

WS-Biom

NIS

Sp

metr

ST Special Pu

pecifica

ic De
Re

Ros

K

Ka

ublication 50

Revi

DR

ation f

evice
vision
Draft

ss J. Mich

Matt Aro

Kayee Kw

evin Mang

aren Mars

0-288

sion 0

RAFT 0

for
es
n 0
t 0

heals

onoff

wong

gold

shall

NIST Spec
Revision 0

cial Publicatio

on 500-288

I N F O R

M A T I O

 S

1

Specif
WS-Bi

Recomm
Standar

Ross J.
Matt Ar
Kayee K
Kevin M
Karen M

O N T E C

Biometr
Image G
Informa
Informa
Nationa
Gaithers

Spring 2

US Depa
Gary Lo

Nationa
Patrick D

pecification fo

fication fo
iometric D

mendations of
rds and Techn

Micheals
ronoff
Kwong
Mangold
Marshall

C H N O L

ric Clients Lab
Group
ation Access D
ation Technolo
al Institute of S
sburg, MD 208

2011

artment of Co
cke, Secretary

al Institute of S
D. Gallagher, D

or WS-Biometr

or
Devices (Dr

f the National
nology

O G Y

b

Division
ogy Laboratory
Standards and
899-8940

ommerce
y

Standards and
 Director

ric Devices (D

raft 0)

 Institute of

y
d Technology

d Technology

raft 0)

 Specification for WS-Biometric Devices (Draft 0)

2

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the 1

U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards 2

infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical 3

analysis to advance the development and productive use of information technology. 4

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 5

experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 6

endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, 7

materials, or equipment are necessarily the best available for the purpose. 8

 Specification for WS-Biometric Devices (Draft 0)

3

1 Table of Contents 9

2 Introduction .. 7 10

2.1 Terminology .. 7 11

2.2 Documentation Conventions .. 7 12

2.2.1 Quotations .. 7 13

2.2.2 Machine-Readable Code .. 8 14

2.2.3 Sequence Diagrams .. 8 15

2.3 Normative References .. 8 16

2.4 Informative References .. 8 17

3 Design Concepts and Architecture .. 9 18

3.1 Interoperability ... 9 19

3.2 Architectural Components .. 9 20

3.2.1 Clients .. 9 21

3.2.2 Sensor .. 9 22

3.2.3 Sensor Service .. 10 23

3.3 Intended Use .. 10 24

3.4 General Service Behavior .. 11 25

3.4.1 Security Model ... 11 26

3.4.2 HTTP Request-Response Usage .. 11 27

3.4.3 Client Identity ... 12 28

3.4.4 Locking ... 13 29

3.4.5 Operations Summary ... 13 30

3.4.6 Idempotency .. 14 31

3.4.7 Service Lifecycle Behavior .. 14 32

4 Data Dictionary ... 16 33

4.1.1 UUID ... 16 34

4.1.2 WsbdDictionary .. 16 35

4.1.3 WsbdStringArray .. 17 36

4.1.4 WsbdUuidArray .. 17 37

4.1.5 WsbdStatus .. 17 38

4.2 WsbdResult ... 20 39

5 Operations .. 22 40

 Specification for WS-Biometric Devices (Draft 0)

4

5.1 General Usage Notes .. 22 41

5.1.1 Visual Summaries ... 22 42

5.2 Documentation Conventions .. 24 43

5.2.1 General Information ... 24 44

5.2.2 WsbdResult Summary .. 25 45

5.2.3 Usage Notes ... 25 46

5.2.4 Unique Knowledge ... 25 47

5.2.5 Return Values Detail ... 25 48

5.3 Register ... 26 49

5.3.1 WsbdResult Summary .. 26 50

5.3.2 Usage Notes ... 26 51

5.3.3 Unique Knowledge ... 26 52

5.3.4 Return Values Detail ... 26 53

5.4 Unregister ... 28 54

5.4.1 WsbdResult Summary .. 28 55

5.4.2 Usage Notes ... 28 56

5.4.3 Unique Knowledge ... 28 57

5.4.4 Return Values Detail ... 28 58

5.5 Try Lock .. 31 59

5.5.1 WsbdResult Summary .. 31 60

5.5.2 Usage Notes ... 31 61

5.5.3 Unique Knowledge ... 31 62

5.5.4 Return Values Detail ... 31 63

5.6 Steal Lock ... 33 64

5.6.1 WsbdResult Summary .. 33 65

5.6.2 Usage Notes ... 33 66

5.6.3 Unique Knowledge ... 34 67

5.6.4 Return Values Detail ... 34 68

5.7 Unlock ... 36 69

5.7.1 WsbdResult Summary .. 36 70

5.7.2 Usage Notes ... 36 71

5.8 Get Common Info ... 37 72

5.8.1 WsbdResult Summary .. 37 73

5.8.2 Usage Notes ... 37 74

 Specification for WS-Biometric Devices (Draft 0)

5

5.8.3 Unique Knowledge ... 37 75

5.8.4 Return Values Detail ... 37 76

5.9 Get Detailed Info .. 39 77

5.9.1 WsbdResult Summary .. 39 78

5.9.2 Usage Notes ... 39 79

5.9.3 Unique Knowledge ... 39 80

5.9.4 Return Values Detail ... 39 81

5.10 Initialize .. 43 82

5.10.1 WsbdResult Summary .. 43 83

5.10.2 Usage Notes ... 43 84

5.10.3 Unique Knowledge ... 43 85

5.10.4 Return Values Detail ... 43 86

5.11 Get Configuration ... 46 87

5.11.1 WsbdResult Summary .. 46 88

5.11.2 Usage Notes ... 46 89

5.11.3 Unique Knowledge ... 46 90

5.11.4 Return Values Detail ... 46 91

5.12 Set Configuration .. 50 92

5.12.1 WsbdResult Summary .. 50 93

5.12.2 Usage Notes ... 50 94

5.12.3 Unique Knowledge ... 50 95

5.12.4 Usage Notes ... 50 96

5.13 Capture ... 52 97

5.14 Get MIME Type ... 53 98

5.15 Download ... 54 99

5.16 Thrifty Download .. 55 100

5.17 Cancel ... 56 101

5.17.1 WsbdResult Summary .. 56 102

5.17.2 Usage Notes ... 56 103

A Common Info .. 57 104

A.1 Data Dictionary ... 57 105

A.2 Parameter Details ... 57 106

A.1.1 Connections ... 57 107

A.1.1.1 Last Updated .. 57 108

 Specification for WS-Biometric Devices (Draft 0)

6

A.1.1.2 Inactivity Timeout ... 57 109

A.2.1.1 Maximum Concurrent Sessions .. 57 110

A.1.1.3 Least Recently Used (LRU) Sessions Automatically Dropped ... 58 111

A.2.2 Timeouts .. 58 112

A.2.2.1 Initialization Timeout ... 58 113

A.2.2.2 Detailed Info Timeout .. 58 114

A.2.2.3 Get Configuration Timeout ... 58 115

A.2.2.4 Set Configuration Timeout ... 58 116

A.2.2.5 Capture Timeout .. 58 117

B Detailed Info ... 59 118

C Configuration .. 60 119

D Download Data ... 61 120

D.1 MIME Type .. 61 121

D.2 Thrifty Download .. 61 122

E Security Profiles .. 62 123

E.1 None ... 62 124

E.2 HTTPS ... 62 125

E.3 OpenID & OAuth ... 62 126

F Conformance .. 63 127

G Pending Issues .. 64 128

H Acknowledgments .. 65 129

I Revision History .. 66 130

 131

 Specification for WS-Biometric Devices (Draft 0)

7

2 Introduction 132

Imagine an intelligent biometric device that is cryptographically secure, tamper-proof, and spoof resistant. 133

Such a device would enable biometrics as a viable option for remote authentication. Imagine a new 134

generation of fingerprint scanner, small enough and thin enough to clip onto a police officer’s uniform—135

enabling law enforcement to quickly identify suspects. 136

These envisioned devices require a communications protocol that is secure, globally connected, and free from 137

requirements on operating systems, device drivers, form factors, and low-level communications protocols. 138

WS-Biometric Devices is a protocol designed in the interest of furthering this goal, with a specific focus on the 139

single process shared by all biometric systems—acquisition. 140

2.1 Terminology 141

This section contains terminology commonly used throughout this document. First time readers are 142

encouraged to skip this section and revisit it, as needed, after reading §3, Design Concepts and Architecture. 143

biometric capture device 144

a system component capable of capturing biometric data in digital form 145

client 146

a logical endpoint that originates operation requests 147

HTTP 148

Hypertext Transfer Protocol. Unless specified, the term HTTP may refer to either HTTP as defined in [] 149

or HTTPS as defined in []. 150

sensor or biometric sensor 151

a single biometric capture device, or, a logical collection of biometric capture devices. 152

target sensor or target biometric sensor 153

the biometric sensor exposed by a particular service 154

payload parameter or payload 155

an operation parameter that is passed to a service within the content of an HTTP request 156

