exploitation .imagery. .NIST. may. also. run. algorithms. on. other. images. 160 .if .that .will.isolate .factors .that .will.influence. accuracy.. .NIST. does. not. intend. to .run .the .algorithms. on .cooperative .images. 161 .used.i n.r ecent. FRVT. tests. ..The. data.h as,. in .some. cases,. been .estimated .from .initial. small. partitions.. The. completion.of . 162 .this. section .depends. on .further.w ork..
	Table
	TR
	Child. exploitation
	TBD

	Collection, environment
	Collection, environment
	Mostly inside a home, sometimes outdoors

	Live. photo,.Paper scan
	Live. photo,.Paper scan
	Live

	Documentation
	Documentation
	See. NOTE. below

	Compression. from [MBE 2010]1
	Compression. from [MBE 2010]1
	Variable

	Maximum image size
	Maximum image size
	Some. from contemporary SLR camera, some. 3000x4000. and higher.

	Minimum image size
	Minimum image size
	240. x 240

	Eye to eye distance pixels
	Eye to eye distance pixels
	20. to 1000. approximately

	Pose
	Pose
	The images have compound roll, pitch. and. yaw rotations.

	Full frontal geometry
	Full frontal geometry
	Rarely

	Intended .use
	Intended .use
	All CHEXIA-FACE. tasks

	Age
	Age
	Many below 10, some to age 18. Rarely an adult.

	Compression. effects were studied. under MBE 2010 in. NIST Interagency Report 7830, linked. from
	164 ..165 .NOTE. on. Child. exploitation .images:. .These. images. are. illicit .pornographic .images. and .video.. The.i mages. are .present. on. 166 .digital. media. seized.i n.c riminal. investigations... The. files .include .children .who. range. in. age. from .infant. through. adolescent.. .167 .In .addition a.f ew .adult .faces .sometimes .occur. also.. .Some.o f. the.i mages. are.i nnocuous. “family. photographs”.. The. 168 .majority,. however,. feature .coercion,. abuse,. and .sexual. activity... 16
	1
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe

	186 .1.7. Interim .reports. 187 .The. performance. of. each. implementation .will. be. reported .in .a ."score-card"... This. will. be. provided.t o.t he. participant. ..It is. 188 .intended .to .facilitate .research .and .development,.not .for .marketing.. Score. cards.wi ll:. be. machine. generated. (i.e.. scripted); .189 .be. provided.t o.pa rticipants. with.i dentification.of . their. implementation, .include .timing,. accuracy .and .other.p erformance .190 .results,. include .results. from .other.i mp
	205 206 207 208 209
	210 1.9. Application scenarios
	210 1.9. Application scenarios
	211 The test will include. one-to-one verification. and one-to-many identification .tests [MBE 2010, NIST8009] for. still images 212 and video clips.. As described in. Table 2,.the .test .is .intended .to .represent: 213 ― Close-to-operational use of face recognition. technologies in. identification. applications in .which .the .enrolled .dataset.
	214 could contain images. in .the .hundreds .of .thousands. 215 ― Verification .scenarios in .which samples are. compared. 216 ― Face. detection in stills and videos with one. or more. persons in .the .sample. 217 ― Grouping (clustering) identities in mixed media.
	218 Table. 2 – Subtests supported under the CHEXIA-FACE. activity
	IMPORTANT:..Phase 1 .and .Phase 2 .results .will. be attributed. to. the providers UNLESS, ahead of the. Phase. 3 submission deadline, the participant emails NIST to request their organization name. should NOT appear in the. CHEXIA public reports and presentations. In .that .case .the .quantitative .results .will.still.appear in .the .published .report .but .without .any appearance. of the participant’s name. This provision is being included in this evaluation because NIST. understands that this is a new an
	#
	#
	#
	A
	C
	D
	G

	1.
	1.
	Aspect
	1:1. verification
	1:N identification
	Detection
	Clustering

	2.
	2.
	Enrollment dataset
	None (applies to single samples; there is. no concept of gallery. or enrollment database)
	N. enrolled subjects
	None, application to single images
	The concepts of enrollment and search sets. do not exist

	3.
	3.
	Prior NIST. test references
	Equivalent to 1 to 1 matching in [MBE 2010]
	Equivalent to 1. to N matching in [NIST 8009]

	4.
	4.
	Example application
	Verification of e-Passport facial image against. a live border-crossing image.
	Open-set identification of an. image against a central database, e.g. a search of a mugshot against a. database. of known criminals.
	Often used in conjunction with face recognition; also used in video surveillance, human. computer interaction, and image
	Assign. images to. groups if they contain the same individual. Given many images or videos containing many individuals, produce as many clusters. as. there are unique individuals, and associate which

	TR
	database management.
	images they appear in..

	5.
	5.
	Score. or feature space normalization. support
	If .any, normalization. techniques are. only possible over datasets internal. to the implementation.
	Any score or feature based. statistical normalization. techniques are. applied against enrollment database
	Any score or feature based. statistical normalization. techniques-are. applied internally

	6.
	6.
	Intended number of subjects
	Up to O(104)
	Up to O(105). but. dependence on. N will be computed. From O(102). upwards.
	Expected O(104)
	Expected O(103)

	7.
	7.
	Number of images per individual
	Variable:. one or more still images, or a video clip
	Variable: one or more still images, or a video clip
	Variable
	Variable

	8
	8
	Number of persons in. one sample
	1
	1. or more. persons
	1. or more. persons
	1. or more persons

	219
	220 NOTE 1: The vast majority of images are color. The API supports both color and greyscale images.
	221 NOTE 2: For the. operational datasets, it is not known what processing was applied to the. images before. they were. 222 archived. So, for example, we do. not know whether gamma correction. was applied. NIST considers that best practice, 223 standards. and operational activity in the area of image preparation remains. weak.
	224 1.10. Options.for.participation 225 The following rules apply:
	226 ― A. participant must properly follow,.complete .and .submit .the .Annex A .Participation .Agreement. ..This .must .be .done 227 once,.not .before January 1, 2016.. It is .not .necessary .to .do .this .for .each .submitted implementation. 228 ― All participants shall submit at least one class D algorithm. 229 ― Class A. (1:1). algorithms may be. submitted only if at least 1. class D (detection). algorithm is also submitted. 230 ― Class C. (1:N). algorithms may be. submitted only if .at .least 1 .class .
	234 the API of. more than one class.
	235 Table. 3 – CHEXIA-FACE classes of participation
	Function
	Function
	Function
	1:1. verification
	1:N identification
	Detection
	Clustering

	Class label
	Class label
	A
	C
	D
	G

	Co-requisite class
	Co-requisite class
	D
	D. + A
	None
	D. + A. + C

	API requirements
	API requirements
	3.1
	3.2
	3.3
	3.4

	236 .1.11. Number .and.schedule of.subm issions.. 237 .The. test. is. conducted .in .three. phases,.as .scheduled .on .page.2 . ..The. maximum .total. (i.e.. cumulative). number. of. 238 .submissions.i s.r egulated .in .Table. 4. .239 .Table.4 .– .Cumulative.t otal. number. of. algorithms,. by. class.
	#
	#
	#
	Phase. 1
	Total over Phases 1. +. 2
	Total over Phases 1. +. 2. +. 3

	Class A. : Verification
	Class A. : Verification
	2
	4
	6 if at least 1 was successfully executed by end Phase. 1 2. otherwise

	Class C. : Identification
	Class C. : Identification
	2
	4
	6. if at least 1 was successfully executed by end Phase. 1

	Table
	TR
	2
	otherwise

	Class D : Detection
	Class D : Detection
	2
	2
	3. 1.
	if at least 1. was successfully executed by end Phase. 1 otherwise

	Class G : Clustering
	Class G : Clustering
	2
	2
	4. 2.
	if at least 1 was successfully executed by end Phase 1 otherwise

