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Abstract 

NIST has developed a software package that allows users to fit models to test results obtained 
from Charpy or toughness tests as a function of test temperature, thereby obtaining so-called 
transition curves. Non-linear fitting is available for five regression models, two symmetric and 
three asymmetric, selected from the literature. The NIST software package includes:  an  Excel 
spreadsheet to establish initial values for model parameters, allowing users to obtain 
meaningful results for the asymmetric models, a Shiny App (web-based interface for R code) 
that provides an advanced analysis, including confidence intervals and uncertainties for the 
estimated parameters, and a macro-enabled Excel spreadsheet for a basic-level analysis 
(regressions curves, characteristic temperatures, and model selection statistics). Example data 
sets are also included in the NIST software package. 
The NIST software is tested on three Charpy absorbed energy datasets. Two datasets 
correspond to actual impact test results performed on various pipeline steels, while the third is 
a simulated dataset generated from predetermined model parameters. These datasets allow a 
thorough demonstration of the NIST software. The software is freely available to the scientific 
community for research purposes. 
The full software package is available for free download from the NIST Charpy Machine 
Verification Program web page (https://www.nist.gov/programs-projects/charpy-machine-
verification-program).  
 
Key words 

Charpy testing; confidence bounds; non-linear fitting; parameter uncertainties; toughness tests; 
transition curves. 
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 Introduction 

This document describes software developed by the National Institute of Standards and 
Technology (NIST) to determine temperature transition curves for metals and steels. The 
temperature transition curves provide crucial information about the ductile-to-brittle transition 
of metals and steels used to build bridges and buildings and to monitor the degradation of 
metals and steels used in nuclear reactors.  
 The objective of our effort is not just to provide software for fitting models to Charpy 
or toughness test results (there are many available packages that can do that, and calculations 
are relatively easy to implement in a spreadsheet-based software such as Microsoft Excel1), 
but to provide a tool that can quantify uncertainties associated with Charpy parameters such 
as DBTT or characteristic temperatures and establish confidence bounds for the calculated 
regression curves. This is of particular interest whenever Charpy results are used in the 
framework of safety-related applications or structural assessments. 

 The NIST software package provides tools to fit five different models to temperature 
transition data, examine diagnostic plots, compare several fitted curves using model selection 
statistics, estimate uncertainties and confidence intervals for all parameters of interest, and 
plot confidence bounds for fitted curves. The NIST software package is comprised of three 
parts. The first part is a Microsoft Excel [1] spreadsheet utility that provides reasonable 
initial values of parameters. Utilizing appropriate initial values is of paramount importance in 
obtaining meaningful results for specific combinations of datasets and regression models. 
The second part, the Shiny App [2], is a user-friendly, web-based application (based on R 
software[3]) that performs all the statistical and graphical procedures needed to analyze 
temperature transition data. The third part is a macro-enabled Excel spreadsheet that offers a 
basic tool for determining regression curves for selected models, as well as for ranking the 
models in terms of fitting capability. The basic analysis tool does not produce uncertainties 
or confidence intervals.  The most common implementation of the NIST software package is 
to use either the Shiny App for a complete analysis or the Excel spreadsheet for basic 
analysis, with initial values from the first Excel spreadsheet if needed. Sample data sets are 
also provided as part of the software package. 
 Section 2 provides background information regarding ductile-to-brittle temperature 
transition curves and the parameters of interest. Details regarding the response variables and 
the mathematical models available in the NIST software package are described in section 3. 
The NIST software package and the statistical techniques employed are described in section 4. 
Additional data analyses are described in section 5. A comparison of output from the Shiny 
App and the Excel spreadsheet for basic analysis is included in section 6. Section 7 provides a 
summary of the work completed. Computational considerations and statistical methods are 
provided in Appendix A.   

 

 
1 Certain commercial equipment, instruments, software packages, or materials are identified in this document in order to specify the 
experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of 
Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the 
purpose. 
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 Background 

The ductile-to-brittle transition is a phenomenon commonly observed in metals and steels, 
which corresponds to the change in the fracture behavior of metals from ductile (stable) 
fracture at high temperatures to brittle (unstable) fracture at low temperatures. The change in 
fracture mode generally occurs over a range of temperatures, centered on a specific 
temperature that is denominated ductile-to-brittle transition temperature, or DBTT. An 
example transition curve for the energy absorbed from Charpy tests on a low-strength ferritic 
steel (KV, in Joules) is illustrated in Fig. 1. Note that the temperature range where the fracture 
is fully ductile is generally known as upper shelf (US) and the temperature range where the 
fracture is fully brittle is typically indicated as lower shelf (LS). In both shelves, the transition 
curve is conventionally horizontal (i.e., the toughness of the material is considered 
approximately constant). 

 
Fig. 1. Absorbed energy transition curve for a low-strength steel. 

 Sigmoidal regression curves such as the one depicted in Fig. 1 are used to model the 
temperature dependence of Charpy test results, such as: 

• absorbed energy, KV (J); 
• lateral expansion, LE (mm); 
• shear fracture appearance, SFA (%). 

The same type of transition curve can also be used for illustrating the temperature 
dependence of other toughness-related parameters, such as stress-intensity factor K (MPa√m) 
or J-integral (kN/m2).  Although temperature transition curves are used to describe several 
possible Charpy test results, only KV will be used in this document to illustrate the use of the 
NIST software package. 
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 The phenomenon of ductile-to-brittle transition occurs because the development of the 
plastic zone in some classes of metals is a temperature-dependent process [4]. At upper-shelf 
temperatures, there is sufficient thermal energy in the crystal structure to facilitate the 
movement of dislocations under an externally applied stress. This allows the plastic zone to 
develop at the crack tip, thus facilitating crack formation and propagation by ductile (stable) 
fracture. However, as the temperature decreases, the thermal energy available to assist 
dislocation movement drops, making it more difficult to develop a significant plastic zone at 
the tip of the notch or pre-existing crack. Below the DBTT, dislocation mobility and plastic 
zone size rapidly decrease, resulting in a large loss of fracture toughness. Once dislocation slip 
is virtually impossible, the metal fractures by brittle (unstable) crack propagation. 
 As shown in Fig. 2 [5], the transition behavior of metals falls into three categories 
determined by their crystal structure: 

• Metals with FCC (face-centered cubic) crystal structure do not undergo a ductile-to-
brittle transition and retain considerable ductility at low temperatures; the large number 
of slip systems in their crystal structure allows dislocation movement to occur even at 
low temperatures. 

• Most hexagonal close packed (HCP) metals, including magnesium and α-titanium 
alloys, also do not exhibit a transition behavior. 

• On the other hand, metals with a body-centered-cubic (BCC) crystal structure typically 
display ductile-to-brittle transition properties, as they do not exhibit close-packed 
planes that allow for easy dislocation migration, Therefore, dislocation movement in 
these materials require a thermal activation in order to slip, and more drastic 
mechanisms, such as breaking of bonds, are triggered at low temperatures to 
accommodate the applied stress [5]. 

 

 
Fig. 2. Schematic transition behavior for various types of metals [5]. 
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 Establishment of Charpy Transition Curves 

The Charpy impact test, developed over 120 years ago [6,7], is the simplest and most 
conventional test used to characterize the transitional behavior of BCC metals and steels. In its 
simplest form, this test measures the amount of energy expended to break a standardized bar-
shaped specimen, notched on one side, upon impact by a swinging hammer. The absorbed 
energy, which must be corrected for the losses due to friction and windage, is calculated from 
the difference in the potential energies of the hammer (pendulum) before and after fracturing 
the specimen placed in the path of its swing. The most commonly used Charpy specimen is a 
bar with nominal length of 55 mm and a square cross section of 10 mm × 10 mm, with a V-
shaped notch. The symbol of absorbed energy is KV, and its unit is Joules (J). 
 Besides absorbed energy, two additional post-test measurements are typically 
performed on Charpy specimens and reported. 

• Lateral Expansion (LE, in mm): the increase in specimen thickness caused by plastic 
deformation induced by fracture. LE is measured on the broken specimen halves 
(separately or together) as the cumulative height of the shear lips caused by plastic 
deformation. 

• Shear Fracture Appearance (SFA, in %): the percentage of ductile (shear) fracture 
surface measured on a tested specimen using optical or digital methods. SFA ranges 
from 0 % (fully brittle) in the lower shelf to 100 % (fully ductile) in the upper shelf. 

All three measurements (KV, LE, and SFA) exhibit a transitional behavior for BCC 
metals similar to the one shown in Fig. 1. Regression (transition) curves are obtained by fitting 
mathematical models to results obtained as a function of test temperature, generally with a 
least-squares approach. This consists of minimizing the sum of squared residuals, with the 
residual defined as the difference between observed and fitted value. The method of least 
squares is a standard approach in regression analysis to approximate the solution of 
overdetermined systems (sets of equations in which there are more equations than unknowns). 

Once the Charpy transition curve is mathematically established, the parameters that are 
commonly extracted are the following. 

