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* Mechano-chemical coupling and diffusion-
controlled defect processes — experimental
observations

e Phase field description of defects

e Traditional coarse-grained phase field method
e Microscopic phase field method

e Diffusional molecular dynamics (DMD) method
e Integrated phase field modeling
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A cornucopia of deformation mechanisms in superalloys
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Possible transformation mechanism for 0’

precipitation

1) “Shifts” of layers 2 and 3 in opposite direction by a/6 vector
2) Homogeneous shear of whole cell by the angle arctan(1/3)
3) Shuffle of Cu atom to the centre of the cell, and diffusion of

.2. the other Cu atom away to the matrix

! (Nie and Muddle)
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Chemical — mechanical coupling
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Challenges

Mechano-chemical coupling and diffusion-controlled
defect processes

Empirical potential MD: accuracy limited by available
atomic potentials

Direct ab /nitio MD: simulation limited to ~300 atoms

*Time scale limit: ~30 years of atomistic simulations of dislocations, all
people did was glidel!

kKMC: even-catalogs may be difficult to generate

Peierls-Nabarro type models: use ab /nitio GSF energy as input, but
limited o displacive process of simple defect geometry

DDD, coarse-grained PFM and others: defect structure, energy and
mobility, and mechanisms are model input rather than output



Phase field description of defects

Order parameter ¢(r) Examples:

Chemical non-uniformity: c(r), o(r),V, (r),.. Martensitic transformation or
dislocation, order parameter

Structural non-uniformity: 7 (r),u(r),&(r), M(r), = inelastic displacement (or
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l. Traditional coarse-grained phase field models

* Work at ~um, parametric study of collective behaviors
of large defect ensemble with spatial correlation

* Material-specific quantitative models require defect
energy, mobility and deformation/
transformation mechanisms
as inputs




Experimental
observations

N. Zhou, C. Shen,
MJ.Mills and Y. Wang,
Phil. Mag. 90:405-436

(2010)

M. Fahrmann, W.
Hermann, E.
Fahrmann, A. Boegli,
and T. Pollock,

1aterials Science




Mechanisms of rafting

Lattice mismatch
between y/y’

applied stress
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e Rafting caused by channel plasticity under homogeneous modulus assumption
e Rafting caused by modulus inhomogeneity without considering channel plasticity
» Rafting under combined effect of channel plasticity and modulus inhomogeneity
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Time evolution of y* particles in a Ni-Al alloy with -0.3% misfit under 152MPa tensile stress along [001]. D =10"%m?/s
t=3.6 hrs; t=7.2 hrs; t=10.7 hrs.
Dislocations from different slip systems are represented by different colors

Modulus mismatch only ~50 hrs
(Cll -Gy )y /(Cll -Cp )yl =85%

Channel plasticity only ~ 9 hrs
Modulus mismatch + ~ 7 hrs
Channel plasticity

Time evolution of y' particles in a Ni-Al alloy with +0.3% misfit under 152MPa tensile stress along [001]. N. Zhou et. al. Acta
t=3.6 hrs; t=7.2 hrs. Mater. 55 (2007) 5369;

ibid 56 (2008) 6156.



Local dislocation density approach
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Coarse-grained phase field simulations R Experimental
2 - observations

Misfit: -0.5%
Applied stress: 130MPa
Temperature: 1050°C

Aging time: 8 hrs.

Interfacial energy: 14 mJ/m?
Applied stress: 152Mpa
Temperature: 1300K
Effective diffusivity: 101m?/s
Volume fraction of y: 60%
Lattice misfit: -0.3%

Aging time: 5.67 hours

M. Fahrmann, W.

Hermann, E.
Fahrmann, A. Boegli,
_ and T. Pollock,
: . 4 Materials Science and
OHIO : - Raire Engineering, A260,

N. Zhou, C. Shen, MJ.Mills and Y. Wang, Phil. Mag. 90:405-436 (2010) 212-221 (1999).



Creep strain vs. time

Plastic strain:

0.005

0.003
0.004 - \ \ 0.0025 \
0.003 - t| 00027
0.0015 | /
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0 0

The coar'sle—glrainled model could be used in the opl’rimilzafion
of existing alloys and development of new alloys such as Co-
base superalloys if properly informed and validated.

SUAE| Department of Materials Science and Engineering N. Zhou, C. Shen, MJ.Mills and Y. Wang, Phil. Mag. 90:405-436 (2010)



Il. Microscopic Phase Field Model

+ Works at natural length scales of extended defects (~nm)

* Using DFT calculations of GSF/MGSF and Landau free energy as direct
inputs and predict defect structure, chemistry and energy

* Probe the total energy landscape using NEB for saddle point configuration
and activation energy of defect nucleation

* When combined with experimental characterization, it could serve as a
powerful tool to explore deformation/transformation mechanisms and
provide critical inputs to coarse-grained phase field simulations
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Wang and Li, Acta Mater, Overview 150, 2010 Shen. et. al. Met. Trans. 39A:976 (2008)
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Il. Microscopic Phase Field Model (Cont.)