	The numbers above may be increased as resources allow. 241 NIST cannot conduct surveys over runtime parameters – essentially to limit .the .extent .to .which .participants .are .able .to 242 train on the test data.
	243 1.12. Core.accuracy .metrics 244 Notionally the error rates for verification applications will be false match and false non-match error rates, FMR and FNMR. These will be modified to include the effects of failure to make a. template.
	246 For identification. testing, the test will target open-universe applications such. as watch-lists...It .will.not .address .the .closed247 set task because it is. operationally uncommon. Metrics include false positive and negative identification rate (FPIR and 248 FNIR) that depend on threshold and rank.
	-

	249 Rank-based. metrics are appropriate for one-to-many applications that. employ human examiners to adjudicate candidate lists...Score .based .metrics .are .appropriate .for .cases .where .transaction .volumes .are .too .high .for .human .adjudication .or 251 when. false alarm rates must otherwise be low. See. [NIST8009].
	252 1.13. Reporting template size 253 Because template size is influential on. storage requirements and. computational efficiency, this API supports 254 measurement of template size. NIST will report statistics on the actual sizes of. templates produced by face recognition implementations .submitted .to CHEXIA-FACE.. NIST may report statistics on runtime memory usage. Template sizes were 256 reported in the FRVT. 2012 test,. IREX .III testand the. MBE-STILL 2010. test.
	2
	3
	4

	257 1.14. Reporting computational efficiency 258 As with. other tests, NIST will compute and. report recognition. accuracy. In. addition, NIST will also. report timing statistics 259 for. all core functions of. the submitted implementations. This includes feature extraction, 1:1 and 1:N recognition,. detection, and. clustering.. For an example of how efficiency can be reported, see the final. report of the FRVT. 2012 test 261 [NIST8009],. and the. MBE-STILL 2010. test.
	2
	4

	262 Note that face recognition applications optimized for pipelined 1:N. searches may not demonstrate their efficiency in pure 263 1:1. comparison applications.
	264 1.15. Exploring.the .accuracy-speed.trade-space NIST will explore. the accuracy vs. speed tradeoff for face. recognition algorithms running on a fixed platform. NIST will 266 report. both accuracy and speed of. the implementations tested. While NIST cannot force submission. of "fast vs. slow" 267 variants, participants may. choose to submit variants on some other axis (e.g. "experimental vs. mature") 268 implementations...NIST .encourages .“fast-less-accurate. vs. slow-more-accurate” with a. factor of t
	1.16. Hardware specification
	271 NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of 272 computer blades. that may. be used in the testing. The following list gives some details about the hardware of each. blade 273 type: 274 • Dell M610 -Dual Intel Xeon X5680. 3.3. GHz CPUs (6. cores each)
	• Dell M910 -Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each)
	276 .• Dual. Intel. Xeon .E5-2695.3. 3.G Hz. CPUs. (14.c ores. each;.56. l ogical. CPUs. total).w ith .Dual .NVIDIA .Tesla .K40 .GPUs. 277 .NOTE:. Implementations. must. be. functional. on. machines. with. and. without. GPU. capability.. .278 .Each .CPU .has. 512K.c ache.. The. bus. runs. at. 667.M hz.. .The. main.m emory. is. 192. GB.M emory. as. 24. 8GB. modules... We. 279 .anticipate .that .16.p rocesses .can .be .run .without.ti me .slicing. .280.NIST .is. requiring. use. of. 64. bit. implementations.
	307 .1.18.1. Library .and .Platform .Requirements. 308 .Participants. shall. provide.N IST.w ith .binary. code.o nly. (i.e.. no .source.c ode).. .Header. files .(. “.h”). are.al lowed,. but. these.s hall. 309 .not. contain.i ntellectual. property. of. the .company. nor. any. material. that. is. otherwise. proprietary.. .The. SDK.s hould .be. 310.submitted .in .the .form .of .a .dynamically .linked .library .file. .311 .The. core. library. shall. be. named .according.t o .Table. 5... Additional.s hared .obj
	Table. 5 – Implementation .library .filename .convention
	Form
	Form
	Form
	libCHEXIAFACE_provider_class_sequence.ending

	Underscore delimited. parts of the filename
	Underscore delimited. parts of the filename
	libCHEXIAFACE
	provider
	class
	sequence
	ending

	Description
	Description
	First part of the. name, required. to. be this.
	Single. word name of the main provider. EXAMPLE: Acme
	Function classes supported in Table 3. EXAMPLE: C
	A. two. digit decimal identifier to start at 00 and. increment by 1. every time. a. library is sent to NIST.. EXAMPLE: 07
	.so

	Example
	Example
	libCHEXIAFACE_Acme_C_07.so

	318 319 NIST will report the size of the supplied libraries.
	320 1.18.2. Configuration and developer-defined. data 321 The implementation under test may be supplied with configuration files and supporting data files.. NIST will report the 322 size of the supplied configuration files.
	323 1.18.3. Submission folder hierarchy 324 Participant submissions should contain the. following folders at the. top level 325 • lib/ -contains. all participant-supplied software libraries 326 • config/. -contains. all configuration and developer-defined. data 327 • doc/ -contains. any. participant-provided. documentation. regarding the submission
	328 1.18.4. Installation .and .Usage 329 The implementation must install easily (i.e. one installation step with no participant interaction. required) to. be tested, 330 and shall be. executable. on any number of machines without requiring. additional machine-specific. license control 331 procedures or activation.
	332 The implementation shall be installable using simple file copy methods. It shall not require. the. use. of a. separate. 333 installation .program...
	334 The implementation shall not use nor enforce any usage controls or limits based. on. licenses, number of executions, 335 presence of temporary files, etc. It shall remain operable with no expiration date.
	336 Hardware (e.g. USB) activation dongles are not acceptable.
	337 1.18.5. Documentation 338 Participants shall provide. documentation of additional functionality or behavior beyond that specified here. The. 339 documentation. must define all (non-zero) developer-defined. error or warning return. codes.
	340 1.18.6. Modes of operation 341 Implementations. shall not require NIST to switch “modes”. of operation or algorithm parameters.. For example, the use of 342 two different feature extractors must either operate. automatically or be. split across two separate. library submissions.
	teragency Report 8009, linked from
	2
	See. the. FRVT. 2012. test report: NIST. In
	http://www.nist.gov/itl/iad/ig/frvt-2013.cfm
	http://www.nist.gov/itl/iad/ig/frvt-2013.cfm

	See. the. MBE-STILL 2010. test report, NIST. Interagency Report 7709, linked from
	4
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe

	343 1.19. Runtime behavior
	343 1.19. Runtime behavior
	344 1.19.1. Interactive .behavior,.stdout,.logging 345 The implementation will be tested in non-interactive .“batch” .mode .(i.e..without .terminal.support)..Thus, the submitted. 346 library .shall:
	347 − Not use any interactive functions. such as. graphical user interface (GUI) calls, or any. other calls. which require 348 terminal interaction e.g. reads from “standard input”.
	349 − Run. quietly, i.e. it should. not write messages to. "standard. error" and. shall not write to. “standard. output”.
	350 − If .requested .by .NIST .for .debugging,.include a .logging .facility in .which debugging messages are. written to a. log. file 351 whose name includes the provider and library identifiers and the process PID.
	352 1.19.2. Exception Handling 353 The application should include error/exception handling so that in the case of a fatal error, the return code is. still 354 provided. to. the calling application.
	355 1.19.3. External communication 356 Processes running on NIST. hosts shall not side-effect the. runtime. environment in any manner, except for memory 357 allocation and release. Implementations shall not write. any data. to external resource. (e.g. server, file, connection, or 358 other process), nor read. from such. If detected, NIST will take appropriate steps, including but not limited. to, cessation. of 359 evaluation of all implementations from the. supplier, notification to the. provider, and docum
	361 1.19.4. Stateless behavior 362 All components in. this test shall be stateless, except as noted. Thus, all functions should give identical output, for a given. 363 input, .independent .of .the .runtime .history....NIST .will.institute .appropriate .tests .to .detect .stateful.behavior..If .detected, 364 NIST will take appropriate steps, including but not limited to, cessation of evaluation of all implementations from. the 365 supplier, notification to the provider, and documentation of the activity in p
	366 1.20. Threaded .computations 367 Table 6 shows. the limits on. the numbers of threads an implementation .may .use for. each of. the classes of. participation.. In 368 many cases multithreading is not permitted. (i.e. T=1) because NIST will parallelize the test by dividing the workload. across 369 many cores and many machines.
	370 Table 6 – Number of threads allowed for each application
	370 Table 6 – Number of threads allowed for each application
	Table
	TR
	A
	C
	D
	G