• DBTT (°C): the ductile-to-brittle transition temperature corresponding to the abscissa 
of the point that is equidistant from the lower and upper shelf, i.e., DBTT = 
T[(LS+US)/2]. Conventionally, one can say that ductile behavior prevails at 
temperatures above the DBTT, while brittle behavior prevails below the DBTT. 

• US (J or mm): upper-shelf value that is related to the toughness achieved by the material 
under fully ductile conditions. US can be expressed in terms of absorbed energy (in J) 
or lateral expansion (in mm). As for SFA, the upper-shelf value is, by definition, equal 
to 100 %. 

• Additional characteristic temperatures corresponding to predefined values of the 
dependent variable. For example, within the nuclear energy community, characteristic 
temperatures corresponding to specific values of absorbed energy (27 or 28 J, 41 J, 68 
J) or lateral expansion (0.89 mm) [8] are used. Moreover, material specifications might 
dictate maximum acceptable values for temperatures corresponding to predetermined 
values of KV, LE, or SFA. 
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 In the NIST software package, LS and US values can be either “fixed” or “variable” in 
the analysis. A “fixed” shelf analysis is performed when the user specifies the values of US 
and/or LS based on experimental data; shelf values are not obtained via nonlinear regression. 
A “variable” shelf analysis is performed when the values of US and/or LS are obtained by  
nonlinear regression. 

 
3.1. Mathematical Models Selected to Fit Charpy Test Results 
 
Undoubtedly, the most popular regression model used for fitting Charpy or toughness data is 
the Hyperbolic Tangent (HT) model, originally proposed by Oldfield in the 1970s [9,10]. The 
HT equation is an example of a symmetric model, as the regression curve is perfectly 
symmetric with respect to the flexural point that corresponds to X = DBTT and Y = (LS+US)/2. 
 However, some Charpy datasets exhibit a different shape in the two “knee” regions that 
connect the DBTT region with the lower and upper shelf (see Fig. 1). These two regions are 
commonly referred to as “lower transition” (T < DBTT)  and “upper transition” (T > DBTT). 
In order to accommodate different curve shapes in these two regions, an additional coefficient 
is introduced in some regression models, and these models are therefore labeled “asymmetric”. 
 Starting in 2020, NIST staff from the Advanced Chemicals and Materials and Statistical 
Engineering Divisions reviewed available/published regression models for Charpy and/or 
toughness data, including symmetric and asymmetric models. Based on this literature review, 
five selected models (two symmetric and three asymmetric) are implemented in the NIST 
software package that is freely available to the scientific community. The five selected models 
are described in sections 3.1.1 – 3.1.5. 
 
3.1.1. Hyperbolic Tangent (HT – Symmetric) 
The original model proposed by Oldfield [9,10] has the form: 

𝑌𝑌 = 𝐴𝐴 + 𝐵𝐵 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝑇𝑇−𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇
𝐶𝐶

� ,    (1) 

where Y is the dependent variable and T is temperature (independent variable).  
 In its most general form, the model has four parameters (A, B, C, DBTT) that are 
determined by least-squares fitting. The A and B parameters, however, can be rewritten in terms 
of lower shelf (LS) and upper shelf (US) values as: 

𝑌𝑌 = LS+US
2

+ US−LS
2

∙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝑇𝑇−DBTT
C

� .   (2) 

 Therefore, if both LS and US are “fixed” (as we recommend in this report), only two 
parameters, C and DBTT, are left to estimate, which can be helpful in case of sparse datasets 
(8 data points or less). An example of HT transition curve is shown in Fig. 1. The two 
remaining parameters have the following physical interpretation: 

• C (°C) corresponds to the half-width of the transition region, and 
• DBTT (°C) is the Ductile-to-Brittle Transition Temperature defined above. It 

corresponds to the abscissa of the point Y = (LS+US)/2.  
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3.1.2. Asymmetric Hyperbolic Tangent (AHT – Asymmetric) 
The model [11] is derived from the HT model and includes the parameter, D, whose value 
determines how much the shape of the regression curve differs between lower and upper 
transition regions. The AHT model has the form: 

𝑌𝑌 = 𝐴𝐴 + 𝐵𝐵 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝑇𝑇−𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇
𝐶𝐶+𝐷𝐷∙𝑇𝑇

� ,    (3) 

or alternatively, similar to Eq.(2) above: 

𝑌𝑌 = LS+US
2

+ US−LS
2

∙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝑇𝑇−DBTT
C+D∙𝑇𝑇

� .   (4) 

 The additional parameter D quantifies the asymmetry of the regression curve. If D = 0, 
the curve becomes symmetrical and coincides with HT; if D < 0, the curvature in the lower 
transition region is larger than in the upper transition region; the opposite occurs when D > 0.  
 The curve is not defined when T = –C/D, which may occur in the upper shelf when D 
< 0, or in the lower shelf if D > 0. If D < 0, Y = LS for T > –C/D; if D > 0, Y = US for T <  
–C/D. 
 An example of AHT transition curve (with D < 0) is given in Fig. 3. 

 
Fig. 3. Example of AHT transition curve. 
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3.1.3. Burr Model (BUR – Asymmetric) 
In probability theory, statistics, and econometrics, the Burr Type XII distribution or simply the 
Burr distribution [12] is a continuous probability distribution for a non-negative random 
variable. It is most commonly used to model household income. In 1996, Windle [13] proposed 
modeling Charpy data with the Burr distribution. Cao [14] found this approach to provide a 
better fit than HT for both sparse and large datasets, as long as the data are well distributed 
across the transition region. 
 The BUR model is: 
 

𝑌𝑌 = LS + (US − LS)�1 + 𝑒𝑒−𝑘𝑘(𝑇𝑇−𝑇𝑇0)�
−𝑚𝑚

,   (5) 
 

where the last term, �1 + 𝑒𝑒−𝑘𝑘(𝑇𝑇−𝑇𝑇0)�
−𝑚𝑚

, is the actual Burr distribution. Besides LS and US, the 
model parameters that need to be determined through the regression process are: 

• k, the scale parameter of the distribution (k ≥ 0); 
• m, the shape parameter of the distribution (m ≥ 0); and 
• T0 (°C), a location parameter that determines the position of the curve along the 

temperature axis and does not generally correspond to DBTT. 
The parameters k and m do not have a straightforward physical meaning; however, the 

following can be stated: 

• as k and/or m increase, the curvature of the lower transition region and the slope of the 
transition region increase; 

• as k and/or m decrease, the curvature of the lower transition region and the slope of the 
transition region decrease. 

Further details about these parameters are provided in section 4.1.1.  An example of BUR 
transition curve is given in Fig. 4. 

 
Fig. 4. Example of BURR transition curve. 
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3.1.4. Arctangent Model (ACT – Symmetric) 

Kohout [15] proposed a relatively simple regression model based on the arctangent 
trigonometric function as an alternative to the widely popular HT model, with the form: 

𝑌𝑌 = LS+US
2

+ US−LS
2

∙ 𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 � 𝜋𝜋
2C

(𝑇𝑇 − DBTT)�,   (6) 

where the parameters C and DBTT have the same meaning as for the HT model. 
 The most significant difference between the HT and ACT models is that the curvature 
of the latter transition curve in the lower and upper transition regions is much larger than for 
the HT model. Moreover, lower and upper shelves can often exhibit gently 
decreasing/increasing trends, as can be seen in the example of ACT transition curve given in 
Fig. 5. 

 
Fig. 5. Example of ACT transition curve. 

 
 

3.1.5. Asymmetric Kohout Model (KHT – Asymmetrical) 
Another regression model evaluated by Kohout in his 2012 Internal Report [15] was an 
asymmetrical model having the following “two-part” form: 

𝑌𝑌 = LS +  US−LS
1+𝑝𝑝

∙ 𝑒𝑒
1+𝑝𝑝
2𝐶𝐶

(𝑇𝑇−𝑇𝑇0)  for T ≤ T0 , and  (7) 
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𝑌𝑌 = LS −  𝑝𝑝 ∙ US−LS
1+𝑝𝑝

∙ 𝑒𝑒−
1+𝑝𝑝
2𝐶𝐶

(𝑇𝑇−𝑇𝑇0) for T > T0 .   (8) 

 Here, p is the parameter of asymmetry and corresponds to the ratio between the 
curvatures of the regression curve in the upper and lower transition region (namely, if p > 1, 
the curvature in the lower transition region is larger than in the upper transition region).  
 As in the case of the BUR model, T0 is a location parameter for the curve on the x axis, 
and it generally does not correspond to the value of DBTT. C, on the other hand, has the same 
meaning as with the HT, AHT, and ACT models. 
 In spite of the “two-part” form of the KHT model, there is no discontinuity for T = T0, 
as Eqs. (7) and (8) coincide in that point. An example of a KHT transition curve is given in 
Fig. 6. 

 
Fig. 6. Example of KHT transition curve. 