URL parameter 157

2.2 Documentation Conventions 158

The following documentation conventions are used throughout this document. 159

2.2.1 Quotations 160

If the inclusion of a period within a quotation might lead to ambiguity as to whether or not the period should 161

be included in the quoted material, the period will be placed outside the trailing quotation mark. For example, 162

a sentence that ends in a quotation would have the trailing period “inside the quotation, like this quotation 163

 Specification for WS-Biometric Devices (Draft 0)

8

punctuated like this.” However, a sentence that ends in a URL would have the trailing period outside the 164

quotation mark, such as “http://example.com”. 165

2.2.2 Machine-Readable Code 166

With the exception of some reference URLs, Machine readable information will typically be depicted with a 167

mono‐spaced font, such as this. 168

2.2.3 Sequence Diagrams 169

Throughout this document, sequence diagrams are used to help explain various scenarios. These diagrams 170

are informative simplifications and are intended to help explain core specification concepts. Operations are 171

depicted in a functional, remote procedure call style. The level of abstraction presented in the diagrams, and 172

the details that are shown (or not shown) will vary according to the particular information being illustrated. 173

2.3 Normative References 174

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 175

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 176

[RFC2616] R. Fielding, et al. Hypertext Tranfer Protocol—HTTP/1.1, 177

http://www.ietf.org/rfc/rfc2616.txt, IETF RFC 2616, June 1999. 178

[RFC4122] P. Leach, M. Mealling, and R. Salz, A Universally Unique Identifier (UUID) URN 179

Namespace, http://www.ietf.org/rfc/rfc4122.txt, IETF RFC 4122, July 2005. 180

[XSDPart1] XML Schema Part 1: Structures Second Edition, http://www.w3.org/TR/xmlschema-1, 181

W3C Recommendation. 28 October 2004. 182

[XSDPart2] XML Schema Part 2: Datatypes Second Edition, http://www.w3.org/TR/xmlschema-2, 183

W3C Recommendation. 28 October 2004. 184

 185

2.4 Informative References 186

 187

 188

 Specification for WS-Biometric Devices (Draft 0)

9

3 Design Concepts and Architecture 189

This section describes the major design concepts and overall architecture of WS-Biometric Devices (WS-BD). 190

The main purpose of a WS-Biometric Devices service is to expose a target biometric sensor to clients via web 191

services. 192

3.1 Interoperability 193

ISO/IEC 2382-1 (1993) defines interoperability as “the capability to communicate, execute programs, or 194

transfer data among various functional units in a manner that requires the user to have little to no knowledge 195

of the unique characteristics of those units” 196

Conformance to a standard does not necessarily guarantee interoperability. There should be an example here 197

of where this happens by design. 198

A major design goal of WS-Biometric Devices (WS-BD) is to maximize interoperability, by minimizing the 199

amount of required “knowledge of the unique characteristics” of a component that supports WS-Biometric 200

Devices (WS-BD). 201

3.2 Architectural Components 202

Before discussing the envisioned use of WS-Biometric Devices, it may be useful to distinguish between the 203

various components that might comprise a WS-Biometric Devices implementation. These are logical 204

components, and may or may not correspond to particular physical boundaries. This distinction becomes vital 205

in understanding WS-Biometric Devices’s operational models. 206

3.2.1 Clients 207

A client is any software component that originates requests for biometric acquisition. Note that a client might 208

be one of many hosted in a parent (logical or physical) component, and that a client might originate requests 209

to a variety of destinations. 210

This icon is used to depict an arbitrary WS-Biometric Devices client. A personal digital assistant
(PDA) is used to serve as a reminder that a client might be hosted on a non-traditional
computer.

3.2.2 Sensor 211

A biometric sensor is any component that is capable of acquiring, i.e., digitally sampling, a biometric. Most 212

sensor components are hosted within a dedicated hardware component, but this is not necessarily globally 213

true. For example, a keyboard is a general input device, but might also be used for a keystroke dynamics 214

biometric. 215

This icon is used to depict a biometric device. The icon has a vague similarity to a fingerprint
scanner, but should be thought of as an arbitrary biometric sensor.

 Specification for WS-Biometric Devices (Draft 0)

10

As discussed in §1.1, the term “sensor” in used in this document in a singular sense, but may in fact be 216

referring to multiple biometric capture devices. 217

3.2.3 Sensor Service 218

The sensor service is the “middleware” software component that exposes a biometric sensor to a client 219

through web services. The sensor service adapts HTTP request-response operations to biometric sensor 220

command & control. 221

This icon is used to depict a sensor service. The icon is abstract and has no meaningful form,
just as a sensor service is a piece of software that has no physical form.

3.3 Intended Use 222

Each implementation of WS-Biometric Devices will be realized via a mapping of logical to physical 223

components. A distinguishing characteristic of an implementation will be the physical location of the sensor 224

service component. WS-Biometric Devices is designed to support two scenarios. 225

 The sensor service and biometric sensor are hosted by different physical components. A physically 226

separated service is one where there is both a physical and logical separation between the biometric 227

sensor and the service that provides access to it. 228

 229

 The sensor service and biometric sensor are hosted within the same physical component. A physically 230

integrated service is one where the biometric sensor, and the service that provides access to it, reside 231

within the same physical component. 232

Figure 1 depicts a physically separated service. In this scenario, a biometric sensor tethered to a personal 233

computer, workstation, or server. The web service, hosted on the computer, listens for communication 234

requests from clients. An example of such an implementation would be a USB fingerprint scanner attached to 235

a personal computer. A lightweight web service, running on that computer could listen to requests from local 236

(or remote) clients—translating WS-Biometric Devices requests to and from biometric sensor commands. 237

 238

 239

Figure 1. A physically separated WS-Biometric Devices (WS-BD) implementation. 240

Figure 2 depicts a physically integrated service. In this scenario, a single hardware device has, embedded 241

within it, a biometric sensor, as well as a web service. Similar functionality is seen in many network printers; it 242

is possible to point a web browser to a local network address, and obtain a web page that displays 243

 Specification for WS-Biometric Devices (Draft 0)

11

information about the state of the printer, such as toner and paper levels. Clients make requests directly to 244

the integrated device; and an web service running within an embedded system translates the WS-Biometric 245

Devices requests to and from biometric sensor commands. 246

Integrated Device

Clients

 247

Figure 2. A physically integrated WS-Biometric Devices implementation. 248

Finally, it should be admitted that from a systems engineering viewpoint, the “separate” versus “integrated” 249

distinction is indeed a simplification with a high degree of fuzziness. For example, one might imagine putting 250

a hardware shell around a USB fingerprint scanner connected to a small form-factor computer. Inside the 251

shell, the sensor service and sensor are on different physical components. Outside the shell, the sensor 252

service and sensor appear integrated. The definition of what constitutes the “same” physical component 253

depends on the particular implementation, and the intended level of abstraction. Regardless, it is a useful 254

distinction in that it illustrates the flexibility possible afforded by leveraging highly interoperable 255

communications protocols. 256

3.4 General Service Behavior 257

The following section describes the general behavior of WS-Biometric Devices clients and services. 258

3.4.1 Security Model 259

In this version of the protocol it is assumed that if a client is able to establish a HTTP (or HTTPS) 260

communication with the sensor service, then the client is fully authorized to use the service. This implies that 261

all successfully connected clients have equivalent authority may be considered peers. 262

Clients might be prevented by connected through various HTTP protocols, such as HTTPS with client-side 263

certificates, or a more sophisticated protocol such as OpenId (http://openid.net/) and/or OAuth. 264

Recommended security profiles are discussed in Appendix 0. 265

3.4.2 HTTP Request-Response Usage 266

Most biometrics devices are inherently single user—i.e., they are designed to sample the biometrics from a 267

single user at a given time. Web services, on the other hand, are inherently designed to be stateless and 268

multiuser. A biometric device exposed via web services must therefore provide a mechanism to reconcile 269

these competing designs. 270

Notwithstanding the native limits of the underlying web server , WS-Biometric Devices services must be 271

capable of handling multiple, concurrent requests.) Services must respond to requests for operations that do 272

 Specification for WS-Biometric Devices (Draft 0)

12

not require exclusive control of the biometric sensor without blocking until the biometric sensor is in a 273

particular state. 274

Because there is no well-accepted mechanism for providing asynchronous notification via REST, each 275

individual operation must block until completion. Clients are not expected to poll—rather make a single HTTP 276

request and block for the corresponding result. Because of this, it is expected that a client would perform WS-277

Biometric Devices operations on an independent thread, so not to interfere with the general responsiveness 278

of the client application. WS-Biometric Devices clients therefore must be configured in such a manner such 279

that individual HTTP operations have timeouts that are compatible with a particular implementation. 280

WS-Biometric Devices operations may be longer than typical REST services. Consequently, there is a clear 281

need to differentiate between service level errors and HTTP communication errors. WS-Biometric Devices 282

services must pass-through the status codes underlying a particular request. In other words, services must 283

not use (or otherwise ‘piggyback’) HTTP return codes to indicate service-level failure. If a service receives a 284

well-formed request, then the service MUST return an ‘OK’ response code (200). Service failures are described 285

within the contents of the XML data returned to the client for any given operation. There may need to be a 286

clarification about how the set configuration can return 400 when it receives malformed (as in malformed 287