	Function
	Function
	1:1. verification
	1:N identification
	Detection
	Clustering

	Feature. extraction
	Feature. extraction
	1
	1
	1
	1. ≤ T. ≤ 16

	Verification
	Verification
	1
	NA

	Finalize. enrollment (before 1:N)
	Finalize. enrollment (before 1:N)
	NA
	1. ≤ T. ≤ 16

	Identification
	Identification
	NA
	1

	371 .For. comparative.t iming,. the.I REX .III3 .test.re port.e stimated .a .factor.b y .which .the .speed .of.th readed .algorithms .would .be .372 .adjusted... Non-threaded .implementations .will. eliminate .the .need .for.N IST .to .apply .such .techniques .[IREX .III]. .373 .NIST. will. not. run. implementations .from .participants .X.an d .Y.o n .the .same .machine .at. the. same. time.. 374 .To .expedite. testing,. for. single-threaded .libraries,. NIST .will. run .P.>. 2 . processes. concurrently.. .
	A C D G
	Function
	Function
	Function
	1:1. verification
	1:N identification
	Detection
	Clustering

	Feature. extraction enrollment
	Feature. extraction enrollment
	1000. (1. core) 600x480. pixels
	1000. (1. core) 600x480. pixels
	K*500. (1. core),. where K=number of persons in. the image
	K*1000. (1. core) where K=number of persons in. the image.. See NOTE.

	Feature. extraction for verification or identification
	Feature. extraction for verification or identification
	1000. (1. core) 600x480. pixels
	1000. (1. core) 600x480. pixels

	Verification
	Verification
	5. (1. core)
	NA

	Identification .of .one .search .image against 1,000,000 single-image Multiface records.
	Identification .of .one .search .image against 1,000,000 single-image Multiface records.
	NA
	10000. (16. cores) or 160000 (1 core)

	Enrollment finalization of 1,000,000.single-image Multiface records (including disk IO time)
	Enrollment finalization of 1,000,000.single-image Multiface records (including disk IO time)
	NA
	7,200,000 (up to 16 cores)
	NA
	NA

	384
	385 NOTE: NIST anticipates that the duration of clustering calls. will have linear and quadratic. components, for template 386 generation and matching. respectively. We. will assess compliance. with our time. limit requirements based on small 387 clustering tasks. where template generation duration dominates. the total.

	388 1.22. Ground .truth .integrity
	388 1.22. Ground .truth .integrity
	389 Some. of the. test data is derived. from operational systems and may contain ground truth errors in which 390 ― a. single. person is present under two different identifiers, or 391 ― two persons are present. under. one identifier,.or 392 ― in .which a .face is .not .present in .the .image. 393 If .these .errors .are .detected,.they .will.be .removed. ..NIST .will.use .aberrant .scores .(high .impostor .scores,.low .genuine
	394 scores) to detect such errors. This. process. will be imperfect, and residual errors. are likely. For comparative testing, 395 identical.datasets will be used and the presence of. errors should give an additive increment to all error rates. For very 396 accurate. implementations this will dominate. the. error rate. NIST. intends to attach appropriate. caveats to the. accuracy 397 results. For prediction of operational performance, the presence of errors gives incorrect estimates of performance.

	398 2. Data structures supporting the API
	398 2. Data structures supporting the API
	399 2.1. Namespace
	400 .All. data. structures. and.AP I. interfaces/function.c alls. will. be. declared.i n.t he. CHEXIAFACE.namespace.. 401 .2.2. Overview .402 .This. section .describes. separate. APIs. for. the. core. face. recognition. applications. described. in. section. 1.9... All. submissions. to .403 .CHEXIA-FACE .shall. implement. the.f unctions. required. by. the.ru les .for. participation.l isted.be fore. Table. 3. ...404 .2.3. Requirement. 405 .CHEXIA-FACE .participants. shall. implement. the .relevant. C++. pro
	411 2.4.2. Data structures for encapsulating multiple images or video frames 412 Some. of the. proposed. datasets includes K > 2 images per person. for some persons. This affords the possibility to. model a 413 recognition scenario in which a new image of. a person is compared against. all prior. images.. Use of multiple images per414 person. has been. shown. to. elevate. accuracy over a. single. image. [MBE 2010].
	5

	415 For still-face recognition in this test, NIST will enroll K ≥ 1. images under each identity. Both. enrolled. gallery and. probe 416 samples may consist of multiple images such that a. template. is the result. of. applying .feature .extraction .to a .set .of K ≥ 1. 417 images and then integrating. information from them. An. algorithm might fuse K feature sets into a single model or might 418 simply maintain them. separately -In .any .case .the .resulting proprietary template is contained in. a contiguous
	420 The number of images per person will vary, and images may not be acquired uniformly over time.. NIST .currently 421 estimates that the. number of images K will never exceed 1000. For the. CHEXIA-FACE. API, K. images of an individual are 422 contained in data structure of Table 13. Each file contains. a standardized image format, e.g. PNG (lossless) .or .JPEG .(lossy).
	423 NOTE: For the. 1:1. verification task, all images will contain one and only one face. For all other CHEXIA-FACE. tasks, images 424 in .the .test may contain one or more faces in an image..
	425 Table. 8 – Structure for a. single image or video. frame
	Table
	TR
	C++ code fragment
	Remarks

	1.
	1.
	struct Image { uint16_t width; uint16_t height; uint16_t depth; uint8_t format; uint8_t *data; };

	2.
	2.

	3.
	3.
	Number of pixels horizontally

	4.
	4.
	Number of pixels vertically

	5.
	5.
	Number of bits per pixel. Legal values are 8 and 24.

	6.
	6.
	Flag indicating native. format of the. image as supplied to NIST 0x01. =. JPEG (i.e. compressed data) 0x02 =. PNG (i.e. never compressed data)

	7.
	7.
	Pointer to raster. scanned data. Either RGB color or intensity. If .image_depth ==. 24. this points to 3WH bytes RGBRGBRGB... If .image_depth .== 8 .this .points .to ..WH .bytes IIIIIII

	8.
	8.

	Table. 9 – Structure for a. set of images or video. frames
	Table
	TR
	C++ code fragment
	Remarks

	1.
	1.
	struct Multiface { typedef std::vector<Image> images; MultifaceLabel description; uint16_t framesPerSec; };

	2.
	2.
	Vector containing F pre-allocated face. images. The number of items is accessible. via. the. vector::size()function.

	3.
	3.
	Single. description of the. Multiface.. The allowed values for.this field are specified in the enumeration in Table 10.

	4.
	4.
	The frame rate of the video sequence in frames-per-second. Only defined if description==Video;.otherwise set. to -1.

	5.
	5.

	427 428 A. Multiface will be accompanied by one of the labels given below. Face. recognition implementations submitted to 429 CHEXIA-FACE should tolerate Multifaces of any category.
	For example, if a. child. is subject to. a new exploitation. event then imagery from that. event. can be searched against. a database of. allprior instances of exploitation, including from that child.
	5

	430 Table. 10 – Labels. describing categories of Multifaces
	430 Table. 10 – Labels. describing categories of Multifaces
	Table
	TR
	Label as C++ enumeration
	Meaning

	NIST Concept, Evaluation. Plan. and. API Page. 14 of 37
	1. .enum class MultifaceLabel { 2. Unknown=0, Either. the. label. is. unknown .or. unassigned.. 3. Fixed=1, Images .are .still.photos .from a.n on-moving. camera. .4. Event=2, Images .are .still.phot os. from .the. same. event,. possibly. from .several. cameras. or. with.camera. movement.. 5. Group=3, Still. photos. from .one.p erson .on .arbitrary. occasions.. 6. Video=4 Images .are a.s equence .of .video .frames.. 7. }; .
	431 ..432 .2.4.3. Data. structure. for. eye. coordinates. 433 .Implementations .should .return .eye .coordinates.o f. each .facial. image.. .This.f unction,. while .not. necessary .for. a .recognition .434 .test,. will .assist.N IST .in .assuring .the .correctness .of.th e .test.d atabase.. .The .primary .mode .of.u se .will. be .for.N IST .to .inspect .435 .images .for. which.e ye .coordinates. are. not. returned,. or. differ. between.im plementations.. 436 .The .eye .coordinates. shall. follow .the .plac
	P
	440 2.4.4. Data type for representing eye coordinates from a Multiface 441 Table. 12 – PersonTrajectory typedef
	Table
	TR
	C++ code fragment
	Remarks