 
3.1.6. Other Regression Models Not Selected 
The literature review revealed several other less common regression models. In some cases, 
exponential-type curves are used to fit Charpy impact data in the transition region [16,17], but 
those are obviously unable to represent data in the lower and upper shelves. Other authors use 
error functions to describe Charpy data versus temperature [18], but data processing is 
overwhelmingly complex. 
 A popular commercial software uses a Boltzmann function, which is a simplified 
version of the Burr function. Other researchers [19,20] use Weibull distributions for transition 
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curve fitting. Another published approach [19] consists of dividing the regression interval into 
three different sections where the LS and US are provided by horizontal lines obtained from 
weight calculations, while regression in the transition region is based on an Avrami equation. 
 None of these models are selected for further analysis, as each one of them is deemed 
less user-friendly and/or more computationally intensive than the five approaches that are 
investigated in this report. 
 

 NIST Software Package 

This section is dedicated to demonstrating the functionality of the NIST software package by 
analyzing example data. Instructions for using the NIST software package are also provided. 
The statistical methods included in the software package are briefly described and results are 
presented and interpreted. 
 In section 4.1, dataset #1 is used to demonstrate the use of the Excel spreadsheet to 
obtain initial values for model parameters. Dataset #1 is a simulated dataset of absorbed energy 
values, generated using the HT model with the following model parameters: LS = 0 J, US = 
230 J, C = 50 °C, and DBTT = 0 °C. Test temperatures range between -200 °C and 200 °C.  
 Dataset #2, analyzed in sections 4.2 and 4.3, is a well-behaved set of Charpy test results 
from API X52, a vintage pipeline steel manufactured in the 1960s. The dataset comprises 
values of absorbed energy, lateral expansion, and shear fracture appearance; however, only 
absorbed energy will be examined.   
 All datasets are provided in the NIST software package. Datasets #1 and #2, displayed 
in Fig. 7, both have relatively gentle slopes between the lower and upper shelves. 

 
Fig. 7. Left:  Absorbed energy for simulated dataset #1.  Right:  Absorbed energy for 

experimental dataset #2. 
 

4.1. Excel Spreadsheet for Initial Values 
Model parameters determined by nonlinear regression of Charpy test results are extremely 
sensitive to their initial values. In some cases, completely meaningless results can be obtained 
when the initial values of the model parameters are inadequate, as various local minima of the 
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root-mean-square error (RMSE) are often encountered during the regression process. 
Providing good initial values is therefore essential to ensure that optimization algorithms 
converge to a global (rather than local) minimum. However, even if adequate initial values are 
specified, there is no guarantee that any model will fit the data and provide acceptable results: 
in this case, the specific model “does not converge”. (See Appendix A.1 for information 
regarding convergence.) 

 To facilitate the determination of reasonable initial values for the model parameters, 
the NIST software package includes a macro-enabled Excel spreadsheet called “Establishment 
of initial values for Charpy regressions.xlsm”. The spreadsheet only considers the three 
asymmetric fitting models, i.e., AHT, BUR, and KHT. The two symmetric models (HT and 
ACT) are simpler, and it should not be hard, even for a relatively inexperienced user, to choose 
good initial values for DBTT (transition temperature) and C (transition region half-width)2. 
The use of the Excel spreadsheet for initial values is illustrated using dataset #1.   

 
4.1.1. Instruction for Use 
The spreadsheet has three worksheets, one for each asymmetric model (AHT, BUR, KHT). 
The worksheet for the AHT model is where the user enters the experimental values of test 
temperature and Charpy result (KV, LE, or SFA) in the two columns with yellow background3 
(Fig. 8). The spreadsheet can accommodate up to 32 experimental data points. These input 
data are automatically copied into the remaining two worksheets (BUR and KHT). 
 In the central portion of the screen, the equation of the specific model is provided, with 
the Y(T) vs. T plot below. The latter shows the experimental results, the model curve drawn 
using the current parameter values, and the position of the ductile-to-brittle transition 
temperature (indicated by a dashed line). The right side of the screen contains the values of 
temperature and Y(T) for the fitted curve. 
 

 
Fig. 8. Worksheet for the AHT model (upper part). 

 
2 Moreover, the initial values of C and DBTT obtained for the AHT model can also be used as initial values for both HT and ACT. 
3 In this spreadsheet, all cells that require input from the user are highlighted in yellow. 



 
 

12 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2158 

 

 In the lower part of the worksheet (Fig. 9), the user must input lower shelf (LS) and 
upper shelf (US) values. These can be specific numbers, or the averages of specific test results. 
On the right side, the current value of RMSE is displayed in red. Note that, for the BUR and 
KHT models, the value of DBTT (which does not correspond to a specific model parameter) 
is also displayed above RMSE. 
 Below the input data, the initial values of the model parameters are displayed. The user 
can input values directly in the yellow cells or click on the buttons on the right side in order to 
quickly increase/decrease/multiply/divide etc. the parameters.  

Some parameters are subject to constraints, namely: C, k, m, and p cannot be negative 
or zero. If the user tries to input a value ≤ 0, an error message appears, and the entry is rejected. 
Clicking the button “RESET” on the right causes parameters to assume generic default values 
(AHT: C = 25 °C, D = 0.0001, DBTT = 0 °C; BUR: k = 1, T0 = 0 °C, m = 0.1; KHT: C = 10 
°C, T0 = 0 °C, p = 1). 

 
Fig. 9. Worksheet for the AHT model (lower part). 

When trying different initial values of the model parameters, the user can check the 
acceptability of the corresponding regression curve in the plot and in terms of RMSE value 
(lower is better). Once initial values appear reasonable for the dataset under consideration, 
iterations can stop, and the initial values can be used for the actual fitting process. 

This spreadsheet can also help clarify the practical meaning of some model parameters 
for two of the three asymmetric models (BUR and KHT), as shown in the examples below. 

BUR: parameters k and m (Fig. 10 and Fig. 11) 
Both k and m affect the slope of the curve in the transition region (the higher k and/or m, the 
steeper the transition); lower values of k and/or m also enhance the asymmetry of the curve. 
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Fig. 10. Effect of k parameter on the BUR regression curve (m = 0.1). 

 
Fig. 11. Effect of m parameter on the BUR regression curve (k = 1). 

KHT: parameter p (Fig. 12) 
p = 1 corresponds to a symmetric transition curve. When p < 1, the curvature in the lower 
transition region is larger than in the upper transition region, which exhibits a “sharp knee”. 
When p > 1, the situation is reversed (sharp knee in the lower transition region, smooth curve 
in the upper transition region). 

 
Fig. 12. Effect of p parameter on the KHT regression curve. 

 The spreadsheet is used to establish initial values for datasets #1 and #2 as well as for  
dataset #3 analyzed in section 5.3. The initial values are summarized in Table 1, along with 
LS and US values used in the analyses. 
  

k = 0.1 k = 1 k = 5 

m = 0.01 m = 0.1 m = 1 

p = 0.0001 p = 1 p = 10 
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Table 1. Values of LS, US, and initial values of model parameters used in the analyses 
performed in this document. 

 Dataset LS  US  Model 
Parameters 

C D T0  k m p 

#1  

  
  

0 J 
  
  

  
  

230 J 
  
  

HT 15   25       
AHT 15 0.0001 25       
BUR     35 0.5 0.05   
ACT 15   25       
KHT 35   0     2 

  
  

#2 
  
  

  
  

2 J 
  
  

  
  

72.60 J 
  
  

HT 50   10       
AHT 30 0.0001 10       
BUR     45 0.5 0.05   
ACT 50   10       
KHT 20   5     1 

  
  

#3 
  
  

  
  

2 J 
  
  

  
  

441.87 J 
  
  

HT 30   -80       
AHT 30 0.0001 -80       
BUR     -70 2 0.05   
ACT 30   -80       
KHT 5   -80     2 

  
4.2  The Shiny App 
The Shiny App is currently hosted at https://dnewt.shinyapps.io/charpyapp/. 

 The purpose of the Shiny App is to fit nonlinear models to temperature transition data 
for Charpy impact specimens, with the aim of generating parameter estimates and their 
standard errors, plots of data with fitted curves, diagnostic plots, and some statistics for model 
selection. In addition, the Shiny App can provide characteristic temperature estimates and their 
associated uncertainties for selected values of KV, LE, or SFA. Details of the computational 
and statistical aspects of the Shiny App are discussed in Appendix A. In this section, we 
describe the use of the Shiny App and present the dataset #2 analysis.  
 In the Shiny App, each model can have either fixed or variable (non-fixed) lower and/or 
upper shelves, unlike the Excel spreadsheet for a basic analysis that only accommodates the 
fixed-shelves configuration (recommended option). Mixed options, such as fixed lower shelf 
and variable upper shelf, are also possible. 
 For Charpy test results, we recommend using the following approach to estimate the 
values of LS and/or US used in an analysis with one or more “fixed” shelves: 

• Lower shelf: should be set to a predetermined value, based on typical behavior for the 
material tested (for example:  for KV, LS = 2 J, and for LE, LS = 0 mm are good choices 
for steels). Alternatively, and if enough data points are available in the lower shelf, LS 
can be set equal to the average of KV or LE for specimens with SFA ≤ 5 % [21,22] or 
with SFA = 0 %. 

https://dnewt.shinyapps.io/charpyapp/
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• Upper shelf: should be set to the average value of KV or LE for the specimens that 
exhibited SFA ≥ 95 % [21,22]. Other threshold SFA values that have been used are 
90 % and 100 %.  