XML) requests. 288

This is deliberately different from REST services that override HTTP return codes to provide service-specific 289

error messages. This design patterns facilitates clearer communication of failures and errors than overriding 290

particular HTTP failure codes, and, provides better support for HTTP libraries that do not easily support HTTP 291

return code overrides. 292

3.4.3 Client Identity 293

Before discussing how WS-Biometric Devices balances single-user vs. multi-user needs, it is first necessary to 294

understand the WS-Biometric Devices model for how an individual client can easily and consistently identify 295

itself to a service. 296

HTTP is, by design, a stateless protocol. Therefore, any persistence about the originator of a sequence of 297

requests must be built in (somewhat) artificially to the layer of abstraction above HTTP itself. This is 298

accomplished in WS-Biometric Devices via session—a collection of operations that originate from the same 299

logical endpoint. To initiate a session, a client performs a registration operation and obtains a session 300

identifier (or “session id”). During subsequent operations, a client uses this id as a parameter to uniquely 301

identify itself to a server. When the client is finished, it is expected to close a session with an unregistration 302

operation. To conserve resources, services may unregister clients that do not explicitly unregister after a 303

period of inactivity (see §5.4.2.1). 304

This use of a session id directly implies that the particular sequences that constitute a session are entirely the 305

responsibility of the client. A client might opt to create a single session for its entire lifetime, or, might open 306

(and close) a session for a limited sequence of operations. WS-Biometric Devices supports both scenarios. 307

It is not recommended, but it is possible, that a client might maintain multiple sessions with the same service 308

simultaneously. For simplicity, this documentation will be written under the assumption that a single client 309

maintains either up to one session. This can be assumed without loss of generality, since a client with 310

multiple sessions to a service could be decomposed into to “sub-clients”—one (sub-)client per session id. 311

 Specification for WS-Biometric Devices (Draft 0)

13

3.4.4 Locking 312

WS-Biometric Devices uses a lock to satisfy two complimentary requirements: 313

1. A service must have exclusive, sovereign control over biometric sensor hardware to perform a 314

particular sensor operation such as initialization, configuration, or capture. 315

2. A client needs to perform an uninterrupted sequence of sensor operations. 316

Each WS-Biometric Devices service exposes a single lock (one per service) that controls access to the sensor. 317

Clients obtain the lock in order to perform a sequence of operations that should not be interrupted. Obtaining 318

the lock is an indication to the server (and, indirectly to peer clients) that a (1) a series of sensor operations is 319

about to be initiated and (2) that server may assume sovereign control of the biometric sensor. 320

A client releases the lock upon completion of its desired sequence of task. This indicated to the server (and, 321

again, indirectly to peer clients) that the uninterruptable sequence of operations is finished. A client might 322

obtain and release the lock many times within the same session, or, a client might open a close a session for 323

each pair of lock/unlock operations. This decision is entirely dependent on particular client. 324

The statement that a client might “own” or “hold” a lock is a convenient simplification that makes it easier to 325

reason or speak about a client-server interaction. In reality, each sensor service maintains a unique global 326

variable that contains a session id. The originator of that session id can be thought of as the client that 327

“holds” the lock. Therefore, the other phrase used is that a service is locked to a particular id. 328

Clients are expected to release the lock after completing their required sensor operations, but there is a 329

mechanism for locks from ill-behaved clients to be broken. This feature is necessary to ensure that a client 330

cannot hold a lock indefinitely, and deny its peers access to the biometric sensor. 331

As stated previously, it is implied that all successfully connected clients enjoy the same access privileges. This 332

is critically important, because it is this implied equivalence of “trust” that affords a lock stealing operation. 333

3.4.5 Operations Summary 334

All WS-Biometric Devices operations fall into one of eight categories. 335

1. Registration 336

2. Locking 337

3. Metadata 338

4. Initialization 339

5. Configuration 340

6. Capture 341

7. Download 342

8. Cancellation 343

Of these, the initialization, configuration, capture, and cancellation operations are all sensor operations (i.e., 344

they require exclusive sensor control) and require locking. Registration, locking, and download are all non-345

sensor operations. They do not require locking and (as stated earlier) must be available to clients regardless 346

of the status of the biometric sensor. There are two metadata operations, one that is a sensor operation, one 347

that is not. This allows a client to obtain information that must be obtained from the sensor hardware itself, 348

such a firmware version. 349

 Specification for WS-Biometric Devices (Draft 0)

14

The following is a brief summary of each type of operation: 350

 Registration operations open and close (unregister) a session. 351

 Locking operations are used by a client to obtain the lock, release the lock, and steal the lock away 352

from a misbehaved client. 353

 Metadata operations query the service for information about the service itself, such as the supported 354

biometric modalities, and common service configuration parameters. 355

 The initialization operation prepares the biometric sensor for operation. 356

 Configuration operations get or set sensor parameters. 357

 The capture operation performs the acquisition of the biometrics. 358

 Download operations transfer the captured biometric data from the service to the client. 359

 Sensor operations can be stopped by the cancellation operation. 360

 361

Note that download is not a sensor operation. This allows for a collection of clients to dynamically share 362

biometric data. One client might perform the capture and hand off download responsibility to a peer. 363

3.4.6 Idempotency 364

The OASIS Reference Model for Service Oriented Architecture (1.0) define idempotentcy as 365

 366

A characteristic of a service whereby multiple attempts to change a state will always and only 367

generate a single change of state if the operation has already been successfully completed once. 368

 369

In this document, we extend this definition by adding the caveat that no other operations may occur in 370

between. Idempotent operations may have side-effects—but the final state of the service must be the same 371

over multiple (uninterrupted) invocations. 372

EXAMPLE: A service has an available lock. A client invokes the lock operation and obtains a “success” 373

result. A subsequent invocation of the operation also returns a “success” result. Even though the 374

service changed from an unlocked to a locked state, because the end results of the two sequential 375

operations were identical (the service was locked and the client received a “success” result), the call 376

is idempotent. 377

To best support robust communications, WS-Biometric Devices has been designed to offer idempotent 378

services whenever possible. 379

3.4.7 Service Lifecycle Behavior 380

It is significantly easier for a physically separated implementation to emulate the behavior of a fully 381

integrated implementation than it is the other way around. For instance, on a desktop computer, hot-382

swapping the target biometric sensor is possible through an operating system’s plug-and-play architecture. 383

However, changing the target biometric sensor out of a handheld device is probably beyond the capabilities of 384

most modern devices. Therefore, the lifecycle of a service must behave as if it was an integrated 385

implementation, even if it is a separated implementation. The lifecycle of the web server component must 386

match the lifecycle of the target biometric sensor. 387

 Specification for WS-Biometric Devices (Draft 0)

15

Fortunately, since HTTP is a connectionless protocol, a client may not be directly affected by a service restart, 388

if the service is written in a robust manner. For example, upon detecting a new target biometric sensor, a 389

robust server could quiese (refusing all new request until any pending requests are completed) and 390

automatically restart. 391

Upon restarting, services should return to a fully reset state—i.e., all sessions should be dropped, and the 392

lock should not have an owner. A high-availability service may have a mechanism to preserve state across 393

restarts, but this is not recommended. A client that communicated with a service that was restarted would 394

lose both its session and the service lock (if it held it). With the exception of the get common info operation, 395

through various fault statuses a client would receive indirect notification of a service restart. If needed, a 396

client could use service’s common metadata timestamp (§forward reference needed) to detect potential 397

changes in the get common info operation. 398

 Specification for WS-Biometric Devices (Draft 0)

16

4 Data Dictionary 399

This section contains descriptions of the data elements that comprise WS-Biometric Devices’s type system. 400

Each data type is described via an accompanying XML Schema fragment [XSDPart1, XSDPart2]. For brevity, 401

the XML namespace prefix xs represents the namespace “http://www.w3.org/2001/XMLSchema”. Definitions 402

for the xs data types (i.e., those not explicitly defined here) can be found in [XSDPart2]. 403

The target namespace for the data types defined here is “http://nist.gov/itl/bws/ws‐bd/L1/r0/”. 404

It should be assumed that each data type is defined in the target namespace “http://nist.gov/itl/bws/ws‐405

bd/L1/r0/”. The XML namespace prefix wsbd is shorthand for this namespace. 406

Data types UUID, WsbdDictionary, WsbdStringArray, and WsbdUuidArray are generic types without any 407

particular semantic meaning. 408

4.1.1 UUID 409

A UUID is a unique identifier as defined in [RFC4122]. A service must use UUIDs that conform to the following 410

XML Schema fragment. 411

<xs:simpleType name="uuid"> 412
 <xs:restriction base="xs:string"> 413
 <xs:pattern value="[\da‐fA‐F]{8}‐[\da‐fA‐F]{4}‐[\da‐fA‐F]{4}‐[\da‐fA‐F]{4}‐[\da‐fA‐F]{12}"/> 414
 </xs:restriction> 415
</xs:simpleType> 416