	1.
	1.
	using PersonTrajectory = std::vector<EyePair>;
	Vector of EyePairobjects for a. Multifacewhere eyes were detected. This data structure should store eye coordinates. for each video frame or image where eyes were detected for a particular person. For Multifaces where the person’s eyes were not detected, the SDK shall not add an EyePairto this data structure. If a .face .can .be .detected, .but .not .the .eyes, .the .implementation .should .nevertheless fill this data structure with (x,y)LEFT ==. (x,y)RIGHT representing some point. on the center of the face

	.C++. code. .fragment .Remarks. 1. class PersonRep . 2. { . private: 3. PersonTrajectory eyeCoordinates; Data. structure. .for capturing. eye. coordinates. 4. PersonTemplate proprietaryTemplate; ..PersonTemplateis .a .wrapper .to .a uint8_t*. .for capturing. proprietary. .template data. .representing .a person. .from .a .Multiface. 5. uint64_t templateSize; Size. .of .PersonTemplate 6. public: . PersonRep(); Default. constructor. .7. void pushBackEyeCoord(const EyePair &eyes); T
	.C++. code. fragment. Remarks. 1. struct BoundingBox .{ 2. uint16_t x; x-coordinate .of. top-left .corner. of. bounding .box.a round .face.3. uint16_t y; y-coordinate .of. top-left .corner .of .bounding .box .around .face.4. uint16_t width; width,. in. pixels,. of. bounding. box. around. face. 5. uint16_t height; height,. in.pi xels,. of. bounding. box. around.f ace. 6. 7. }; .
	442 2.4.5. Class for representing a person detected in a .Multiface 443 Table. 13 -Class for representing a person
	444 .2.4.6. Data. Structure. for. detected. face. 445 .For. face.d etection,. implementations. shall. return .bounding .box .coordinates. of.e ach .detected .face .in .an .image... See.446 .section .3.3. for.A PI. details. .447 .Table.14 . – .Structure. for. bounding. box. around. a.d etected. face .
	448 2.4.7. Data Structure for hypothesized cluster membership 449 For clustering, implementations shall assign image samples. to clusters. using the structure of Table 15. See. section 3.4 for.450 API details.
	 .Table.15 . – .Structure .for. a.si ngle .hypothesized.c luster. membership ..C++. code .fragment. Remarks. 1. struct ClusterMember .2. { .3. uint32_t clusterId; 4. double similarityScore; 5. BoundingBox face; Bounding. box. coordinates. corresponding. to. the .face/identity .belonging. to.clusterI d.from .the .image.. 6. }; .
	Table. 16 – Structure for hypothesized. cluster membership for face(s) in an image
	C++ code fragment Remarks 1. struct ClusterMembersInImage 2. { 3.
	ReturnStatus status;
	status.codeshould be set as. follows: ReturnCode::Successif the input sample was processed successfully ReturnCode::NoFaceErrorif no faces could be detected in the input ReturnCode::ExtractErrorif the software failed to process the image ReturnCode::RefuseInputif the software detects malformed input 4. std::vector<ClusterMember> members; For each person found in an image, the. list of hypothesized cluster membership(s). 5. };
	453 .2.4.8. Data. structure. for. result. of. an. identification. search. 454 .All. identification.s earches. shall. return.a . candidate. list. of. a. NIST-specified .length.. .The .list. shall. be .sorted .with .the .most. 455 .similar. matching .entries.l ist. first. with .lowest. rank.. .The. data. structure. shall. be. that. of. Table. 17. ..See.s ection. 3.2. for.A PI. 456 .details.. 457 .Table.17 . – .Structure. for. a.can didate .
	Table
	TR
	C++ code fragment
	Remarks

	1.
	1.
	struct Candidate

	2.
	2.
	{

	3.
	3.
	bool isAssigned;
	If .the .candidate is .valid, .this .should .be .set .to .true. If .the .candidate .computation .failed, .this should be set to false.

	4.
	4.
	std::string templateId;
	The Template ID from the enrollment database manifest defined in section 2.5.

	5.
	5.
	double similarityScore;
	Measure of similarity between. the identification. template and. the enrolled. candidate. Higher scores. mean more likelihood that the samples. are of the same person. An. algorithm is free to. assign. any value to. a candidate. The distribution. of values will have an.impact on the appearance. of a. plot of false-negative and. false-positive identification. rates.

	6.
	6.
	};

	458 2.4.9. Data structure return value of API function calls 459 Table. 18 – Enumeration of return. codes
	Table
	TR
	Return. code as C++. enumeration
	Meaning

	TR
	enum class ReturnCode { Success=0,

	1.
	1.
	Success

	Non-negative integer assigned by the.i mplementation indicating a cluster label.. All.im ages of a person.s hould.s hare this same integer.
	Measure. of. similarity. between. the. input. sample. and. other. images. of. the. same. cluster. (presumably .of.th e .same .person)..T he .score .should .be .a .non-negative. value. on.a . continuous. range... The .score .will. be .used .to .perform .threshold-based.a nalysis. of. algorithm .performance..For. example,. NIST.m ay .perform .analyses. that. assigns .samples.t o .clusters.o nly.w hen .their. corresponding .similarly.sco re .is.a t. or. above .a .threshold.. .
	460 461
	2. ConfigError=1, Error reading configuration files 3. RefuseInput=2, Elective refusal to process the input 4. ExtractError=3, Involuntary .failure .to .process the image 5. ParseError=4, Cannot parse the input data 6. TemplateCreationError=5, Elective refusal to produce a. template (e.g. insufficient pixels between the eyes) 7. VerifTemplateError=6, For matching,.either or both of the input templates were result. of. failed feature extraction 8. EnrollDirError=7, An. operation. on. the enrollment directory
	462 ..463 .2.4.10. Data. type. for. similarity. scores. 464 .Identification .and .verification .functions .shall.return .a .measure. of. the. similarity. between. the. face.d ata .contained .in .the .465 .two .templates.. .The .datatype .shall. be .an.e ight. byte. double. precision.r eal... The .legal.r ange .is .[0,. DBL_MAX],.where .the .466 .DBL_MAX. constant. is.l arger. than .practically.n eeded .and .defined .in .the .<limits.h> .include .file. .Larger. values. indicate.m ore. 467 .likelihood .that
	Field name
	Field name
	Field name
	Template ID
	Template Length
	Position of first byte. in EDB

	Datatype required
	Datatype required
	std::string
	Unsigned decimal integer
	Unsigned decimal integer

	Datatype length required
	Datatype length required
	4. bytes
	8. bytes

	Example lines of a. manifest file appear
	Example lines of a. manifest file appear
	Example lines of a. manifest file appear
	90201744
	1024
	0

	to the right. Lines 1, 2, 3 and N appear.
	to the right. Lines 1, 2, 3 and N appear.
	person01
	1536
	1024

	7456433
	7456433
	512
	2560

	...
	...

	subject12
	subject12
	1024
	307200000

	483 ..484 .The. EDB .scheme .avoids. the .file .system .overhead .associated .with .storing .millions. of. individual. files.. 485 .3. API. Specification. 486 .3.1. 1:1.Verification. 487 .3.1.1. Overview .488 .The. 1:1.t esting. will. proceed. in. three. phases:. preparation. of. enrollment. templates;. preparation. of. verification. templates;. 489 .and .matching.. .These.ar e.d etailed .in .Table. 21. .490 .Table.21 . – .Functional. summary .of. the.1: 1.a pplication .
	Phase
	Phase
	Phase
	Description
	Performance. Metrics to be. reported by NIST

	Initialization
	Initialization
	Function to read configuration data, if. any.
	None

	Enrollment
	Enrollment
	Given K ≥ 1. input images of an individual, the. implementation will create a proprietary enrollment template. NIST will manage storage of these templates.
	Statistics of the. time. needed. to. produce a template. Statistics of template. size. Rate of failure to. produce a template

	Verification
	Verification
	Given K ≥ 1. input images of an individual, the. implementation will create a proprietary verification template. NIST will manage storage of these templates.
	Statistics of the. time. needed to produce. a. template. Statistics of template. size. Rate of failure to. produce a template.