If SFA values are not available to define the shelf regions, the test data to be averaged for 
determining LS and/or US levels are generally selected from a visual analysis of the dataset, 
based on engineering judgement. Fixing one or more shelves reduces the number of model 
parameters to be determined by the regression process, which can be helpful in case of sparse 
datasets (8 data points or less). 
While shelves can be “fixed” in the regression analysis for KV and LE, the user-specified 
values of LS and US are estimated with some uncertainty; we do not have perfect knowledge 
of the values of the fixed shelves. Thus, the user must input uncertainties associated with each 
fixed shelf. The uncertainties of fixed shelves are discussed in Appendix A.5. 

 Once data are uploaded to the Shiny App, models are selected, and shelves are specified 
as either “Fixed” or “Variable”, the user must input initial values for each model parameter.  
The default initial values provided in the Shiny App for model parameters are based on 
engineering judgment, so these values may need to be adjusted to accommodate the user’s data 
set. The initial values for dataset #2 are listed in Table 1 for all models. 

 The user-input section of the Shiny App is on the left side of the screen, while the 
output (organized in tabs labelled “Regression Results” and “Diagnostic Plots”) is displayed 
on the right (Fig. 13). 

 
Fig. 13. Screenshot of the top right portion of the Shiny App. 

 The following information, from top to bottom, must be entered by the user: 
(1) Data ID: information about the dataset to be analyzed. 
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(2) Upload csv file: experimental data points, in the form of a csv (comma separated values) 
file containing temperature and Y values organized in separate columns, with simple 
headings (“temperature” and “Y”). A template file (template_file.csv) can be downloaded 
by clicking the button just below the file selection field. (The template file contains LE 
responses for dataset #2.) Some of the input boxes described below do not appear until 
the data has been uploaded.  

(3) Confidence Level for Plots: the user can drag the slider to select the desired confidence 
level for the bounds of the transition curves. It is recommended to keep the default 
confidence level (95 %). 

(4) Response Variable to Be Fit: possible choices are KV (J), LE (mm), SFA (%), and 
“Other” (for example: fracture toughness). 

(5) Select Regression Model: all five models may be selected, or just a subset of them. 
(6) Lower Shelf: available options are “Fixed” (default) and “Variable”.  

a. If “Fixed” is selected, the user is asked to enter the fixed value of LS. For KV and 
LE, the default LS value is the minimum value of the response variable.  

b. For the SFA response, only the “Fixed” option is available and LS = 0; LS cannot 
be changed by the user.  

c. If the “Variable” option is selected, the initial value of the LS is input here. 
(7) Upper Shelf: available options are “Fixed” (default) and “Variable”.  

a. If “Fixed” is selected, the user is asked to enter the fixed value for the US. For KV 
and LE, the default US value is the maximum value of the response variable.   

b. For the SFA response, only the “Fixed” option is available and US = 100; US 
cannot be changed by the user.  

c. If the “Variable” option is selected, the initial value of the US is input here. 
(8) Lower Shelf Uncertainty:  input box only appears if the “Fixed” shelf option is selected. 

(See Appendix A.5 for details.) 
a. For KV and LE responses, the user must specify the uncertainty of the LS value. 

The default values of uncertainty for KV and LE are 0.3 J and 0.03 mm, 
respectively, based on engineering judgement. These values may not be appropriate 
for all data. 

b. For “Other” responses, the user must specify the uncertainty of the LS; there is no 
default value provided for “Other” responses. 

c. No LS uncertainty is required for the SFA response since the LS is assumed to be 
known without error.   

(9) Upper Shelf Uncertainty:  input box only appears if the “Fixed” shelf option is selected. 
(See Appendix A.5 for details.) 

a. For KV and LE responses, the user is asked to enter the uncertainty of the US. The 
default value, 0.05∙US (5 % of the US value) for both KV and LE responses, may 
not be appropriate for all data. 

b. For “Other” Responses, the user must specify the uncertainty of the US; there is no 
default value for “Other” responses. 

c. No US uncertainty is required for the SFA response since the US is assumed to be 
known without error. 

(10) Number of Additional Characteristic Temperatures to be Estimated: the user can choose 
up to 3 temperatures. If 1, 2, or 3 are selected from the drop-down menu, the user must 
enter the corresponding response value(s), e.g., 28 J, 41 J, etc. 
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(11) Initial Values for Hyperbolic Tangent and Arc Tangent Models (only if HT, AHT, and/or 
ACT models are selected): the user must enter initial values of the model parameters C, 
D, and DBTT. Default values are: 25 °C, 0.0001 1/°C, and the median value of test 
temperature in the dataset. 

(12) Initial Values for Burr Model (only if the BUR model is selected): the user must enter 
initial values of the model parameters k, m, and T0. Default values are: 1, 0.1, and the 
median value of test temperature in the dataset. 

(13) Initial Values for Kohout Model (only if the KHT model is selected): the user must enter 
initial values of the model parameters C, p, and T0. Default values are: 25 °C, 1, and the 
median value of test temperature in the dataset. 

For the dataset #2 KV data analyzed in this section, all five models are fit with the 
“Fixed” shelf option for both shelves. The value of LS is set to 2 J, while the US is estimated 
using the recommended approach, yielding 72.60 J.  Uncertainties of LS and US are set to the 
default values of 0.3 J and 3.63 J (5 % of US), respectively. Initial values for all parameters 
are listed in Table 1. 

Clicking “Go” launches calculations. After a few seconds, the program output appears 
on the right side of the screen. The results obtained for dataset #2 (absorbed energy) are 
presented in Fig. 14, Fig. 15, and Fig. 16.  Numerical and graphical results are presented under 
three separate tabs: 
(a) Regression Results Tab (Fig. 14, Fig. 15, and Fig. 16): from top to bottom,  

• Experimental data points and transition curves (the user can choose which curves 
are actually displayed by checking or unchecking the boxes under “Fits to show”); 
curves can be shown with or without confidence bounds by selecting “Yes” or “No” 
from a drop-down menu. 

• Model selection statistics for each selected model (RMSE, AIC, BIC), and whether 
convergence is achieved. The models are listed in order of decreasing RMSE by 
default. Results can be organized in terms of the increasing or decreasing order of 
other model selection statistics by clicking the arrows next to that model selection 
statistic.  

• Table of regression parameter estimates for each selected model, with standard 
errors (S.E.), lower bounds of the confidence intervals (Lower CI), and upper 
bounds of the confidence intervals (Upper CI). 

• Table of Ductile-to-Brittle Transition Temperature (DBTT) values, with standard 
errors (S.E.), lower bounds of the confidence intervals (Lower CI), and upper 
bounds of the confidence intervals (Upper CI). 

• Table of additional characteristic temperatures, with standard errors (S.E.), lower 
bounds of the confidence intervals (Lower CI), and upper bounds of the confidence 
intervals (Upper CI). 
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Fig. 14. Shiny App output: “Regression Results” tab (top section). 
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Fig. 15. Shiny App output: “Regression Results” tab (middle section). 
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Fig. 16. Shiny App output: “Regression Results” tab (bottom section). 

 
Unlike linear least-squares regression, nonlinear least-squares regression is 

implemented using a numerical optimization algorithm. Thus, model parameters do not always 
converge to a globally optimal solution, and it’s possible that the algorithm won’t be able to 
converge at all. (See Appendix A.1 for a discussion of model convergence.) Often, 
convergence is not achieved because of “bad” initial values. The spreadsheet described in 
section 4.1 provides a tool for obtaining initial values for AHT, BUR, and KHT models. 
Results will not be printed and curves will not be plotted for models that do not converge to 
the optimal solution.  
 Three model selection statistics, RMSE, AIC (Akaike Information Criterion) [23], and 
BIC (Bayesian Information Criterion) [24] are provided for each model. The RMSE, AIC, and 
BIC statistics are relative measures, so there is no absolute threshold indicating whether the 
model provides a good fit to the data. These statistics simply allow models to be compared: 
the model with the smallest values of RMSE, AIC, and/or BIC is preferred.  See Appendix A.2 
for a discussion regarding the model selection statistics used in the Shiny App. 
 The model selection statistics (RMSE, AIC, and BIC) for dataset #2 are listed in Fig. 
14 under the heading “Model Selection Statistics”. The models are listed in increasing order 
of RMSE, which means the best-fitting model according to RMSE is the HT model. The HT 
model also has the smallest AIC and BIC values.  

The three model selection statistics often agree on which model is the best, but 
occasionally there can be some discrepancies since they are designed to capture different 
aspects of the models. For example, BIC more strongly favors parsimony and penalizes models 
based on the number of parameters. When discrepancies occur, it is up to the user to select the 
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“best” model based on these statistics and other sources of information, such as the diagnostic 
plots.   