 417

EXAMPLE: Each line in the following code fragment contains a well-formed UUID. These examples should be 418

vetted for correctness. 419

E47991C3‐CA4F‐406A‐8167‐53121C0237BA 420
10fa0553‐9b59‐4D9e‐bbcd‐8D209e8d6818 421
161FdBf5‐047F‐456a‐8373‐D5A410aE4595 422

4.1.2 WsbdDictionary 423

A WsbdDictionary is a generic container used to hold an arbitrary collection of name-value pairs. 424

<xs:complexType name="WsbdDictionary"> 425
 <xs:sequence> 426
 <xs:element minOccurs="0" maxOccurs="unbounded" name="item"> 427
 <xs:complexType> 428
 <xs:sequence> 429
 <xs:element name="key" nillable="true" type="xs:string" /> 430
 <xs:element name="value" nillable="true" type="xs:anyType" /> 431
 </xs:sequence> 432
 </xs:complexType> 433
 </xs:element> 434
 </xs:sequence> 435
</xs:complexType> 436

WsbdDictionary instances are nestable. There should be a note about the use of xs:anyType, and how 437

conformance is (or is not?) effected by the use of types outside of those not documented here. 438

 Specification for WS-Biometric Devices (Draft 0)

17

4.1.3 WsbdStringArray 439

A WsbdStringArray is a generic container used to hold a collection of strings. 440

<xs:complexType name="WsbdStringArray"> 441
 <xs:sequence> 442
 <xs:element minOccurs="0" maxOccurs="unbounded" name="element" nillable="true" 443
type="xs:string"/> 444
 </xs:sequence> 445
 </xs:complexType> 446

EXAMPLE: Each line in the following code fragment is an example of a valid WsbdStringArray. Enclosing tags 447

(which may vary) are omitted. These examples should be vetted/validated against the schema for correctness. 448

<element>sessionId</element> 449
<element>value1</element><element>value2</element> 450
<element>leftThumb</element><element>rightThumb</element> 451

4.1.4 WsbdUuidArray 452

A WsbdUuidArray is a generic container used to hold a collection of UUIDs.. 453

<xs:complexType name="WsbdUuidArray"> 454
 <xs:sequence> 455
 <xs:element minOccurs="0" maxOccurs="unbounded" name="element" nillable="true" 456
type="wsbd:uuid" /> 457
 </xs:sequence> 458
 </xs:complexType> 459

EXAMPLE: The following code fragment is an example of a single WsbdUuidArray with three elements. 460

Enclosing tags (which may vary) are omitted. This example should be vetted/validated against the schema for 461

correctness. 462

<element>E47991C3‐CA4F‐406A‐8167‐53121C0237BA</element> 463
<element>10fa0553‐9b59‐4D9e‐bbcd‐8D209e8d6818</element> 464
<element>161FdBf5‐047F‐456a‐8373‐D5A410aE4595</element> 465

4.1.5 WsbdStatus 466

The WsbdStatus represents a common enumeration for communicating state information about a service. 467

<xs:simpleType name="WsbdStatus"> 468
 <xs:restriction base="xs:string"> 469
 <xs:enumeration value="Success" /> 470
 <xs:enumeration value="Failure" /> 471
 <xs:enumeration value="InvalidId" /> 472
 <xs:enumeration value="Canceled" /> 473
 <xs:enumeration value="CanceledWithSensorFailure" /> 474
 <xs:enumeration value="SensorFailure" /> 475
 <xs:enumeration value="LockNotHeld" /> 476
 <xs:enumeration value="LockHeldByAnother" /> 477
 <xs:enumeration value="SensorNeedsInitialization" /> 478
 <xs:enumeration value="SensorNeedsConfiguration" /> 479
 <xs:enumeration value="SensorBusy" /> 480
 <xs:enumeration value="SensorTimeout" /> 481
 <xs:enumeration value="Unsupported" /> 482
 <xs:enumeration value="BadValue" /> 483
 <xs:enumeration value="NoSuchParameter" /> 484
 <xs:enumeration value="PreparingDownload" /> 485
 </xs:restriction> 486

 Specification for WS-Biometric Devices (Draft 0)

18

 </xs:simpleType> 487

4.1.5.1 Definitions 488

The following table defines all of the potential values for the WsbdStatus enumeration. 489

Value Description
success The operation completed successfully.
failure The operation failed. The failure was due to a web service (as opposed to a

sensor error).
invalidId The provided id is not valid. This can occur if the client provides a (session or

capture) id that is either:

(a) unknown to the server (i.e., does not correspond to a known registration
or capture result), or

(b) the session has been marked inactive because too much time has passed
between operations associated with the provided (session) id

canceled The operation was cancelled.

NOTE: A sensor service might cancel its own operation if it is taking too long.
This can happen if a service maintains its own internal timeout that is shorter
than a sensor timeout.

canceledWithSensorFailure The operation was cancelled, but during (and perhaps because of)
cancellation, a sensor failure occurred.

This particular status accommodates for hardware that may not natively
support cancelation.

sensorFailure The operation could not be performed because a biometric sensor (as
opposed to web service) failure.

NOTE: Clients that receive sensorFailure should assume that the sensor will
need to be reinitialized in order to restore normal operation.

lockNotHeld The operation could not be performed because the client does not hold the
lock.

NOTE: This status implies that at the time the lock was queried, no other
client currently held the lock. Therefore, this is not a guarantee that any
subsequent attempts to obtain the lock will succeed.

lockHeldByAnother The operation could not be performed because another client currently holds
the lock.

initializationNeeded The operation could not be performed because the sensor requires
initialization.

configurationNeeded The operation could not be performed because the sensor requires
configuration.

sensorBusy The operation could not be performed because the sensor is currently
performing another task.

sensorTimeout The operation was not performed because the biometric sensor experienced a
timeout.

NOTE: The most common cause of a sensor timeout would be a lack of
interaction with a sensor within an expected timeframe.

unsupported The service does not support the requested operation.

 Specification for WS-Biometric Devices (Draft 0)

19

NOTE: Typically, this status occurs because the sensor was configured into a
state that was syntactically valid, but not supported.

badValue The operation could not be performed because a value provided for a
particular parameter was either (a) an incompatible type or (b) outside of an
acceptable range.

noSuchParameter The operation could not be performed because the service did not recognize
the name of a provided parameter.

preparingDownload The operation could not be performed because the service is currently
preparing captured data for download.

There should be a general note here identifying those status values that are more relevant for physically 490

separate implementations, and how an physically integrated service/sensor would be less likely to use some of 491

the various return values. 492

4.1.5.2 Parameter Failures 493

Services MUST distinguish among invalidId, noSuchParameter, and badValue according to the following 494

rules: 495

1. If an operation does not recognize a provided parameter name, then the service must return 496

noSuchParameter. 497

2. If an operation recognizes a provided parameter name, but cannot accept the provided value, the 498

then service must return badValue. 499

3. If an operation recognizes a URL parameter as an RFC-compliant UUID (i.e., the UUID is parseable), 500

but cannot accept the provided value, then the service must return an invalidId. 501

(Informative) It may be helpful to think of invalidId as a special case of badValue reserved for URL parameters 502

of type UUID. 503

4.1.5.3 Precedence of Status Enumerations 504

To maximize the amount of information given to a client when an error is obtained, all WS-Biometric 505

Devicesservices must return status values according to the same well-defined priority. In other words, when 506

multiple status messages might apply, a higher-priority status must always be returned in favor of a lower-507

priority status. 508

The status priority, listed from highest priority (“success”) to lowest priority (“failure”) is as follows: 509

1. success 510

2. invalidId 511

3. noSuchParameter 512

4. badValue 513

5. unsupported 514

6. canceledWithSensorFailure 515

7. canceled 516

8. lockHeldByAnother 517

9. lockNotHeld 518

10. sensorBusy 519

11. sensorFailure 520

12. sensorTimeout 521

13. initializationNeeded 522

14. configurationNeeded 523

15. preparingDownload 524

16. failure 525

 Specification for WS-Biometric Devices (Draft 0)

20

What follows are two examples illustrating some of the consequences of this ordering. These may be easier to 526

understand after §5. 527

EXAMPLE: Figure 3 illustrates that client cannot receive a “sensorBusy” status if it does not hold the lock, 528

even if a sensor operation is in progress. 529

 530

Figure 3. Example illustrating how a client cannot recieve a "sensorBusy" status if it does not hold the lock. 531

Suppose there are two clients; Client A and Client B. Client A holds the lock and starts initialization (Step 532

1–3). Immediately after Client A initiates capture, Client B (Step 4) tries to obtain the lock while Client A is 533

still capturing. In this situation, the valid statuses that could be returned to Client B are “sensorBusy” 534

(since the sensor is busy performing a capture) and “lockHeldByAnother” (since Client A holds the lock). 535

In this case, the service returns “lockHeldByAnother” (Step 5) since “lockHeldByAnother” is higher priority 536

than “sensorBusy.” 537

EXAMPLE: The status “canceledWithSensorFailure” and “canceled” are deliberately higher priority than 538