	Matching (i.e. comparison)
	Matching (i.e. comparison)
	Given a proprietary enrollment and a proprietary verification template, compare them to produce a similarity score.
	Statistics of the. time. taken to compare. two templates. Accuracy measures, primarily reported. as DETs.

	491 ..492 .NIST. requires. that. these. operations. may. be. executed. in. a. loop. in. a. single. process. invocation,. or. as. a. sequence. of. independent. process. 493 .invocations,. or .a .mixture .of .both.. 494 .3.1.2. API. 495 .3.1.2.1. Interface .496 .The. Class. A .1:1.v erification .software .under. test. must. implement. the .interface .VerifInterface.by. subclassing. this. 497 .class.a nd .implementing .each .method .specified .therein. ..See..
	C++ code fragment Remarks 1. class VerifInterface; typedef std::shared_ptr<VerifInterface> ClassAImplPtr; class VerifInterface 2. {public: 3. virtual ReturnStatus initializeVerification(const std::string &configurationLocation) = 0; 4. virtual ReturnStatus convertMultifaceToEnrollmentTemplate(const Multiface &inputFaces,PersonRep &templ) = 0; virtual ReturnStatus convertMultifaceToVerificationTemplate(const Multiface &inputFaces,PersonRep &templ) = 0;
	5. virtual ReturnStatus matchTemplates(const uint8_t *verificationTemplate,const uint32_t verificationTemplateSize,const uint8_t *enrollmentTemplate,const uint32_t enrollmentTemplateSize,double &similarity) = 0; 6. virtual void setGPU(uint8_t gpuNum) = 0; 7. static ClassAImplPtr getImplementation(); Factory method to return a. managed pointer to the VerifInterfaceobject. This function is implemented by the submitted library and must return a managed pointer to the VerifInterfaceobject. 8. };
	498
	499 There is one class (static) method declared in VerifInterface,. which must also be
	500 implemented .by .the .SDK..This .method .returns a .shared .pointer .to .the .object .of .the .interface .type, .an .instantiation .of .the
	501 implementation .class..A .typical.implementation .of .this .method is .also .shown .below .as .an .example.
	502
	C++ code fragment Remarks #include "chexiafaceNullImplClassA.h" using namespace CHEXIAFACE; NullImplClassA::NullImplClassA() { } NullImplClassA::~NullImplClassA() { } ClassAImplPtrVerifInterface::getImplementation(){ NullImplClassA *p = new NullImplClassA();ClassAImplPtr ip(p);return (ip);} // Other implemented functions 503
	504 3.1.2.2. Initialization 505 The NIST test harness will call the initialization function in Table 22 before calling template generation. or matching. 506 Table. 22 – Initialization
	Prototype
	ReturnStatus initializeVerification(const std::string &configurationLocation);
	Input Description
	This function initializes the SDK. under test. It will be called by the NIST. application before any call to the Table 24 functions convertMultifaceToEnrollmentTemplateor convertMultifaceToVerificationTemplate.. The implementation under test should. set all parameters.
	Input
	Input
	configurationLocation

	A. read-only directory containing any developer-supplied configuration parameters. or run-time Parameters
	data files. The name of this directory is assigned by NIST, not hardwired. by the provider. The names of the files in. this directory are hardwired. in. the implementation and are. unrestricted. Output
	none Parameters Return.
	See. Table 18 for all valid return code values. Value

	507 3.1.2.3. GPU. Index Specification
	507 3.1.2.3. GPU. Index Specification
	508 For implementations using GPUs, the. function of Table 23 specifies. a sequential index for which GPU device to execute 509 on. This enables the test software to. orchestrate load. balancing across multiple GPUs.
	Prototypes void setGPU (uint8_t gpuNum); Input Description This function sets the GPU device number to be used by all subsequent implementation function calls. gpuNum is a. zero-based. sequence value of which. GPU device to. use. 0 would mean the first detected GPU, 1 would be the second GPU, etc. If .the .implementation .does .not .use .GPUs, .then .this .function .call.should .simply .do .nothing. Input Parameters gpuNum Index .number .representing .which .GPU .to .use.
	Table.23 . – .GPU.i ndex. specification.
	511 .3.1.2.4. Template.gener ation .512 .The. functions. of. Table. 24. support.ro le-specific.g eneration .of. template .data.. .Template. format. is .entirely .proprietary.. 513 .Table.24 .– .Template.g eneration.
	Prototypes
	Prototypes
	Prototypes
	ReturnStatus convertMultifaceToEnrollmentTemplate(

	TR
	const Multiface &inputFaces,
	Input

	TR
	PersonRep &templ);
	Output

	TR
	int32_t convertMultifaceToVerificationTemplate(

	TR
	const Multiface &inputFaces,
	Input

	TR
	PersonRep &templ);
	Output

	Description
	Description
	Takes a. Multifaceand populates a. PersonRepobject. In .all.cases, .even .when .unable .to .extract .features, the template generated for the PersonRepshould be a. template that. may be passed to the matchTemplatesfunction without error. That is, this routine must internally encode "template creation failed" and the. matcher must transparently handle this.

	Input Parameters
	Input Parameters
	inputFaces
	Implementations .must .alter .their .behavior .according .to .the .number .of .images contained in the structure,.and .the types per Table 10.

	Output Parameters
	Output Parameters
	templ
	A. PersonRepobject that. represents. a single template generated from the. Multiface..

	Return. Value
	Return. Value
	See. Table 18 for. all valid return code values.

	514 .3.1.2.5. Matching. 515 .Matching. of. one. enrollment. against. one. verification. template. shall. be. implemented. by. the. function. of. Table. 25. .516 .Table.25 . – .Template.m atching.
	Prototype ReturnStatus matchTemplates(const uint8_t *verificationTemplate, Input const uint32_t verificationTemplateSize, Input const uint8_t *enrollmentTemplate, Input const uint32_t enrollmentTemplateSize, Input double &similarity); Output Description Compare two proprietary templates and output a. similarity score,. which need. not satisfy the metric properties. When either or both of the. input templates are. the. result of a. failed template. generation (see. Table 24), the similarity score shall be -

	518 3.2. 1:N.Identification
	518 3.2. 1:N.Identification
	519 3.2.1. Overview 520 The 1:N application proceeds. in two phases, enrollment and. identification. The identification phase includes separate 521 pre-search feature extraction stage, and a search stage.
	522 The design reflects the following testing objectives for 1:N implementations.
	− support distributed enrollment on multiple machines, with multiple processes running in parallel
	− allow recovery after a. fatal exception, and measure. the. number of occurrences
	− allow NIST. to copy enrollment data. onto many machines to support parallel testing
	− respect. the black-box nature of biometric templates
	− extend complete. freedom to the. provider to use. arbitrary algorithms
	− support measurement of duration of core function calls
	− support measurement of template size
	523 Table. 26 – Procedural overview of the. identification test
	Phase
	Phase
	Phase
	#
	Name
	Description
	Performance. Metrics to be reported by NIST

	Enrollment
	Enrollment
	E1
	Initialization
	Give the implementation advance notice of the number of individuals and images that will be. enrolled. Give the implementation the name of. a directory where any provider-supplied configuration data will have been placed by. NIST.. This location will otherwise be empty. The implementation is permitted read-write-delete access to the. enrollment directory during this phase. The implementation is permitted. read-only access to. the configuration directory. After enrollment, NIST may rename and. relocate the e

	E2
	E2
	Parallel Enrollment
	For each of N individuals, pass multiple. images of the. individual to the. implementation for conversion to a combined template.. The implementation will. return a template to the calling application. The implementation is permitted read-only access to the enrollment directory during this phase. NIST's calling application. will be responsible for. storing all templates as binary files.. These will not. be available to the implementation during this enrollment phase. Multiple instances of the calling applic
	Statistics of the. times needed. to. enroll an individual. Statistics of the. sizes of created templates. The incidence of failed template. creations.