For dataset #2, estimated model parameters for each model selected are listed in Fig. 
14 under the heading “Parameter Estimates”. Fig. 15 (“DBTT Table”) also displays DBTT 
estimates for all models selected. (Appendix A.8 provides information regarding the 
computation of DBTT for the BUR and KHT models. For all other models, DBTT corresponds 
to one of the model parameters and does not need to be separately estimated.) 

Characteristic temperature estimates corresponding to 28 J and 41 J are listed in Fig. 
16 (“Additional Characteristic Temperatures”).4 The calculation of characteristic temperatures 
and their uncertainties is discussed in Appendix A.8.  

(b) Diagnostic Plots Tab (Fig. 17): this tab displays diagnostic plots for each selected model. 
Diagnostic plots include residual plots, a lag plot of residuals, and a normal Q-Q plot of 
residuals. The  results of the Shapiro-Wilk test for the normality of residuals is also 
provided.  

Diagnostic plots should be carefully examined for all models considered to verify that 
regression assumptions are not violated and to ensure model adequacy. Plots should indicate 
that the residuals are independent and identically distributed as a normal distribution with a 
mean of zero and variance 𝜎𝜎2. For the “Residual Plot” and “Standardized Residuals” plots, the 
residuals should vary randomly about zero and should not have a discernible pattern. In the 
“Lag Plot”, make sure there is no evidence of correlation. If the residuals are normally 
distributed, as desired, the data in the Q-Q plot should roughly fall on the reference line that 
indicates normality. Additionally, the results of the Shapiro-Wilk test for the normality of 
residuals [25] (test statistic W and probability p) are provided below the Normal Q-Q plot. If p 
is smaller than the level of significance α = 0.05, the residuals cannot be considered normally 
distributed. A discussion of the diagnostic plots used in the Shiny App is included in Appendix 
A.7. 

Fig. 17 displays diagnostic plots for the top-ranked HT model. The diagnostic plots for 
dataset #2 do not indicate gross assumption violations or model inadequacy.    

 

 
4 All these characteristic temperatures are generally of interest to the nuclear community [5]. 
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Fig. 17. Shiny App output: “Diagnostic Plots” tab for the HT model. 

 
After examining model selection statistics and diagnostic plots, the well-established 

HT model is selected to represent the data.  Fig. 18 shows the fitted curve and 95 % confidence 
bounds for the HT model fit to dataset #2. Confidence bounds may not be symmetric about the 
fitted line. Confidence bounds are discussed in Appendix A.6.   
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Fig. 18. Transition curve for HT model with 95 % confidence bounds for Dataset #2 

(absorbed energy). 
 

(c) Download Tab: after clicking the button “Download All Results”, a PDF file is generated 
containing all tables and plots from the tabs “Regression Results” and “Diagnostic Plots”. 
The file can be downloaded on the user’s computer and printed. This tab does not appear 
on the Shiny App until the data is uploaded.  

 
4.3  Excel Spreadsheet for Basic Analysis 
For a user who is only interested in fitting Charpy data with different models and picking the 
best-fitting model, another macro-enabled Excel spreadsheet (“Charpy data regression.xslm”) 
is provided for a basic-level analysis. The spreadsheet can also provide characteristic 
temperatures for any value of the independent variable (KV, LE, or SFA), and offers a 
graphical comparison of the different regression curves. Standard errors of parameter estimates 
and confidence bounds are not available in this spreadsheet. The results of the Shiny App and 
the outcome of the Excel spreadsheet are very close and often identical, as explained in section 
6. 
 Note that all worksheets are protected, so that users may only edit cells with yellow 
background, which correspond to input cells, and charts. Sheets can however be easily 
unprotected without having to enter a password (Review → Unprotect Sheet). 
 
4.3.1.  Sheet “Input Data” (Fig. 19) 

Charpy test results (T, KV, LE, SFA) are entered in cells A3:D32. The spreadsheet is 
currently able to accommodate data for a maximum of 30 tests. The user must select the 
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variable (KV, LE, or SFA) to fit by means of a drop-down menu located on the right. Fig. 19 
displays the data input for dataset #2. 

If SFA data are available, column D indicates which tests correspond to upper shelf 
behavior (SFA ≥ 95 %), and the corresponding average value is displayed in cell B35. The 
lower shelf default value in cell B36 is 2 J for KV, 0 mm for LE, or 0 % for SFA. However, 
the user can also enter other values of US and LS in cells F35 and F36. If these cells are left 
empty, the program will use the values in B35:B36 for the regression. 

This sheet also displays a button “SAVE FILE AS…”, which allows the user to save the 
spreadsheet under a name of their choice in their preferred location.  

4.3.2 Sheets “HT” (Fig. 20), “AHT”, “BUR”, “ACT”, and “KHT” 
Values of temperature and selected Y variable (KV, LE, or SFA) are automatically copied in 
columns A and B (rows 3 to 32).  The Y variable from dataset #2 selected for analysis in Fig. 
20 is KV. Column C shows the corresponding values of the regression (transition) curve (𝑌𝑌�), 
and column D the calculated residuals Y – 𝑌𝑌� . 
 In the case of the BUR model, values of the function 

𝜉𝜉𝑖𝑖 = �1 + 𝑒𝑒−𝑘𝑘(𝑇𝑇𝑖𝑖−𝑇𝑇0)�
−𝑚𝑚

    (9) 
are displayed in column C. For the KHT model, columns C and D contain values of the 
functions shown in Eqs. (10) and (11) for Ti ≤ T0 and Ti > T0, respectively. 
 The chart on the right displays experimental data points, transition curve, and DBTT. 
Charts can always be modified/reformatted, but two buttons are provided to the user for quickly 
formatting the Y axis (“Auto Y scale”: bounds and units are set automatically; “SFA Y scale”: 
maximum = 100, major unit = 25, minor unit = 5). 
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Fig. 19. Sheet “Input Data”. 

 

Fig. 20. Sheet “HT”. 
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  Temperatures and Y values (response variables) for the regression curve are given on 
the right side (columns T and U). The user can input the initial temperature value in cell T2. 
Values of the dependent variable Y are calculated every 10 °C. 
 In the bottom part of the sheet, the user enters initial values of the model parameters in 
cells B35-B36 (symmetric models) or B35-B37 (asymmetric models). Clicking the button 
“FIT’ launches the Solver tool. NOTE: particularly for asymmetric models (AHT, BUR, and 
KHT), it is recommended to click “FIT” at least three times until the value of RMSE (B41) 
becomes stable and does not change appreciably. 

 If characteristic temperatures are required (max 2), the user must enter the 
corresponding Y values (KV, LE, or SFA) in cells F41-F42. Calculated temperatures are 
displayed in cells G41-G42. If no characteristic temperatures are required, the input cells F41-
F42 can just be left empty. 
 Finally, the very bottom of the sheet displays values of the AIC and BIC model 
selection statistics.   

 For the BUR and KHT models, the value of DBTT, which is not one of the model 
parameters, is provided in cell E35. 

4.3.3 Sheet “Summary of Results” 
The results of the regression analyses (with the exception of characteristic temperatures) are 
collected in this sheet and can be printed on the default system printer by clicking the button 
“PRINT RESULTS”. The following outputs are displayed/printed: 

• DBTT and C values for all the models.  
• Model selection statistics (RMSE, AIC, and BIC). 
• Estimated model parameters for all the models. 
• Comparison chart5 for the different transition curves, including experimental data points. 

4.3.4 Sheet “Characteristic Temperatures” 
If any characteristic temperatures have been calculated, they are displayed in this sheet and can 
be printed on the default system printer by clicking the button “PRINT”.  

4.3.5 Sheet “Comparison Fitting Curves” 
As previously mentioned, the chart that compares transition curves for the different models is 
also reproduced as an individual sheet at the end of the spreadsheet. 
 

5 Shiny App Examples 

5.1  Dataset #1:  Simulated 
We analyze dataset #1 to illustrate the validity of the Shiny App. Because the data is simulated 
from an HT model with no noise,  HT and AHT models are expected to reproduce the original 

 
5 This chart is also reproduced as a separate sheet (Comparison Fitting Curves) at the end of the worksheet. 
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parameters with very small standard errors.  Experimental data and estimated transition curves 
for the different models with fixed shelves are compared in Fig. 21.  

 
 

 
 

Fig. 21. Simulated data and estimated transition curves for dataset #1 (KV).  Model selection 
statistics are also shown. 

 The model selection statistics (RMSE, AIC, and BIC) for the different models are listed 
at the bottom of Fig. 21. The HT, AHT, and BUR model yielded RMSE ≈ 0 J, indicating a 
nearly perfect fit to the experimental data points. This is not surprising since the underlying 
model for the simulated data is HT. The remaining two models, KHT and ACT, yielded non-
zero RMSE values, with ACT providing the worst fit. All models correctly identified DBTT = 
0 °C to within 0.0005 °C , while more scatter (between 2 °C and 7 °C) is observed for T28J and 
T41J, with the ACT model yielding the most discordant values. 
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5.2 Dataset #2: “Variable” Shelves 

To illustrate the use of the “variable shelves” option, we fit the HT model to dataset #2 
absorbed energy values. Fig. 22 shows the fitted curve and 95 % confidence bounds.  