“lockHeldByAnother” and “lockNotHeld.” This is to cover the situation where a client steals a lock, and 539

cancels an operation already in progress. 540

4.2 WsbdResult 541

All WS-Biometric Devices operations must return a WsbdResult that conforms to the following XML Schema 542

fragment. 543

<xs:complexType name="WsbdResult"> 544
 <xs:sequence> 545
 <xs:element minOccurs="1" name="status" type="wsbd:WsbdStatus"/> 546
 <xs:element minOccurs="0" name="badFields " nillable="true" type="wsbd:WsbdStringArray"/> 547
 <xs:element minOccurs="0" name="sessionId" nillable="true" type="wsbd:uuid"/> 548
 <xs:element minOccurs="0" name="captureIds " nillable="true" type="wsbd:WsbdUuidArray"/> 549
 <xs:element minOccurs="0" name="commonInfo" nillable="true" type="wsbd:WsbdDictionary"/> 550
 <xs:element minOccurs="0" name="configuration" nillable="true" type="wsbd:WsbdDictionary"/> 551
 <xs:element minOccurs="0" name="detailedInfo" nillable="true" type="wsbd:WsbdDictionary"/> 552
 <xs:element minOccurs="0" name="message" nillable="true" type="xs:string"/> 553

Client A Server Client B

Lock owner = (none)

1:lock

{A1234567...}

Lock owner = {A1234567...}

2:lock

success

3:initialize

{A1234567...}

4:lock

{B890B123...}

5:lock

lockHeldByAnother

6:initialize

success

 Specification for WS-Biometric Devices (Draft 0)

21

 <xs:element minOccurs="0" name="mimeType" nillable="true" type="xs:string"/> 554
 <xs:element minOccurs="0" name="sensorData" nillable="true" type="xs:base64Binary"/> 555
</xs:sequence> 556
</xs:complexType> 557

The following is a brief informative description of each WsbdResult element. 558

Element Description
status The disposition of the operation. All WsbdResults must contain a status

element.
badFields The list of fields that contain invalid or ill-formed values
sessionId A unique session identifier (§5.3, §5.4)

commonInfo Service metadata that is independent of session and does not require control
of the target biometric sensor (§5.8

detailedInfo Service metadata that is session dependent, or requires control of the target
biometric sensor (§5.9

configuration The target biometric sensor’s current configuration (§5.11, §5.12)
captureIds Identifiers that may be used to obtain data acquired from a capture operation

(§5.13, §5.15)
contentType The format of the biometric for the corresponding capture identifier (§5.14)
sensorData The biometric data corresponding to a particular capture identifier (§5.15)

The next major section describes the use of each WsbdResult element in detail. 559

 Specification for WS-Biometric Devices (Draft 0)

22

5 Operations 560

This section provides detailed information regarding each WS-Biometric Devices operation. 561

5.1 General Usage Notes 562

The following usage notes apply to all operations, unless the detailed documentation for a particular 563

operation conflicts with these general notes, in which case the detailed documentation takes precedence. 564

1. Failure messages are informative. If an operation fails, then the message element may contain an 565

informative message regarding the nature of that failure. The message is for informational purposes 566

only—the functionality of a client must not depend on the contents of the message. 567

2. Results must only contain required and optional elements. Services must only return elements 568

that are not required or optional. All other elements must not be contained in the result, even if they 569

are empty elements. Likewise, to maintain robustness in the face of a non-conformant service, clients 570

should ignore any element that is not in the list of permitted WsbdResult elements for a particular 571

operation call. 572

3. Sensor operations must not occur within a non-sensor operation. Services must not perform any 573

sensor control within operations [LIST]. Similarly, services are permitted (but not required) to 574

perform operations that control the biometric sensor only within the following operations: 575

4. Sensor operations must require locking. Even if a service implements a sensor operation without 576

controlling the target biometric sensor. 577

5. Content Type. Clients must make HTTP requests using the application/xml content type. 578

5.1.1 Visual Summaries 579

The following two tables provide a visual summary of WS-Biometric Devices operations. 580

 Specification for WS-Biometric Devices (Draft 0)

23

5.1.1.1 Input & Output 581

The following table represents a visual summary of the various inputs and outputs corresponding to each 582

operation. 583

U
R

L

H
T
T
P

 M
e
th

o
d

O
p

e
ra

ti
o

n

P
a
yl

o
a
d

Id
e
m

p
o

te
n

t

S
e
n

so
r

O
p

e
ra

ti
o

n

S
ta

tu
s

B
a
d

 F
ie

ld
(s

)

S
e
ss

io
n

Id

In
fo

C
o

n
fi

g
u

ra
ti

o
n

C
a
p

tu
re

 I
d

(s
)

M
IM

E
 T

yp
e

S
e
n

so
r

D
a
ta

S
ec

ti
o

n

register POST register none
 

  
    

5.3

register/{sessionId} DELETE unregister none 

 

     
5.4

lock/{sessionId} POST try lock none 

 

     
5.5

lock/{sessionId} PUT steal lock none 

 

     
5.6

lock/{sessionId} DELETE unlock none 

 

     
5.7

info GET get common info none 

 




   
5.8

info/{sessionId} GET get detailed info none   



   
5.9

initialize/{sessionId} POST initialize none   
     

5.10

configure/{sessionId}
GET get configuration none   

 


  
5.11

POST set configuration config   
     

5.12

capture/{sessionId} POST capture none

  

  


 
5.13

capture/{captureId} GET get content type none 

 

   



5.14

download/{captureid} GET download none 

 

   
  5.15

download/{captureid}/{maxSize} GET thrifty download none 

 

    
 5.16

cancel/{sessionId} POST cancel operation none   
     

5.17

Presence (absence) of a symbol in a table cell indicates that the operations are idempotent (not idempotent), 584

a sensor operation (not a sensor operation) and which elements of the WsbdResult are required. 585

EXAMPLE: The capture operation is not idempotent, a sensor operation, and may contain the elements 586

status, badFields, and/or captureIds in its WsbdResult. The specific rules regarding which elements are 587

permitted depending on the 588

 589

 Specification for WS-Biometric Devices (Draft 0)

24

5.1.1.2 Permitted Status Values 590

The following table provides a visual summary of the status values permitted. 591

Operation
Description

S
u

cc
e
ss

Fa
il

u
re

In
va

li
d

 I
d

C
a
n

ce
ll

e
d

C
a
n

ce
ll

e
d

 w
it

h
 S

e
n

so
r

Fa
il

u
re

S
e
n

so
r

Fa
il

u
re

Lo
ck

 N
o

t
H

e
ld

Lo
ck

 H
e
ld

 B
y

A
n

o
th

e
r

S
e
n

so
r

N
e
e
d

s
In

it
ia

li
za

ti
o

n

S
e
n

so
r

N
e
e
d

s
C

o
n

fi
g
u

ra
ti

o
n

S
e
n

so
r

B
u

sy

S
e
n

so
r

T
im

e
o
u

t

U
n

su
p

p
o
rt

e
d

B
a
d

 V
a
lu

e

N
o

 S
u

ch
 P

a
ra

m
e
te

r

P
re

p
a
ri

n
g
 D

o
w

n
lo

a
d

register                
unregister                

try lock                
steal lock                

unlock                
common metadata                
detailed metadata                

initialize                
get configuration                
set configuration                

capture                
get content type                

download captured data                

thrifty download                

cancel                

The presence (absence) symbol in a cell indicates that the respective status may (may not) be returned by the 592

corresponding operation. 593

EXAMPLE: The register operation may only return a WsbdResult with a WsbdStatus that contains either 594

success or failure. The unregister operation may only return success, failure, invalidId, sensorBusy, or 595

badValue. 596

5.2 Documentation Conventions 597

Each WS-Biometric Devices operation is documented according to the following conventions. 598

5.2.1 General Information 599

Each operation begins with the following tabular summary: 600

Description A short description of the operation
HTTP Method The HTTP method that triggers the operation, i.e., GET, POST, PUT, or DELETE
URL Template The suffix used to access the operation. These take the form

 Specification for WS-Biometric Devices (Draft 0)

25

resourceName

or

resourceName/{URL_parameter1}/…/{URL_parameter_N}

Each parameter, {URL_parameter_N} must be replaced, in-line with the value to
be passed in for that particular parameter.

Parameters have no explicit names, other than defined by this document or
reported back to the client within the contents of a badFields element.

It is assumed that consumers of the service will prepend the URL to the service
endpoint as appropriate.

EXAMPLE: The resource resourceName hosted at the endpoint

http://example.com/Service

would be accessible via

http://example.com/Service/resourceName

URL Parameters A description of the URL-embedded operation parameters. For each parameter
the following details are provided:

 the name of the parameter
 the expected data type (§16)
 a description of the parameter

Payload A description of the content, if any, to be posted to the service as input to an
operation.