	E3
	E3
	Finalization
	Permanently finalize. the. enrollment directory. This supports, for example, adaptation of the. image-processing functions, adaptation. of the representation, writing of a manifest, indexing, and computation of statistical information over the enrollment dataset. The implementation is permitted read-write-delete. access to the enrollment directory during. this phase.
	Size of the enrollment database as a. function of population size. N. and the number of images. Duration of this operation. The time needed to execute this function shall be reported with the preceding enrollment. times.

	Pre-search
	Pre-search
	S1
	Initialization
	Tell the implementation the location of an enrollment directory. The implementation could look at the enrollment. data. The implementation is permitted read-only access to the enrollment. directory during this phase. Statistics of the. time. needed for this operation.
	Statistics of the. time. needed for this operation.

	S2
	S2
	Template preparation
	For each probe, create a template from a set of input images. This operation. will generally be conducted. in. a separate process invocation. to step S3. The implementation is permitted. no. access to the enrollment. directory during this phase. The result of this step is. a search template.
	Statistics of the. time. needed for this operation. Statistics of the. size. of the. search template.

	Search
	Search
	S3
	Initialization
	Tell the implementation the location of an enrollment directory.. The implementation should read all or. some of. the enrolled data into. main. memory, so that searches can commence. The implementation is permitted read-only access to the enrollment. directory during this phase.
	Statistics of the. time. needed for this operation.

	S4
	S4
	Search
	A. template is searched. against the enrollment database. The implementation is permitted read-only access to the enrollment. directory during this phase.
	Statistics of the. time. needed for this operation. Accuracy metrics -Type I +. II error rates. Failure. rates.

	524 3.2.2. API
	524 3.2.2. API
	525 526 527
	3.2.2.1. Interface The Class C 1:N identification software under test must implement the interface IdentInterfaceby subclassing this class. and implementing each method specified therein. See. C++ code fragment Remarks 1. class IdentInterface; typedef std::shared_ptr<IdentInterface> ClassCImplPtr; class IdentInterface 2. {public: 3. virtual ReturnStatus initializeEnrollmentSession(const std::string &configurationLocation,const std::string &enrollmentDirectory,const uint32_t numPersons, const uint32_t numIma
	9. virtual ReturnStatus identifyTemplate(const PersonRep &idTemplate,const uint32_t candidateListLength,std::vector<Candidate> &candidateList); 10. virtual void setGPU(uint8_t gpuNum) = 0; 11. static ClassCImplPtr getImplementation(); Factory method to return a. managed pointer to. the IdentInterface object. This function. is implemented. by the submitted. library and. must return a managed pointer. to the IdentInterfaceobject. See. section 3.1.2.1 for. an example of. a typical implementation of this method
	529 .3.2.2.2. Initialization .of .the .enrollment .session .530 .Before. any. enrollment. feature .extraction .calls.a re. made,. the .NIST .test.h arness. will. call. the. initialization. function .of. Table. 531 .27. .532 .Table.27 . – .Enrollment. initialization. .
	Prototype ReturnStatus initializeEnrollmentSession(const std::string &configurationLocation, Input const std::string &enrollmentDirectory, Input const uint32_t numPersons, Input const uint32_t numImages); Input Description This function initializes the SDK. under test and. sets all needed. parameters. This function will be called N=1. times by the NIST application immediately before any M. ≥ 1. calls to convertMultifaceToEnrollmentTemplate.. Caution:.The implementation should tolerate execution of P > 1. p
	533 .3.2.2.3. GPU.I ndex. Specification. 534 .For. implementations. using. GPUs,. the.f unction .of. Table. 28. specifies.a . sequential. index .identifying .which. GPU. device. to. 535 .use... This .enables .the .test. software .to .orchestrate .load .balancing .across .multiple .GPUs. .536 .Table.28 . – .GPU.i ndex. specification.
	Prototypes void setGPU (uint8_t gpuNum); Input Description This function sets the GPU device number to be used by all subsequent implementation function calls. gpuNum is a. zero-based. sequence value of which. GPU device to. use. 0 would. mean. the first detected. GPU, 1 would. be the second GPU, etc. If .the .implementation .does .not .use .GPUs, .then .this .function .call.should .simply .do .nothing. Input Parameters gpuNum Index .number .representing .which .GPU .to .use.
	P
	537 .3.2.2.4. Enrollment. 538 .A .Multiface. is .converted .to .one .or. more. enrollment. templates.(based .on .the .number. of. persons.f ound .in .the .539 .Multiface) .using. the. function.of . Table. 29. .540 .Table.29 .– .Enrollment. feature .extraction.
	Prototypes
	Prototypes
	Prototypes
	ReturnStatus convertMultifaceToEnrollmentTemplates(

	TR
	const Multiface &inputFaces,
	Input

	TR
	std::vector<PersonRep> &templates);
	Output

	Description
	Description
	This function takes a. Multifaceand outputs a. vector of PersonRepobjects. If the function. executes correctly (i.e. returns a successful exit status), the. NIST calling. application will store. the. template. The. NIST application will concatenate the templates. and pass. the result to the enrollment finalization function. For a Multifacein which no persons appear, a valid. output is an. empty vector (i.e. size()==. 0). If .the .function .gives a .non-zero exit status: − the test. driver. will ignore the o

	Input Parameters
	Input Parameters
	inputFaces
	An. instance of a Table 9 structure. Implementations. must alter their behavior according to the number of images contained. in. the structure.

	Output Parameters
	Output Parameters
	templates
	For each person. detected in the. Multiface,. the function shall identify the person’s estimated eye. centers for. each images/video frame where the person’s eye coordinates can be calculated.. The eye coordinates shall be captured in the PersonRep.eyeCoordinatesvariable, which is. a vector of EyePairobjects. For videos, the frame number from the video. of where the eye coordinates. were detected shall be captured in the EyePair.frameNumvariable for each pair of eye. coordinates. In the. event the. eye. cen

	Return. Value
	Return. Value
	See. Table 18 for. all valid return code values.

	541 .3.2.2.5. Finalize.enr ollment. 542 .After. all. templates. have. been.c reated,. the. function.of . Table. 30 .will. be. called.. .This. freezes. the. enrollment. data.. .After. this. 543 .call. the. enrollment. dataset. will. be. forever. read-only.. ..544 .The. function .allows. the. implementation .to .conduct,. for. example,. statistical.processing .of .the .feature .data,.in dexing .and .545 .data. re-organization.. .The. function.m ay. alter. the. file. structure.. .It. may. increase. or. decrea
	separate .process.a fter. all. the .enrollment. processes.a re .complete.. This. function .should .be. tolerant. of. being. called .two .or. more. times... Second .and .third .invocations. should .probably. do .nothing.. Input .enrollmentDirectory .The. top-level.d irectory .in .which .enrollment. data .was .placed..T his .variable .allows .an .Parameters. implementation .to .locate .any .private .initialization .data. it. elected.t o.pl ace .in .the .directory.. edbName .The. name. of. a.s ingle. file. con
	separate .process.a fter. all. the .enrollment. processes.a re .complete.. This. function .should .be. tolerant. of. being. called .two .or. more. times... Second .and .third .invocations. should .probably. do .nothing.. Input .enrollmentDirectory .The. top-level.d irectory .in .which .enrollment. data .was .placed..T his .variable .allows .an .Parameters. implementation .to .locate .any .private .initialization .data. it. elected.t o.pl ace .in .the .directory.. edbName .The. name. of. a.s ingle. file. con
	551 3.2.2.6. Pre-search feature extraction
	552 3.2.2.7. Initialization 553 Before Multifaces. are. sent to the. identification feature. extraction function, the. test harness will call the. initialization 554 function in Table 31. 555 Table. 31 – Identification .feature .extraction .initialization
	Prototype ReturnStatus initializeFeatureExtractionSession(const std::string &configurationLocation,
	Input const std::string &enrollmentDirectory);
	Input Description
	This function initializes the SDK. under test and sets all needed parameters. This function will be called once by the NIST application immediately before any M ≥ 1. calls to convertMultifaceToIdentificationTemplate.. Caution:.The implementation should tolerate execution. of P > 1 processes on. the one or more machines each of which may be reading from this same enrollment directory in parallel..
	The implementation has read-only access to its prior enrollment data. Input .Parameters
	configuration_location
	configuration_location
	A. read-only directory containing any developer-supplied configuration parameters. or run-time data files.

	enrollment_directory
	enrollment_directory
	The read-only top-level. directory in which. enrollment data was placed. and. then. finalized by the implementation. The implementation can parameterize subsequent template production on the basis of. the enrolled dataset.