Reprinted from THE JourNAL ofF CrEMIcAL PHysics, Vol. 28, No. 2, 258-267, February, 1958
Printed in U. S. A.

Free Energy of a Nonuniform System. I. Interfacial Free Energy

Jorn W. CarN AND Joun E. HirLiAwrp
General Flectric Research Laboratory, Schenectady, New York

(Received July 29, 1957)

Reprinted from the JournaL oF CueMicAL PHysics, Vol. 31, No. 3, 688699, September, 1959
Printed in U. S. A.

Free Energy of a Nonuniform System. ITI. Nucleation in a Two-Component
Incompressible Fluid

Joan W. CarN aND Jorn E. HiLLiarD
General Eleciric Research Laboratory, Schemectady, New York
(Received February 16, 1959)

Comment by Mullins: The fundamental properties associated with an
intferface and a critical nucleus are expressed in terms of the parameters
in the free energy model and there is no need to introduce the artificial
dividing surface of Gibbs, nor to define a separate interfacial energy,
nor to model the nucleus as homogeneous
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Defect cores are diffuse at their natural length scales
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Order-disorder transition ~ 6-8 planes

A.J. Ardell, V. Ozolins, Nature Materials, 4 (2005) 309
&]:,?\IE Department of Materials Science and Engineering Order-disorder transition ~ 10 planes




Microscopic phase field model vs. Peierls model

o(X) = 2H f: GLé(SS) v i o

ds (elastic)

__u b 27u(x) (inelastic)

27 d b

F = [[f () + x| V() F1dr +E,
o e ©

(inelastic) (elastic)




Microscopic phase field model vs. Peierls model

[ elast [77] —— The phase field microelasticity formulation is a superset of the Peierls
model. Instead of log(r) type dislocation line-to-line interaction kernel, it
employs 1/r type voxel-to-voxel interaction kernel.

[ cryst [77] — Crystalline energy — 3D generalization of the misfit energy. It is a
potential energy landscape subject to a general plastic strain produced
by an arbitrary linear combination of slips (localized simple shears). It
reduces to GSF energy when projected onto a particular slip plane.

ECvt = Idr¢(55 (r))

GSF of Cu (J. Li, OSU)

ergy [mJ.l'mz]

8

Inter-planar potential:
¢(85) —> (b)/ d

Shen & Wang, Acta Mater
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o

{111} Generalized Stacking Fault Eni
o

Phase field approach is a superset of the Cahn-Hilliard
description of chemical non-uniformities and the Peierls

description of displacive non-uniformities.
Wang an Li, Acta Mater, Overview 150, 2010




Energy landscape calculation by ab /nitio
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1.5

Dislocation core structure (disregistry)

Ni Al (edge dislocation)

IF’eierls model
Phase field model ————

Peierls model solution courtesy of
G. Schoeck

GSF:
S. Kohlhammer, PhD thesis

Ni3Al (2) (edge)
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Micromechanisms of y' shearing

Model proposed by Decamps et. al. (1987, 1991, 1994) and Mukheriji et. al.
(1991):

e Precipitate sheared
initially by 1/2<110>
forming an APB

e APB transforms into
SISF/SESF via nucleation
on APB of 1/6<112>
partial

49PF

+
VE: =
e U S Y e

()

N




MPF exploration of possible mechanisms

Energy (eV)

MPFD+NEB, (t =100MPa)
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9 J Complex stacking
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Decorrelation of Shockley partials
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’. . i‘ Experimental

ogl 70° 2 Parametric study of
‘ 22.' et SESF shearing

Fro mRyU

1000MPa 600MPa 400MPa

no reordering L=0

SDG\TE Department Department of Materials Science and Engineering Engineering with reorderi ng: =5




Chemical — mechanical coupling
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modelmg capabllmes are required that can ‘d‘es\cmbe
diffusion-controlled defect migration and

microstructural evolution with resolution at 'rhe cores
the interacting defects - Diffusive MD




Conclusions

Microstructure evolution in solids often involves coupled
displacive/diffusional process as a rule rather than as an
exception. The phase field approach is well suited to treat
such complexities in an integrated manner.

But major advances have to be made before transforming

the approach to quantitative and material specific tools

eDirect utilization of ab initio energetics and interatomic potentials
(DMD)

eFormulation of Landau free energy along the reaction-coordinate

e|dentification and incorporation of deformation/transformation
mechanisms, in combination with experimental characterization

e|ntegrating phase field techniques at different length scales
(DMD, MPF and CGPF).

%}é Department of Materials Science and Engineering