Idempotent Yes—the operation is idempotent (§3.4.6), or,
No—the operation is not idempotent

Sensor Operation
(Lock Required)

Yes—the service may require exclusive control over the target biometric sensor.
No—this operation does not require a lock. No

Given the concurrency model (§3.4.4) this value doubles as documentation as to
whether or not a lock is required

5.2.2 WsbdResult Summary 601

5.2.3 Usage Notes 602

5.2.4 Unique Knowledge 603

For each operation, there is a brief description of whether or not the operation affords an opportunity for the 604

server or client to exchange information that might otherwise hinder interoperability. 605

5.2.5 Return Values Detail 606

 607

 Specification for WS-Biometric Devices (Draft 0)

26

5.3 Register 608

Description Open a new client-server session
HTTP Method POST

URL Template /register

URL Parameters None
Payload Not applicable

Idempotent No
Sensor Operation No

5.3.1 WsbdResult Summary 609

success status="success"

sessionId=session id (UUID)
failure status="failure"

message*=informative message describing failure

5.3.2 Usage Notes 610

Register provides a unique identifier that can be used to associate a particular client with a server. 611

In a sequence of operations with a service, a register operation is likely one of the first operations performed 612

by a client (‘Common Info’ being the other). It is expected (but not required) that a client would perform a 613

single registration during that client’s lifetime. 614

DESIGN NOTE: By using an UUID, as opposed to the source IP address, a server can distinguish among clients 615

sharing the same originating IP address (i.e., multiple clients on a single machine, or multiple machines 616

behind a firewall). 617

5.3.3 Unique Knowledge 618

The register operation affords no opportunity to provide or obtain unique knowledge. 619

5.3.4 Return Values Detail 620

The register operation must return a WsbdResult according to the following constraints. 621

5.3.4.1 Success 622

Status Value success
Condition The service accepts the registration request

Required Elements status

must be populated with the WsbdStatus literal "success"

sessionId
must be populated with a UUID that can be used for subsequent operations.

Optional Elements None

The “register” operation must not provide a sessionId of 00000000-0000-0000-0000-000000000000 (i.e., an 623

empty UUID). 624

5.3.4.2 Failure 625

Status Value failure
Condition The service cannot accept the registration request

Required Elements status

 Specification for WS-Biometric Devices (Draft 0)

27

must be populated with the literal "failure"

Optional Elements message

An informative description of the nature of the failure.

Registration might fail if there are too many sessions already registered with a service. The message element 626

must only be used for informational purposes. Clients must not depend on particular contents of the message 627

element to control client behavior. 628

There should be a cross-reference to the common metadata section on how a client can determine the 629

maximum number of concurrent sessions a service can support. The common info might also report the 630

number of registered clients, so that as this count approaches. 631

 Specification for WS-Biometric Devices (Draft 0)

28

5.4 Unregister 632

Description Close a client-server session
HTTP Method DELETE

URL Template /register/{sessionId}

URL Parameters {sessionId} (UUID, §4.1.1)
Identity of the session to remove

Payload Not applicable
Idempotent Yes

Sensor Operation No

5.4.1 WsbdResult Summary 633

success status="success"

failure status="failure"

message*=informative message describing failure
sensorBusy status="sensorBusy"

badValue status="badValue", badFields={"sessionId"}

5.4.2 Usage Notes 634

Unregister closes a client-server session. Although not strictly necessary, clients should unregister from a 635

service when it is no longer needed. Services should support (on the order of) thousands of concurrent 636

sessions, but this cannot be guaranteed, particularly if the service running within limited computational 637

resources. Conversely, clients should assume that the number of concurrent sessions that a service can 638

support is limited. There should be a cross-reference here regarding how a client can determine the number of 639

total vs. current concurrent sessions offered by a service. 640

5.4.2.1 Inactivity 641

A service may automatically unregister a client after a period of inactivity, or if demand on the service 642

requires that least-recently used sessions be dropped. This is manifested by a client receiving a status of 643

invalidId without a corresponding unregistration. Services should set this value on or about the order of 100 644

minutes. There should be a cross-reference here regarding how a client can determine the period of inactivity 645

that would trigger automatic closing of a session. 646

5.4.2.2 Sharing Session Ids 647

A session id is not a secret, but clients that share session ids run the risk of having their session prematurely 648

terminated by a rouge peer client. This behavior is permitted, but discouraged. See §3.4.1 for more 649

information about security. 650

5.4.3 Unique Knowledge 651

The unregister operation affords no opportunity to provide or obtain unique knowledge. 652

5.4.4 Return Values Detail 653

The unregister operation must return a WsbdResult according to the following constraints. 654

 Specification for WS-Biometric Devices (Draft 0)

29

5.4.4.1 Success 655

Status Value success
Condition The service accepted the unregistration request

Required Elements status

must be populated with the WsbdStatus literal "success"
Optional Elements None

After unregistration, subsequent operations providing the unregistered session id must result in an invalidId 656

status. An exception is the extremely unlikely case that the session id happens to be reused by the service 657

during another registration. 658

As a consequence of idempotency, a session id does not need to ever have been registered successfully in 659

order to unregister successfully. Consequently, the unregister operation cannot return a status of invalidId. 660

5.4.4.2 Failure 661

Status Value failure
Condition The service could not unregister the session.

Required Elements status

must be populated with the literal "failure"

Optional Elements message

An informative description of the nature of the failure.

In practice, failure to unregister is expected to be a rare occurrence. Failure to unregister might occur if the 662

service experiences a fault with an external system— such as a with centralized database used to track 663

session registration and unregistration. 664

5.4.4.3 Sensor Busy 665

Status Value sensorBusy

Condition The service could not unregister the session because the biometric sensor is
currently performing a sensor operation within the session being unregistered.

Required Elements status

must be populated with the literal "sensorBusy"

Optional Elements None

This status must only be returned if (a) the sensor is busy and (b) the client making the request holds the lock 666

(i.e., the session id provided matches that associated with the current service lock). Any client that does not 667

hold the session lock must not result in a sensorBusy status. 668

 Specification for WS-Biometric Devices (Draft 0)

30

EXAMPLE: The following sequence diagram illustrates a client that cannot unregister (Client A) and a client 669

that can unregister (Client B), even though the service is performing a sensor operation for Client A. 670

 671

Figure 4. Example of how an unregister operation can result in sensorBusy. 672

5.4.4.4 Bad Value 673

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status

must be populated with the literal "badValue"

badFields

must be populated with a WsbdStringArray that contains a single element,
“sessionId”. I.e. “<element>sessionId</element>”. Note that sessionId is the
literal “sessionId”, not the ill-formed value.

Optional Elements None

Client A Server Client B

Lock owner = {A1234567...}

1:initialize

{A1234567...}

2:initialize

success

Client A, holding the lock, can start initialization.

3:unregister

{B890B123...}

4:unregister

success

Client B does not hold the lock, and can unregister,
even though the service is performing a sensor
operation.

5:unregister

{A1234567...}

6:unregister

sensorBusy

On a separate thread, Client A makes an
unregistration request. Client A is not permitted to
unregister, because Client A holds the lock, and is
responsible for a pending sensor operation
(initialization).

 Specification for WS-Biometric Devices (Draft 0)

31

5.5 Try Lock 674

Description Try to obtain the service lock
HTTP Method GET

URL Template /lock/{sessionId}

URL Parameters {sessionId} (UUID, §4.1.1)
Identity of the session requesting the service lock

Payload Not applicable
Idempotent Yes

Sensor Operation No

5.5.1 WsbdResult Summary 675

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

lockHeldByAnother status="lockHeldByAnother"

badValue status="badValue", badFields={"sessionId"}

5.5.2 Usage Notes 676

The try lock operation attempts to obtain the service lock. The word “try” is used to indicate that the call 677

returns immediately, and does not block until the lock is obtained. See §3.4.4 for detailed information about 678

the WS-Biometric Devices concurrency and locking model. 679

5.5.3 Unique Knowledge 680

The try lock operation affords no opportunity to either provide or obtain unique knowledge. 681

5.5.4 Return Values Detail 682

The try lock operation must return a WsbdResult according to the following constraints. 683

5.5.4.1 Success 684

Status Value success
Condition The service was successfully locked to the provided session id.

Required Elements status

must be populated with the WsbdStatus literal "success"
Optional Elements None

Clients that hold the service lock are permitted to perform sensor operations (§3.4.4). By idempotency 685

(§3.4.6), if a client already holds the lock, subsequent try lock operations should also return success. 686

5.5.4.2 Failure 687

Status Value failure
Condition The service could not be locked to the provided session id.

Required Elements status

must be populated with the WsbdStatus literal "failure"
Optional Elements message

An informative description of the nature of the failure.

 Specification for WS-Biometric Devices (Draft 0)

32

Services must reserve a failure status to report system or internal failures and prevent the acquisition of 688

the lock. Most try lock operations that do not succeed will not produce a failure status, but more likely a 689

lockHeldByAnother status (See §5.5.4.4 for an example). 690

5.5.4.3 Invalid Id 691

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status

must be populated with the WsbdStatus literal "invalidId"
Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 692

unregistered from a service through explicit unregistration or, triggered automatically by the service due to 693

inactivity (§5.4.4.1). 694

5.5.4.4 Lock Held by Another 695

Status Value lockHeldByAnother
Condition The service could not be locked to the provided session id because the lock is held

by another client.
Required Elements status

must be populated with the WsbdStatus literal "lockHeldByAnother"
Optional Elements None

EXAMPLE: The following sequence diagram illustrates a client that cannot obtain the lock (Client B) because 696

it is held by another client (Client A). 697

 698

Figure 5. Example of a scenario yielding a lockHeldByAnother result. 699

5.5.4.5 Bad Value 700

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status

must be populated with the literal "badValue"

badFields

must be populated with a WsbdStringArray that contains a single element,
“sessionId”. I.e. “<element>sessionId</element>”. Note that sessionId is the
literal “sessionId”, not the ill-formed value.