 
Fig. 22. Transition curve for HT model with confidence band for dataset #2 (absorbed energy).  

The most noticeable difference between the “Fixed” and “Variable” shelf options is seen in the 
confidence bounds in the shelf areas. The confidence bounds associated with fixed shelves 
(Fig. 13)  reflect the specified shelf uncertainties of 0.3 J and 3.63 J, while the bounds for the 
variable shelves (Fig. 22) are narrower and reflect the standard errors of the LS and US 
parameter estimates. Numerical results for the fixed and variable shelves options are shown in 
Table 2. 
 
Table 2 - Selected numerical results for the HT model fit to the dataset #2 KV response for 
fixed shelf and variable shelf analyses. Standard errors of parameter estimates are shown in 

parentheses. 

Statistic Fixed Shelves Variable Shelves 
RMSE (J) 2.768 2.493 

LS (J) 2 (0.3) 1.8561 (1.3949) 
US (J) 72.60 (3.63) 72.6228 (1.2736) 
C (˚C) 31.7780 (3.0261) 30.2865 (3.3029) 

DBBT (˚C) 13.0196 (1.3775) 11.2039 (1.5337) 
T28J (˚C) 3.14 (2.75) 3.11 (2.74) 
T41J (˚C) 14.44 (2.87) 14.44 (2.51) 



 
 

29 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2158 

 

5.3 Dataset #3:  Outliers 
Dataset #3 consists of absorbed energy data from a X70 pipeline steel. Test results are 
relatively well behaved.  However, data points between -100 °C and -80 °C are significantly 
scattered and the first one (or the remaining two) could be regarded as an outlier. This situation 
generally poses a significant challenge for establishing transition curves. The results from the 
Shiny App are compared in Fig. 23. All models have fixed shelves. 

 
Fig. 23. Experimental data and estimated transition curves for dataset #3 (KV). 

 As Fig. 23 shows, two models (HT and AHT) exhibit a gentle slope in transition region, 
as opposed to the ACT and KHT models, which yield a very steep slope. The BUR model does 
not converge. The model selection statistics (RMSE, AIC, and BIC) for the different models 
are shown in Fig. 24 along with estimated model parameters. The best-fitting model, according 
to all fit metrics, is ACT.  
 Estimated DBTTKV values and characteristic temperatures are listed in Fig. 25 As could 
be expected from the dichotomy of transition curves (shallow versus steep) seen in Fig. 23, the 
range of characteristic temperatures is huge (more than 100 °C for T28J), although in the case 
of DBTTKV the range is less than 15 °C. 
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Fig. 24. Model selection statistics and parameter estimates for models fit to dataset #3. 
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Fig. 25. DBTT table and additional characteristic temperatures for dataset #3. 

 
 For dataset #3, standard errors calculated by the Shiny App for the C and DBTT 
parameters of the HT model (Fig. 24) are 31,782,509 °C and 21,441,813 °C, respectively!  The 
extremely large standard errors indicate that the HT model does not provide an adequate fit to 
the data probably due to the outlying data point at -100 ˚C that aligns with the upper shelf 
rather than the lower shelf. The nonlinear regression procedure cannot be expected to produce 
good results when the data are not well behaved.  Thus, both the model selection statistics and 
the standard errors must be taken into account when selecting the most suitable regression 
model.  In addition, model adequacy and regression assumptions need to be checked based on 
the diagnostic plots. The diagnostic plots in Fig. 26 for the ACT model clearly show the 
outlying point and indicate that assumptions are violated. Perhaps more data points are needed 
to clarify the structure of the data, or the outlier should be removed before fitting. 
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Fig. 26. Diagnostic plots for ACT model fit to dataset #3. 

 
6 Comparison of Output from Excel Spreadsheet and Shiny App 

Table 3 compares estimated model parameters, RMSE values, and characteristic temperatures 
provided by the Excel spreadsheet and the Shiny App for all three KV datasets (real and 
simulated) and all investigated models with fixed shelves. The Excel spreadsheet and the Shiny 
App use different fitting algorithms for estimating model parameters, so the two methods might 
not produce the same results depending on the data and initial parameter values. 
 In Table 3, values of DBTT and characteristic temperatures are color-coded for quick 
assessment of the consistency between the two programs: 
(a) Values coinciding within ±1 °C are highlighted in green, and if they are equal to within 

±0.01 °C, cells have a double green border. 
(b) When differences are between 1 °C and 5 °C, cells are highlighted in yellow. 
(c) For values differing by more than 5 °C, the cell background is pink, and the font is red. 
For datasets #1 and #2, the Excel spreadsheet and Shiny App produce nearly identical 
estimates. For dataset #3, in which an outlier is present in the data, large temperature 
differences are observed for the AHT and KHT models. The AHT model appears to be the 
most sensitive to discrepancies between Excel and the Shiny App. 
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This comparison demonstrates the equivalence of using either software, if the user only 
requires a basic level of analysis. 

  
Table 3 - Comparison between Excel spreadsheet and Shiny App. 

 
 

 As discussed in Appendix A.1, non-convergence when fitting a regression model to a 
specific dataset may stem from convergence to a local rather than global minimum, or from 
the lack of a unique solution. For the three data sets considered here, only the BUR model 
failed to converge using the Shiny App. However, the same datasets fit using the Excel 
spreadsheet produce reasonable results for all models. Caution is advised when using results 
from the Excel spreadsheet if convergence is not also achieved for the Shiny App; standard 
errors of the parameter estimates and diagnostic plots are not available in the Excel 
spreadsheet, so the quality of the parameter estimates cannot be evaluated. 
 For the BUR model with fixed shelves, convergence may depend on the steepness of 
the slope in the transition region as well as the amount of scatter in the transition region data.  
The BUR model converged using the Shiny App for all data sets when both shelves are 
variable. 
 
 

Data Set 1 (virtual)

Parameter Excel Shiny app Parameter Excel Shiny app Parameter Excel Shiny app Parameter Excel Shiny app Parameter Excel Shiny app
C 50.00 50.00 C 50.00 50.00 k 0.040000 0.0400 C 30.80 30.80 C 35.83 35.83

DBTT 0.00 0.00 DBTT 0.00 0.00 T0 0.00 0.00 DBTT 0.00 0.00 T0 0.00 0.00
D 1.29E-07 0 m 0.999995 1 p 1.000055 1.0001

RMSE 9.58E-06 0.001 RMSE 0.003 0.001 RMSE 2.16E-05 0.001 RMSE 8.899 8.898 RMSE 2.737 2.737
T28J -49.40 -49.41 T28J -49.40 -49.41 T28J -49.40 -49.41 T28J -48.74 -48.74 T28J -50.62 -50.62
T41J -38.20 -38.21 T41J -38.20 -38.21 T41J -38.20 -38.21 T41J -31.27 -31.27 T41J -36.95 -36.96

DBTT 0.00 0.00 DBTT 0.00 0.00

Data Set 2 (gentle slope, low scatter)

Parameter Excel Shiny app Parameter Excel Shiny app Parameter Excel Shiny app Parameter Excel Shiny app Parameter Excel Shiny app
C 30.14 30.14 C 29.98 29.98 k 0.0608 0.0608 C 20.60 20.60 C 21.90 21.90

DBTT 11.27 11.27 DBTT 11.17 11.17 T0 4.54 4.54 DBTT 11.12 11.12 T0 11.13 11.13
D 0.01417 0.01417 m 1.3398 1.3398 p 1.006 1.006

RMSE 2.231 2.231 RMSE 2.3477 2.3477 RMSE 2.322 2.322 RMSE 4.0843 4.0840 RMSE 2.835 2.835
T28J 3.14 3.14 T28J 3.07 3.07 T28J 2.86 2.86 T28J 5.35 5.35 T28J 4.52 4.52
T41J 14.44 14.44 T41J 14.34 14.34 T41J 14.15 14.15 T41J 13.30 13.30 T41J 13.63 13.37

DBTT 10.94 10.94 DBTT 11.20 11.20
C 33.04 33.04 C 30.07 30.07 k 0.042948 C 23.04 23.04 C 21.37 21.37

DBTT 14.56 14.56 DBTT 13.22 13.22 T0 -186.048 DBTT 13.58 13.58 T0 -4.31 -4.31
D 0.1682 0.1682 m 3579.919 p 3.733 3.733

RMSE 0.059 0.059 RMSE 0.055 0.055 RMSE 0.0497 RMSE 0.088 0.088 RMSE 0.050 0.050
T0.89mm 22.58 22.58 T0.89mm 21.38 21.38 T0.89mm 21.59 T0.89mm 19.33 19.33 T0.89mm 20.21 20.21

DBTT 13.02 DBTT 11.06 11.06
C 35.42 35.47 C 36.20 36.30 k 0.06827 0.06930 C 23.81 23.84 C 24.87 24.89

DBTT 17.40 17.39 DBTT 18.01 18.04 T0 27.75 28.41 DBTT 17.23 17.21 T0 22.60 22.76
D -0.07658 -0.082 m 0.644631 0.6244 p 0.7433 0.736