	Output none
	Parameters
	Return. Value
	See. Table 18 for. all valid return code values.
	556 3.2.2.8. Feature. extraction 557 A Multifaceis .converted .to .an .atomic .identification .template .using .the .function .of Table 32. The result may be stored 558 by NIST, or used. immediately. The SDK. shall not attempt to store any data.
	559 Table. 32 – Identification feature extraction
	559 Table. 32 – Identification feature extraction
	Prototypes
	Prototypes
	Prototypes
	ReturnStatus convertMultifaceToIdentificationTemplates(

	TR
	const Multiface &inputFaces,
	Input

	TR
	std::vector<PersonRep> &templates);
	Output

	Description
	Description
	This function takes a. Multifaceas input and populates a. vector of PersonRepwith the number of persons detected. from the Multiface.. The implementation could call. vector::push_backto insert. into the vector.

	Table
	TR
	If .the .function .executes .correctly, it .returns a .zero .exit .status. .The .NIST .calling .application .may .commit .the .template .to permanent storage, or may keep. it only in. memory (the implementation. does not need. to. know). If the function. returns a non-zero exit status, the output template will be not be used in subsequent search operations. The function shall not have access to the enrollment data, nor shall it attempt access.

	Input Parameters
	Input Parameters
	inputFaces
	One or more faces, or a video clip.

	Output Parameters
	Output Parameters
	templates
	For each person detected in the. video, the. function shall create. a. PersonRepobject, populate it with. a template and. eye coordinates for each. image or video frame where eyes were detected, and add it. to the vector..

	Return. Value
	Return. Value
	See. Table 18 for. all valid return code values.

	560 .3.2.2.9. Initialization .561 .The. function .of. Table. 33. will. be. called. once. prior. to.one . or. more. calls .of. the .searching. function .of. Table. 34. ..The. function. 562 .might. set. static.i nternal. variables.so . that. the. enrollment. database. is.a vailable. to. the. subsequent. identification. searches. .563 .Table.33 . – .Identification .initialization .
	Prototype. ReturnStatus. initializeIdentificationSession(. .const. std::string .&configurationLocation,. Input .const. std::string .&enrollmentDirectory);. Input .Description. This. function .reads. whatever. content. is. present. in .the. enrollmentDirectory,.for .example a.m anifest .placed .there .by .the .finalizeEnrollment.function. .Input .Parameters .configurationLocation. A.r ead-only. directory. containing. any. developer-supplied .configuration .parameters.o r. run-time .data .files.. enrollmentDi
	564 .3.2.2.10. Search .565 .The .function .of. Table. 34. compares.a .proprietary. identification .template .against .the .enrollment .data. and. returns. a. 566 .candidate.l ist.. 567 .Table.34 . – .Identification .search .
	Prototype ReturnStatus identifyTemplate(const PersonRep &idTemplate,
	Input const uint32_t candidateListLength,
	Input std::vector<Candidate>. &candidateList);
	Output Description
	This function searches an. identification template against. the enrollment. set, and outputs a vector containing candidateListLengthCandidates. Each candidate shall be populated by the implementation and added to candidateList.. Note that candidateList will be. an empty. vector when passed into this function. The candidates shall appear in descending order of similarity. score -i.e.. most similar entries appear first.
	Input .Parameters idTemplate A. template from convertMultifaceToIdentificationTemplates()If .the .value .returned .by .that .function .was .non-zero the contents. of idTemplate will not be used and this function (i.e. identifyTemplate). will not. be called.
	-

	candidateListLength
	The number of candidates the search should return. Output
	candidateList
	A. vector containing candidateListLengthobjects of candidates. The Parameters
	datatype is defined. in. Table 17 .. Each candidate shall. be populated by the implementation.. The candidates shall. appear in descending order of similarity score -i.e.. most similar entries appear first.
	Return. Value
	See. Table 18 for. all valid return code values.
	568 .NOTE:. Ordinarily. the. calling. application. will. set. the. input. candidate. list. length. to. operationally. typical. values,. say. 0. ≤ .L. .≤ .569 .200,. and. L. <<.N .. .However,. there. is. interest. in .the. presence. of. mates. much. further. down. the. candidate. list.. .We. may. 570 .therefore .extend .the .candidate .list .length .such .that L.a pproaches .N...We . may. measure. the. dependence. of. search. 571 .duration.on. LNIST. Concept,. Evaluation.P lan.a nd.AP I. .Page.28 . of
	572 .3.3. Face .Detection .573 .3.3.1. API. 574 .3.3.1.1. Interface .575 .The. Class. D .detection .software .under. test. must. implement. the .interface .DetectInterface.by. subclassing. this. class. 576 .and .implementing.eac h .method .specified .therein.. .
	C++ code fragment Remarks 1. class DetectInterface; typedef std::shared_ptr<DetectInterface> ClassDImplPtr; class DetectInterface 2. {public: 3. virtual ReturnStatus initializeDetection(const std::string &configurationLocation) = 0; 4. virtual ReturnStatus detectFaces(const Image &inputImage,std::vector<BoundingBox> &boundingBoxes) = 0; 5. virtual void setGPU(uint8_t gpuNum) = 0; 6. static ClassDImplPtr getImplementation(); Factory method to return a. managed pointer to the. DetectInterfaceobject. This func
	577 .3.3.1.2. Initialization .578 .Before. any. calls. to .detectFaces.are.m ade,. the.N IST.t est. harness. will. make.a. c all. to .the.i nitialization .of. the.f unction .in .579 .Table .35. .580 .Table.35 .– .SDK .initialization ..Prototype. ReturnStatus .initializeDetection(..const. std::string .&configurationLocation);. Input .Description. This. function .initializes. the. SDK.u nder. test.. .It. will. be. called .by. the. NIST.ap plication .before. any. call. to .the .function ..detectFaces... The
	Prototypes void setGPU (uint8_t gpuNum); Input Description This function sets the GPU device number to be used by all subsequent implementation function calls. gpuNum is a. zero-based. sequence value of which. GPU device to. use. 0 would. mean. the first detected. GPU, 1 would. be the second GPU, etc. If .the .implementation .does .not .use .GPUs, .then .this .function .call.should .simply .do .nothing.
	Input .Parameters. gpuNum .Index .number .representing .which .GPU .to .use..
	585 3.3.1.4. Face detection 586 The function of Table 37 supports the detection of. faces in an image. An image may contain one or. more faces. 587 Table. 37 – Face detection
	Prototypes
	ReturnStatus detectFaces(const Image &inputImage,
	Input std::vector<BoundingBox>. &boundingBoxes);
	Output Description
	This function takes an Image as input, and populates a. vector of BoundingBoxwith the number of faces detected from the input. image.. The implementation could call vector::push_backto insert. into the vector.
	Input
	Input
	inputImage