Optional Elements None

Client A Server Client B

Lock owner = (none)

1:lock

{A1234567...}

Lock owner = {A1234567...}

2:lock

success

3:lock

{B890B123...}

4:lock

lockHeldByAnother

 Specification for WS-Biometric Devices (Draft 0)

33

5.6 Steal Lock 701

Description Forcibly obtain the lock away from a peer client
HTTP Method PUT

URL Template /lock/{sessionId}

URL Parameters {sessionId} (UUID, §4.1.1)
Identity of the session requesting the service lock

Payload Not applicable
Idempotent Yes

Sensor Operation No

5.6.1 WsbdResult Summary 702

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badValue status="badValue", badFields={"sessionId"}

5.6.2 Usage Notes 703

The steal lock operation allows a client to forcibly obtain the lock away from another client that already holds 704

the lock. The purpose of this operation is to prevent a client that experiences a fatal error from forever 705

preventing another client access to the service, and therefore, the biometric sensor. 706

5.6.2.1 Avoid Lock Stealing 707

System integrators should endeavor to reserve lock stealing for exceptional circumstances—such as when a 708

fatal error prevents a client from releasing a lock. Lock stealing should not be used as the primary mechanism 709

in which peer clients coordinate biometric sensor use. 710

5.6.2.2 Lock Stealing Prevention Period (LSPP) 711

To assist in coordinating access among clients, and to prevent excessive lock stealing, a service may trigger a 712

time period that forbids lock stealing for each sensor operation. For convenience, this period of time will be 713

referred to as the lock stealing prevention period (LSPP). 714

During the LSPP, all attempts to steal the service lock will fail. Consequently, if a client experiences a fatal 715

failure during a sensor operation, then all peer clients need to wait until the service re-enables lock stealing. 716

All services should implement a non-zero LSPP to forbid locking. The recommended time for the LSPP is on 717

the order of 100 seconds. Services that enforce an LSPP must start the LSPP at the start of each sensor 718

operation request that proceeds far enough that a service would require sovereign sensor control. Examples 719

of request that could proceed without sovereign sensor control are those that return a status of invalidId, or 720

badValue. In these cases, there is no functional need to prevent lock stealing since the request does not 721

directly involve the biometric sensor. More specifics and examples might be necessary here. There may be a 722

need to identify that different implementations may or may not trigger the LSPP on borderline status results, 723

such as ‘failure’, and that each sensor operation itself might be a new decision point on whether or not to 724

trigger a LSPP 725

 Specification for WS-Biometric Devices (Draft 0)

34

An LSPP ends after a fixed amount of time has elapsed, unless another sensor operation restarts the LSPP. 726

There should be a forward reference to how a service describes the lock-stealing period to a client. It may be 727

desirable to have a (common info) name-value pair that reveals if the service is currently within an LSPP or not. 728

Services should keep the length of the LSPP fixed throughout the service’s lifecycle. It is recognized, however, 729

that there may be use cases in which a variable LSPP timespan is desirable or required . Regardless, when 730

determining the appropriate timespan, implements should carefully consider the tradeoffs between 731

preventing excessive lock stealing, versus forcing all clients to wait until a service re-enables lock stealing. 732

5.6.2.3 Cancelation & (Lack of) Client Notification 733

Lock stealing must have no effect on any currently running sensor operations. It is possible that a client 734

initiates a sensor operation, has its lock stolen away, yet the operation return successfully. Subsequent 735

operations would yield a lockNotHeld status, which a client could use to indicate that their lock was stolen 736

away from them. This cannot occur if the length of the LSPP is longer than any sensor operation. This will be 737

the case for most service implementations, however, clients should accommodate for the possibility. 738

5.6.3 Unique Knowledge 739

The steal lock operation affords no opportunity to provide or obtain unique knowledge. 740

5.6.4 Return Values Detail 741

The steal lock operation must return a WsbdResult according to the following constraints. 742

5.6.4.1 Success 743

Status Value success
Condition The service was successfully locked to the provided session id.

Required Elements status

must be populated with the WsbdStatus literal "success"
Optional Elements None

See the above usage notes for details (§3.4.4). 744

5.6.4.2 Failure 745

Status Value failure
Condition The service could not be locked to the provided session id.

Required Elements status

must be populated with the WsbdStatus literal "failure"
Optional Elements message

An informative description of the nature of the failure.

Most steal lock operations that yield a failure status will do so because the service receives a lock stealing 746

request during a lock stealing prevention period (§5.6.2.2). Services must also reserve a failure status to 747

other non-LSPP failures that prevent the acquisition of the lock. 748

Implementers may choose to use the optional message field to provide more information to an end-user as to 749

the specific reasons for the failure. However (as with all other failure status results), clients must not 750

depend on any particular content to make this distinction. Based on service metadata (forward reference 751

needed) clients might infer if the failure was likely due to a LSPP failure or otherwise. 752

 Specification for WS-Biometric Devices (Draft 0)

35

5.6.4.3 Invalid Id 753

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status

must be populated with the WsbdStatus literal "invalidId"
Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 754

unregistered from a service through explicit unregistration or, triggered automatically by the service due to 755

inactivity (§5.4.4.1). 756

5.6.4.4 Bad Value 757

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status

must be populated with the literal "badValue"

badFields

must be populated with a WsbdStringArray that contains a single element,
“sessionId”. I.e. “<element>sessionId</element>”. Notice that sessionId is
the literal “sessionId”, not the ill-formed value.

Optional Elements None

 Specification for WS-Biometric Devices (Draft 0)

36

5.7 Unlock 758

Description Release the service lock
HTTP Method PUT

URL Template /lock/{sessionId}

URL Parameters {sessionId} (UUID, §4.1.1)
Identity of the session releasing the service lock

Payload Not applicable
Idempotent Yes

Sensor Operation No

5.7.1 WsbdResult Summary 759

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

badValue status="badValue", badFields={"sessionId"}

5.7.2 Usage Notes 760

The unlock operation release a service lock, making locking available to other clients. See §3.4.4 for detailed 761

information about the WS-Biometric Devices concurrency and locking model. 762

5.7.2.1 Success 763

Status Value success
Condition The service returned to an unlocked state.

Required Elements status

must be populated with the WsbdStatus literal "success"
Optional Elements None

Upon releasing the lock, a client is no longer permitted to perform any sensor operations (§3.4.4). By 764

idempotency (§3.4.6), if a client already has released the lock, subsequent try lock operations should also 765

return success. 766

 Specification for WS-Biometric Devices (Draft 0)

37

5.8 Get Common Info 767

Description Retrieve metadata about the service that does not depend on session-specific
information, or sovereign control of the target biometric sensor

HTTP Method GET

URL Template /info

URL Parameters None
Payload Not applicable

Idempotent Yes
Sensor Operation No

5.8.1 WsbdResult Summary 768

success status="success"

commonInfo=dictionary containing service metadata
failure status="failure"

message*=informative message describing failure

5.8.2 Usage Notes 769

The get common info operation provides information about the service and target biometric sensor. This 770

operation must return information that is both (a) independent of session, and (b) does not require the 771

service to request dynamic and exclusive access to the target biometric sensor. The term “dynamic” is used to 772

indicate that services must not control the target biometric sensor during a get common info operation itself. 773

Implementers may (and are encouraged to) use service startup time to query the biometric sensor directly to 774

create a cache of information and capabilities. The contents of this cache are a basis for get common info 775

operations. 776

The get common info operation does not require that a client be registered with the service, and therefore, 777

unlike other operations, take a session id as a URL parameter. 778

5.8.3 Unique Knowledge 779

The get common info operation affords ample opportunity for a service to provide unique component 780

knowledge to a client. A series of well-accepted name-value pairs that could provide a baseline of 781

functionality across all services is defined in detail in Appendix A. 782

5.8.4 Return Values Detail 783

The steal lock operation must return a WsbdResult according to the following constraints. 784

5.8.4.1 Success 785

Status Value success
Condition The service provides service metadata

Required Elements status

must be populated with the WsbdStatus literal "success"

commonInfo

must be populated with a WsbdResult that contains service metadata

Optional Elements None

See Appendix 0 for detailed information on common metadata. 786

 Specification for WS-Biometric Devices (Draft 0)

38

5.8.4.2 Failure 787

Status Value failure
Condition The service cannot provide service metadata

Required Elements status

must be populated with the WsbdStatus literal "failure"
Optional Elements message

An informative description of the nature of the failure.