RMSE 1.734 1.746 RMSE 1.524 1.491 RMSE 1.542 1.504 RMSE 5.184 5.138 RMSE 2.447 2.389
DBTT 18.12 18.16 DBTT 18.68 18.70

Data Set 3 (outliers)

Parameter Excel Shiny app Parameter Excel Shiny app Parameter Excel Shiny app Parameter Excel Shiny app Parameter Excel Shiny app
C 35.24 35.24 C 6.31 7.53 k 23.90508 C 2.18 2.18 C 0.41 1.09

DBTT -87.52 -87.52 DBTT -82.34 -84.59 T0 -70.31 DBTT -75.93 -75.93 T0 -78.95 -71.83
D -0.28684 -0.3422 m 0.01738 p 1.5662 0.0873

RMSE 140.988 140.988 RMSE 143.214 142.939 RMSE 138.6004 RMSE 130.229 130.229 RMSE 138.603 138.602
T28J -136.28 -136.28 T28J -151.01 -180.44 T28J -77.12 T28J -83.33 -83.33 T28J -79.55 -77.36
T41J -128.57 -128.57 T41J -134.71 -155.25 T41J -76.14 T41J -80.79 -80.79 T41J -79.42 -76.54

DBTT -71.98 DBTT -78.84 -73.06

KV (J)

Variable
Symmetric TANH Asymmetric TANH Burr ARCTAN K-ASYM

KV (J)

Variable
Symmetric TANH Asymmetric TANH Burr ARCTAN K-ASYM

KV (J)

LE (mm)

SFA (%)

Variable
Symmetric TANH Asymmetric TANH Burr ARCTAN K-ASYM



 
 

34 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.TN
.2158 

 

7 Conclusions 
We developed at NIST a software package to obtain transition curves for Charpy and toughness 
results as a function of test temperature. The package includes an Excel macro-enabled 
spreadsheet for a basic-level analysis and a web-based Shiny App for a more advanced-level 
analysis. Both programs perform non-linear data regression according to five fitting models 
identified from a literature review. summarizes the features available in the Excel spreadsheet 
and the Shiny App. 

 
Table 4 - Features available in the Excel spreadsheet and in the Shiny App. 

Program Parameter 
Estimates RMSE AIC BIC Characteristic 

Temperatures 
Standard 

Errors 
Diagnostic 

Plots 
Confidence 

Bounds 
Excel 

spreadsheet √ √ √ √ √ X X X 

Shiny App √ √ √ √ √ √ √ √ 
 

The package also includes another macro-enabled Excel spreadsheet that allows 
determining reasonable initial values for the three asymmetric models (AHT, BUR, and KHT), 
which are needed in order to increase the likelihood of obtaining reliable fits. 

The NIST software package is demonstrated for two experimental Charpy datasets 
consisting of absorbed energy values. Additionally, a simulated dataset, generated based on 
specified parameters for the HT model, is analyzed to verify that the software returns parameter 
estimates that are very close to the specified model parameters for the HT model fit.  Although 
only KV data are analyzed here, other responses such as LE and SFA can also be analyzed 
using the NIST software package. 

The output of the Excel spreadsheet and of the Shiny App are compared, and large 
differences in calculated temperatures (greater than 5 °C) are only observed for the dataset 
containing outliers. In general, either software appears adequate for a basic-level data analysis. 

This report recommends fixing both upper and lower shelves. Specifically, lower shelf 
should be set to a physically meaningful value considering the material being tested (e.g., LS 
= 2 J for KV values, and  LS = 0 mm for LE values). Upper shelf values should be set equal to 
the average of specimens corresponding to SFA ≥ 95 % or SFA = 100 %. In the case of Shear 
Fracture Appearance, shelves must be set to 0 % and 100 %, respectively. The Shiny App 
allows the user to choose between fixed or variable shelves, while the Excel spreadsheet only 
performs analyses where both shelves are fixed. 

Finally, fitting the Burr (BUR) model using the Shiny App can be difficult for the fixed-
shelves case if the slope of the transition region is very steep and/or if the scatter in the data is 
relatively large. In these cases, the Shiny App might be able to produce a good fit if variable 
shelves are used instead of fixed shelves. The Excel spreadsheet does not seem to have the 
same difficulty fitting the BUR model.  

We believe this freely available software package developed at NIST will be useful 
both for a basic-level analysis, which only requires transition curves and some characteristic 
temperatures (such as DBTT), and for a more advanced data treatment, aiming at establishing 
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confidence bounds for the regression curves and standard errors/uncertainties on the calculated 
parameters. 
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Appendix A: Computational and Statistical Methods 

The software is offered in the form of its web-based interface, which is generated using the R 
Shiny package (version 1.5.0) [2]. The software uses the nonlinear least-squares function, 
nls.lm, from the R library minipack.lm [26] to fit various models. This function uses the 
Levenberg-Marquardt optimization method [27] to estimate model parameters and allows for 
the specification of lower and upper bounds for such parameters.  

A.1 Convergence 
Not all the models considered (HT, AHT, BUR, ACT, and KHT) will provide a good fit to the 
input data. As with any numerical optimization routine, convergence to the optimal set of 
parameters for the given dataset is not guaranteed and is highly dependent upon the landscape 
of the underlying objective function. The objective function may be non-convex, ill-
conditioned, or underdetermined. These issues tend to be exacerbated when the data size is 
small, the underlying model doesn’t fit the data well, or the underlying model is overly 
complex. Additionally, successful performance of the optimization algorithm is often 
contingent upon choosing initial parameter values that aren’t too “far away” from the optimal 
solution. The Shiny App will not return a solution if the optimization algorithm fails to 
converge. However, even if the application does not report any convergence issues, the user 
should carefully inspect the diagnostics presented within the application to ensure the 
algorithm has not settled onto an unacceptable stationary point. In most cases, this will be 
immediately obvious from the plot showing the fitted models. 

A.2 Model Selection Statistics 
To compare various model fits, we provide the RMSE from the fit as well as two statistics 
called the Akaike Information Criterion (AIC) [23] and the Bayesian Information Criterion 
(BIC) [24].  The RMSE, AIC, and BIC statistics are relative measures, so there is no absolute 
threshold that indicates whether the model provides a good fit to the data.  The RMSE, AIC, 
and BIC statistics simply allow models to be compared to each other; the model with the 
smallest values of RMSE, AIC, and BIC is preferred.  RMSE, AIC, and BIC are defined as: 
 

RMSE =  �
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1
𝑡𝑡 − 𝑝𝑝

=   �
RSS
𝑡𝑡 − 𝑝𝑝

,                                         (A. 1) 

 
AIC = 2(𝑝𝑝 + 1) − 2 ln�𝐿𝐿�� ,                                                (A. 2) 

 
BIC = (𝑝𝑝 + 1)ln(𝑡𝑡) − 2 ln�𝐿𝐿�� ,                                           (A. 3) 

 
where 𝑌𝑌�𝑖𝑖 is the value of the response at 𝑋𝑋𝑖𝑖 predicted by the regression equation, 𝑝𝑝 is the number 
of parameters estimated by the regression analysis (excluding 𝜎𝜎, the residual standard 
deviation), 𝑡𝑡 is the number of data points, and 𝐿𝐿� is the maximum value of the log-likelihood 
function. For least-squares estimation [28], the AIC can be written in terms of the residual sum 
of squares (𝑅𝑅𝑅𝑅𝑅𝑅) as 
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𝐴𝐴𝐴𝐴𝐴𝐴 = 2(𝑝𝑝 + 1) + 𝑡𝑡 ln �
𝑅𝑅𝑅𝑅𝑅𝑅
𝑡𝑡
�  .                                          (A. 4) 

Similarly, BIC can be written as 

𝐵𝐵𝐴𝐴𝐴𝐴 = (𝑝𝑝 + 1) ln(𝑡𝑡) + 𝑡𝑡 𝑙𝑙𝑡𝑡 �
𝑅𝑅𝑅𝑅𝑅𝑅
𝑡𝑡
�  .                                        (A. 5) 

A.3 Temperature Variability 
As in least-squares regression, nonlinear least-square regression assumes that each 
independent variable (test temperature, in this case) is known without error. In reality, 
temperatures are measured with error, but we assume that such errors are small relative to the 
errors in the response variable (KV, LE, or SFA). We also assume that the variability in 
temperature will not substantially influence the results. 

A.4 Finding Standard Errors: Parametric Bootstrap Analysis 
The R code estimates the standard errors of the parameter estimates using a parametric 
bootstrap method. The bootstrap procedure involves generating samples of residuals for each 
value of observed temperature, based on the parameter estimates and RMSE from the original 
fit [29]. For example, consider a straight line fit: 

𝑌𝑌�𝑖𝑖 =  𝛼𝛼� + �̂�𝛽𝑋𝑋𝑖𝑖 .     (A. 6) 

The 𝑏𝑏th bootstrap sample (𝑏𝑏 = 1, … ,𝑡𝑡𝑏𝑏) for 𝑋𝑋𝑖𝑖 is given by: 

𝑌𝑌𝑏𝑏𝑖𝑖 = 𝛼𝛼� + �̂�𝛽𝑋𝑋𝑖𝑖 + 𝑒𝑒𝑏𝑏𝑖𝑖 = 𝑌𝑌�𝑖𝑖 + 𝑒𝑒𝑏𝑏𝑖𝑖 ,                                 (A. 7) 
where ebi is a random draw from a normal distribution with a mean of zero and a standard 
deviation equal to the RMSE from the original fit. A straight line is fit to each bootstrap sample 
and the 𝑡𝑡𝑏𝑏 sets of parameter/coefficient estimates are saved (along with predicted values at 
each observed temperature) for further analysis.  