	An. instance of a struct representing a single image from Table 8. Parameters Output
	boundingBoxes
	For each face. detected in the. image, the. function shall create. a. BoundingBox(see Table 14), Parameters
	populate it with a confidence score,. the x, y, width, height. of. the bounding box, and add it. to the vector. Return. Value
	See. Table 18 for. all valid return code values.
	589 .3.4. Clustering .590 .3.4.1. Definitions. 591 .Clustering. is. the. act. of. grouping. imagery. of. the. same. individuals... If a.la rge .image .collection .has. N. images .in .which .P .≥.0. 592 .subjects .appear,.an . implementation .should .return .N.lis ts... The. n-th .list.c ontains. zero .or.m ore .hypotheses. about.w ho .593 .appears. in .the.n -th .input .image.. .Each .hypothesis. is. comprised .of:. a.b ounding .box;. an .integer. subject. identifier;.and a. 594 .similarity .score.. .A.s
	600 601 602
	3.4.2.1. Interface The Class G clustering software under test must implement the interface ClusterInterfaceby subclassing this class and implementing. each method specified therein. See. C++ code fragment Remarks 1. class ClusterInterface; typedef std::shared_ptr<ClusterInterface> ClassGImplPtr; class ClusterInterface 2. {public: 3. virtual ReturnStatus initializeClustering(const std::string &configurationLocation) = 0; 4. virtual ReturnStatus clusterIdentities(const std::vector<Image> &inputFaces,std::vect
	603 ..604 .3.4.2.2. Initialization .605 .Before. any. calls. to .clusterIdentities.are.m ade,. the.N IST.t est. harness. will. make.a. c all. to .the.i nitialization .of. the. 606 .function .in .Table. 38. .607 .Table.38 . – .SDK .initialization. .
	Prototype ReturnStatus initializeClustering(const std::string &configurationLocation); Input Description This function initializes the SDK. under test. It will be called by the NIST. application before any call to the function clusterIdentities.. The SDK under. test should set all. parameters.. Input .Parameters configurationLocation A. read-only directory containing any developer-supplied configuration parameters. or run-time data files. The name of. this directory is assigned by NIST. It. is not. hardwir
	Output. none. .Parameters. Return.V alue. See.Tab le. 18 .for.a ll. valid .return .code .values. .
	608 .3.4.2.3. GPU.I ndex. Specification. 609 .For. implementations. using. GPUs,. the.f unction .of. Table. 39. specifies.a . sequential. index .for. which .GPU .device .to .execute .610 .on.. .This. enables. the. test. software. to.or chestrate. load.ba lancing. across. multiple. GPUs.. 611 .Table.39 . – .GPU.i ndex. specification.
	Prototypes void setGPU (uint8_t gpuNum); Input Description This function sets the GPU device number to be used by all subsequent implementation function calls. gpuNum is a. zero-based. sequence value of which. GPU device to. use. 0 would. mean. the first detected. GPU, 1 would. be the second GPU, etc. If .the .implementation .does .not .use .GPUs, .then .this .function .call.should .simply .do .nothing. Input Parameters gpuNum Index .number .representing .which .GPU .to .use.
	612 .3.4.2.4. Cluster. Identities .613 .The. implementation .shall. implement. the. function .given .in .Table. 40. .614 .Table.40 . – .Clustering.
	Prototype ReturnStatus clusterIdentities(const std::vector<Image> &inputFaces, Input const int32_t numClusters, Input std::vector<ClusterMembersInImage>. &assignments Output Description This function takes a. collection of images and outputs cluster hypotheses. This function is not mediated by a. separate template generation step: All detection, template generation and matching occurs internal. to this function. NIST will pre-allocate. the. assignmentsvector to have size equal to input_faces.size().. It is
	615 616

	617 4. References
	617 4. References
	FRVT.2002 .Face.R ecognition .Vendor. Test. 2002:. Evaluation .Report,. NIST.I nteragency .Report. 6965,. P.. Jonathon .Phillips,. Patrick .Grother,. Ross .J.. Micheals,. Duane. M.. Blackburn,. Elham .Tabassi,. Mike. Bone. FRVT.2002b .Face.R ecognition .Vendor. Test. 2002:. Supplemental. Report,. NIST.I nteragency .Report. 7083,. Patrick .Grother. FRVT .2012 .Patrick. Grother. and .Mei. Ngan,. Face.R ecognition. Vendor. Test. (FRVT). Performance.o f. Face.I dentification .Algorithms,. NIST. Interagency .R
	619 .Annex A 620 .Submission of Implementations to the CHEXIA-FACE 621 .A.1 Submission of implementations to NIST 622 .NIST. requires. that. all. software,. data. and. configuration. files. submitted. by. the. participants. be. signed. and. encrypted.. .623 .Signing .is .done.w ith .the.p articipant's. private.k ey,. and .encryption. is. done.w ith. the.N IST.p ublic. key.. .The.d etailed. 624 .commands.f or .signing .and.e ncrypting .are .given.he re:. http://www.nist.gov/itl/iad/ig/encrypt.cfm.
	653 .§ Mailed. as. a. file.zip.gpg .or.fi le.zip.asc .on .CD ./ .DVD .to .NIST .at.th is .address: .
	CHEXIA-FACE Test Liaison (A203)
	CHEXIA-FACE Test Liaison (A203)
	CHEXIA-FACE Test Liaison (A203)
	In .cases .where a .courier .needs a .phone .number, please

	100. Bureau Drive
	100. Bureau Drive
	use NIST shipping and. handling on: 301 --975. --6296.

	A203/Tech225/Stop. 8940
	A203/Tech225/Stop. 8940

	NIST
	NIST

	Gaithersburg, MD. 20899-8940
	Gaithersburg, MD. 20899-8940

	USA
	USA

	654 A.3 Implementation validation
	654 A.3 Implementation validation
	655 Registered. Participants will be provided. with a. small validation dataset and test. program available. on the. website. 656 shortly after the final evaluation plan is. released. 657 The validation test programs shall be compiled by the provider. The output of these programs shall be submitted to NIST. 658 Prior to submission of the SDK and. validation. data, the Participant must verify that their software executes on. the
	http://www.nist.gov/itl/iad/ig/chexia-face.cfm
	http://www.nist.gov/itl/iad/ig/chexia-face.cfm

	659 validation images, and produces correct similarity. scores and templates. 660 Software. submitted shall implement the. CHEXIA-FACE API Specification as detailed in the body of this document. 661 Upon receipt of the SDK and validation output, NIST will attempt to reproduce the same output by executing the SDK on.
	662 the validation imagery, using a NIST computer. In .the .event .of .disagreement in .the .output,.or .other .difficulties, the 663 Participant will be. notified. 664

	665 Annex B 666 Effect of Age on Face Identification Accuracy
	665 Annex B 666 Effect of Age on Face Identification Accuracy
	667 For the. most accurate. algorithm provided to NIST’s FRVT. evaluation in late. 2013. the Figure below shows. the one-to-many 668 identification accuracy for subjects from particular age groups...The images are visa images...We enrolled a first image 669 from each of. N. = 19972 individuals. Thereafter, we executed one mated. search. from those individuals to allow estimation 670 of False Negative Identification. Rate (FNIR, aka “miss rate”). We also executed 203,082. non-mated searches to allow 671 comp
	672 Results for 40 algorithms appear in. Annex A. of NIST Interagency Report 8009.. The discussion from that report is:
	7

	673 ― Recognition is progressively easier with advancing age:.All.algorithms exhibit a strong dependence of FNIR on age. This effect is 674 very. large, spanning. a factor of ten from infant to senior, and a factor of around five from teen to senior. Miss. rates. for older 675 persons are very low: at a fixed. FPIR. of 0.005, the most accurate algorithm, E30C, gives FNIR. of 0.008 for persons over age 55, 676 0.027. for young 20-somethings, and 0.057 for teenagers. For younger persons, the. miss rates climb
	False Positive Identification Rate (FPIR), E30C False Negative Identification Rate (FNIR), E30C 0.0010.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 0.001 0.001 0.003 0.01 0.03 0.1 0.3● ● ● ● ● ● ● 0.5083 ● ● ● ● ● ● ● 0.5117 ● ● ● ● ● ● ● 0.515 ● ● ● ● ● ● ● 0.52 ● ● ● ● ● ● ● 0.5232 ● ● ● ● ● ● ● 0.5264 ● ● ● ● ● ● ● 0.5295 babykid preteen youngparentsolder
	7
	7
	http://biometrics.nist.gov/cs_links/face/frvt/frvt2013/NIST_8009.pdf
	http://biometrics.nist.gov/cs_links/face/frvt/frvt2013/NIST_8009.pdf