For our data, all bootstrapped sample values must be greater than zero, so a truncated 
normal distribution is used to generate data. For SFA, the normal distribution is truncated at 0 
% on the left and at 100 % on the right. 

The number of bootstrap iterations in the Shiny App is set to be 1000 for each model. 
This choice is based on the results of numerical simulations investigating the number of 
iterations needed for the bootstrap interval estimates to stabilize.  

For the case of one or more fixed shelves, the bootstrap samples are generated based 
on the original fitted model parameters along with the original fixed shelves. However, the 
fixed-shelf values specified for fitting each bootstrapped sample are generated randomly. The 
bootstrap procedure incorporates variability of all parameters included in the model, as well as 
variability in the fixed shelves.  

The standard errors provided by the Shiny App represent sources of uncertainty due to 
random effects. The Shiny App does not address sources of uncertainty due to systematic 
effects. 
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A.5 Uncertainty of Fixed Shelves 
In case of variable shelves, the R code only requires initial values of LS and/or US. For models 
with one or both fixed shelves, values for the shelves must be specified, along with the 
uncertainty of the specified shelf. The fixed-shelf values and their uncertainties are used to 
define the distributions for generating random shelf values for the parametric bootstrap 
method. 
 A fixed-shelf uncertainty may be estimated based on the standard deviation of the 
observed shelf data (type A uncertainty evaluation) or based on engineering judgement (type 
B uncertainty evaluation) if data are insufficient to estimate the standard deviation. 
 For KV, LE, and “Other” response variables, random US values are generated using a 
normal distribution with mean equal to the user-specified fixed upper-shelf value and standard 
deviation equal to the user-specified uncertainty of the fixed upper shelf, N(US, u(US)). The 
default value of u(US) is 5 % of the US value for both KV and LE responses, based on 
engineering judgement. The default values may not be realistic for all data sets.   

For KV, LE, and “Other” variables, the randomly generated LS values cannot be less 
than zero (that would be non-physical). Thus, the LS values are generated using a truncated 
normal distribution that is truncated at zero with mean equal to the user-specified fixed lower-
shelf value, LS, and standard deviation equal to the user-specified uncertainty of the fixed 
lower shelf, u(LS). Information regarding truncated normal distributions can be found in [30].  
The default value of u(LS) is 0.3 J for the KV response and is 0.03 mm for LE response, based 
on engineering judgement. The default values may not be realistic for all data sets. 

The user may specify u(US) = 0 to obtain results for the fixed-shelves case where there 
is no error in the upper shelf. Similarly, the user may specify u(LS) = 0 for the case where there 
is no error in the fixed lower shelf. However, fixing shelves without error is not recommended 
for KV and LE responses. 

A.6 Confidence Intervals and Confidence Bounds 
All confidence intervals in the Shiny App are computed using the percentiles of the bootstrap 
distribution implied by the user’s selected confidence level (such that each tail probability is 
the same). For example, if the user selects a 95 % confidence level, the application will 
compute the 2.5 % and 97.5 % percentiles of the simulated bootstrap distribution. The choice 
of using the percentile bootstrap ensures that confidence intervals are robust when the fitted 
parameters lie near their boundary (e.g. upper and lower shelves). 

A.7 Diagnostic Plots 
The following four diagnostic plots (see Fig. 17) are provided to display information regarding 
the quality of the fit and to expose assumption violations:  

1. Residual versus predicted value. 
2. Standardized residual versus temperature. 
3. Residual lag plot (residual[i+1] versus residual[i]). 
4. Normal quantile-quantile plot (Q-Q plot) of residuals.  

Residual analysis is needed to check model adequacy and to verify that regression 
assumptions are not violated.  (See [31] section 3.5 for a discussion of residual analysis.) 
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Standardized residuals are computed using the formulas provided by Riazoshams [32] 
for nonlinear models. However, residuals are called “studentized” instead of “standardized” in 
[32]. The term “studentized” generally implies that the normalizing variance is computed by 
leaving out the data point for which the residual is being calculated. Since the standardized 
residuals produced by the Shiny App are not computed using a “leave-one-out” type of 
procedure, the term “standardized” is more correct in this context. 

The Shiny App uses a Shapiro-Wilk test [25] to test the assumption that the residuals 
from the fit are normally distributed. 

A.8 DBTT Calculation 

For the HT, AHT, and ACT models, 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇 = 𝑇𝑇0. Therefore, the standard error of 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇 for 
these models is provided by the fitting procedure. 

For the BUR model, 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇 is computed using: 

𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇 = 𝑇𝑇0 −
1
𝑘𝑘

ln��1
2
�
−1 𝑚𝑚�

− 1�.         (A.8) 

For the KHT model, 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇 is computed from: 

𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇1 = 𝑇𝑇0 + 2𝐶𝐶
1+𝑝𝑝

 ln �1+𝑝𝑝
2
�    (A.9) 

and 
𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇2 = 𝑇𝑇0 −

2𝐶𝐶𝑝𝑝
1+𝑝𝑝

 ln �1+𝑝𝑝
2𝑝𝑝
� ,   (A.10) 

where 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇 = 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇1 if (𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇1 + 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇2) 2⁄ ≤ 𝑇𝑇0, and 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇 = 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇2 otherwise. 

The standard error of 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇 for the BUR and KHT models is computed from the 
parametric bootstrap. 

A.9 Calculation of Characteristic Temperatures 

The Shiny App also provides characteristic temperature estimates and their associated 
uncertainties for specific values of KV, LE, or SFA. Characteristic temperature estimates are 
obtained by inverting each model, so that temperature becomes a function of the response 
variable. The bootstrapped parameter estimates (and randomly generated shelves for models 
with one or more fixed shelves) are used to compute standard error estimates for each selected 
response value (𝑌𝑌). The equations used to compute the temperatures are provided in Table 
A.1. 
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Table A.1 - Equations used to calculate characteristic temperatures. 

Model Equation 

HT 𝑇𝑇𝑌𝑌 = 𝑇𝑇0 +
𝐴𝐴
2

 ln �
𝑌𝑌 − 𝐿𝐿𝑅𝑅
𝑈𝑈𝑅𝑅 − 𝑌𝑌

� 

AHT 𝑇𝑇𝑌𝑌 =
𝑇𝑇0 + 𝐴𝐴

2  ln �𝑌𝑌 − 𝐿𝐿𝑅𝑅
𝑈𝑈𝑅𝑅 − 𝑌𝑌�

1 − 𝐷𝐷
2  ln �𝑌𝑌

� − 𝐿𝐿𝑅𝑅
𝑈𝑈𝑅𝑅 − 𝑌𝑌�

 

BUR 𝑇𝑇𝑌𝑌 = 𝑇𝑇0 −
1
𝑘𝑘

ln ��
𝑌𝑌 − 𝐿𝐿𝑅𝑅
𝑈𝑈𝑅𝑅 − 𝑌𝑌

�
−1𝑚𝑚

− 1� 

ACT 𝑇𝑇𝑌𝑌 = 𝐷𝐷𝐵𝐵𝑇𝑇𝑇𝑇 +
2𝐴𝐴
𝜋𝜋

tan�
𝜋𝜋
2

𝑈𝑈𝑅𝑅 − 𝐿𝐿𝑅𝑅
� [2𝑌𝑌 − (𝐿𝐿𝑅𝑅 + 𝑈𝑈𝑅𝑅)] 

KHT 
𝑇𝑇𝑌𝑌 = 𝑇𝑇0 +

2𝐴𝐴
1 + 𝑝𝑝

 ln �
(1 + 𝑝𝑝)(𝑌𝑌 − 𝐿𝐿𝑅𝑅)

𝑈𝑈𝑅𝑅 − 𝐿𝐿𝑅𝑅
�  for 𝑌𝑌 ≤

𝑈𝑈𝑅𝑅 + 𝑝𝑝 ∙ 𝐿𝐿𝑅𝑅
1 + 𝑝𝑝

 

𝑇𝑇𝑌𝑌 = 𝑇𝑇0 −
2𝐴𝐴𝑝𝑝

1 + 𝑝𝑝
 ln �

(1 + 𝑝𝑝)(𝑈𝑈𝑅𝑅 − 𝑌𝑌)
𝑝𝑝(𝑈𝑈𝑅𝑅 − 𝐿𝐿𝑅𝑅) �  for 𝑌𝑌 >

𝑈𝑈𝑅𝑅 + 𝑝𝑝 ∙ 𝐿𝐿𝑅𝑅
1 + 𝑝𝑝
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