 788

 Specification for WS-Biometric Devices (Draft 0)

39

5.9 Get Detailed Info 789

Description Retrieve metadata about the service that may depend on either session-specific
information or sovereign control of the target biometric sensor

HTTP Method GET

URL Template /info/{sessionId}

URL Parameters {sessionId} (UUID, §4.1.1)
Identity of the session requesting detailed metadata

Payload Not applicable
Idempotent Yes

Sensor Operation Yes

5.9.1 WsbdResult Summary 790

5.9.2 Usage Notes 791

The get detailed info operation provides information about the service and target biometric sensor. Unlike its 792

counterpart (get common info), get detailed info may return information that is (a) dependent of session 793

and/or (b) requires dynamic and exclusive access to the target biometric sensor. That is, a get detailed info 794

may directly communicate with the target biometric sensor within a get detailed info operation. Therefore, the 795

in order to be successful, a get detailed info operation requires that the client hold the service lock. 796

5.9.3 Unique Knowledge 797

The get detailed info operation affords ample opportunity for a service to provide unique component 798

knowledge to a client. A series of well-accepted name-value pairs that could provide a baseline of 799

functionality across all services is defined in detail in Appendix B. 800

5.9.4 Return Values Detail 801

The get detailed info operation must return a WsbdResult according to the following constraints. 802

5.9.4.1 Success 803

Status Value success
Condition The service provides service metadata

Required Elements status

must be populated with the WsbdStatus literal "success"

success status="success"

detailedInfo=dictionary containing service metadata
failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="canceled"

sensorNeedsInitialization status="canceledWithSensorFailure"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue", badFields={"sessionId"}

 Specification for WS-Biometric Devices (Draft 0)

40

commonInfo

must be populated with a WsbdResult that contains detailed service metadata

Optional Elements None

See Appendix B for full information on detailed metadata. 804

5.9.4.2 Failure 805

Status Value failure
Condition The service cannot provide service metadata due to service (not target biometric

sensor) error.
Required Elements status

must be populated with the WsbdStatus literal "failure"
Optional Elements message

An informative description of the nature of the failure.

Services must only use this status to report failures that occur within the web service, not the target biometric 806

sensor (see §5.9.4.4, §5.9.4.5). 807

5.9.4.3 Invalid Id 808

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status

must be populated with the WsbdStatus literal "invalidId"
Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 809

unregistered from a service through explicit unregistration or, triggered automatically by the service due to 810

inactivity (§5.4.4.1). 811

5.9.4.4 Canceled 812

Status Value canceled
Condition The operation was interrupted by a cancelation request.

Required Elements status

must be populated with the WsbdStatus literal "canceled"
Optional Elements None

Like all sensor operations, the get detailed info operation can be explicitly canceled by the originating a client, 813

a client that stole the service lock, or, automatically by the service if the service determines that the operation 814

has been running for too long (§forward reference needed). 815

5.9.4.5 Canceled with Sensor Failure 816

Status Value canceledWithSensorFailure
Condition The operation was interrupted by a cancelation request during which the target

biometric sensor experienced a failure
Required Elements status

must be populated with the WsbdStatus literal "canceledWithSensorFailure"
Optional Elements message

An informative description of the nature of the failure.

Services must return a canceledWithSensorFailure result if a cancelation request caused a failure within the 817

target biometric sensor. Clients receiving this result may need to perform initialization to restore full 818

functionality. 819

 Specification for WS-Biometric Devices (Draft 0)

41

5.9.4.6 Sensor Failure 820

Status Value sensorFailure
Condition The service could not retrieve detailed information due to a failure within the

target biometric sensor.
Required Elements status

must be populated with the WsbdStatus literal "sensorFailure"
Optional Elements message

An informative description of the nature of the failure.

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor, 821

not a failure within the web service (§5.10.4.2). 822

5.9.4.7 Lock Not Held 823

Status Value lockNotHeld
Condition The service could not retrieve detailed information because the requesting client

does not hold the lock.
Required Elements status

must be populated with the WsbdStatus literal "lockNotHeld"
Optional Elements None

Initialization is a sensor operation, and requires that the requesting client holds the service lock. 824

5.9.4.8 Lock Held by Another 825

Status Value lockHeldByAnother
Condition The service could not retrieve detailed information because the lock is held by

another client.
Required Elements status

must be populated with the WsbdStatus literal "lockHeldByAnother"
Optional Elements None

5.9.4.9 Sensor Needs Initialization 826

Status Value sensorNeedsInitialization
Condition The service could not retrieve detailed information because the target biometric

sensor has not been initialized.
Required Elements status

must be populated with the WsbdStatus literal "sensorNeedsInitialization"
Optional Elements None

Services should be able to provide detailed sensor metadata without initialization; however, this is not strictly 827

necessary. Similarly, clients should assume that retrieving sensor metadata requires initialization 828

5.9.4.10 Sensor Busy 829

Status Value sensorBusy
Condition The service could not retrieve detailed information because the service is already

performing a different sensor operation for the requesting client.
Required Elements status

must be populated with the WsbdStatus literal "sensorBusy"
Optional Elements None

5.9.4.11 Sensor Timeout 830

Status Value sensorTimeout
Condition The service could not retrieve detailed information because the target biometric

sensor took too long to complete the request.

 Specification for WS-Biometric Devices (Draft 0)

42

Required Elements status

must be populated with the WsbdStatus literal "sensorTimeout"
Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 831

distinct from the client’s originating HTTP request, which may have its own, independent timeout. A forward 832

reference to timeout metadata may be needed. 833

5.9.4.12 Bad Value 834

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status

must be populated with the literal "badValue"

badFields

must be populated with a WsbdStringArray that contains a single element,
“sessionId”. I.e. “<element>sessionId</element>”. Notice that sessionId is
the literal “sessionId”, not the ill-formed value.

Optional Elements None

 Specification for WS-Biometric Devices (Draft 0)

43

5.10 Initialize 835

Description Initialize the target biometric sensor
HTTP Method GET

URL Template /initialize/{sessionId}

URL Parameters {sessionId} (UUID, §4.1.1)
Identity of the session requesting detailed metadata

Payload Not applicable
Idempotent Yes

Sensor Operation Yes

5.10.1 WsbdResult Summary 836

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="canceled"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue", badFields={"sessionId"}

5.10.2 Usage Notes 837

The initialize operation prepares the target biometric sensor for (other) sensor operations. 838

Although not strictly necessary, services should directly map this operation to the initialization of the target 839

biometric sensor, unless the service can otherwise determine that the target biometric sensor is in a fully 840

operation state. This would enable the ability of a client to attempt a manual reset of a sensor that has 841

entered a faulty state—particularly useful in physically separated service implementations. 842

Some biometric sensors have requirement for explicit initialization. Services exposing such a sensor should 843

immediately return a success result. 844

5.10.3 Unique Knowledge 845

The initialize operation affords no opportunity to provide or obtain unique knowledge. 846

5.10.4 Return Values Detail 847

5.10.4.1 Success 848

Status Value success
Condition The service successfully initialized the target biometric sensor

Required Elements status

must be populated with the WsbdStatus literal "success"
Optional Elements None

 Specification for WS-Biometric Devices (Draft 0)

44

5.10.4.2 Failure 849

Status Value failure
Condition The service experienced a fault that prevented successful initilazation.

Required Elements status

must be populated with the WsbdStatus literal "failure"
Optional Elements message

An informative description of the nature of the failure.

A failure status must only be used to report failures that occurred within the web service, not within the 850

target biometric sensor (§5.10.4.5, §5.10.4.6) 851

5.10.4.3 Invalid Id 852

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status

must be populated with the WsbdStatus literal "invalidId"
Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 853

unregistered from a service through explicit unregistration or, triggered automatically by the service due to 854

inactivity (§5.4.4.1). 855

5.10.4.4 Canceled 856

Status Value canceled
Condition The initialization operation was interrupted by a cancelation request.

Required Elements status

must be populated with the WsbdStatus literal "canceled"
Optional Elements None

The initialize operation can be explicitly canceled by the originating a client, a client that stole the service lock, 857

or, automatically by the service if the service determines that the operation has been running for too long 858

(§forward reference needed). 859

5.10.4.5 Canceled with Sensor Failure 860

Status Value canceledWithSensorFailure
Condition The initialization operation was interrupted by a cancelation request and the

target biometric sensor experienced a failure
Required Elements status

must be populated with the WsbdStatus literal "canceledWithSensorFailure"
Optional Elements message

An informative description of the nature of the failure.

Services must return a canceledWithSensorFailure result if a cancelation request caused a failure within the 861

target biometric sensor. Clients receiving this result may need to reattempt the initialization request to 862

restore full functionality. 863

5.10.4.6 Sensor Failure 864

Status Value sensorFailure
Condition The initialization failed due to a failure within the target biometric sensor

Required Elements status

must be populated with the WsbdStatus literal "sensorFailure"
Optional Elements message

An informative description of the nature of the failure.

 Specification for WS-Biometric Devices (Draft 0)

45

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor, 865

not a failure within the web service (§5.10.4.2). 866

5.10.4.7 Lock Not Held 867

Status Value lockNotHeld
Condition Initialization could not be performed because the requesting client does not hold

the lock
Required Elements status

must be populated with the WsbdStatus literal "lockNotHeld"
Optional Elements None

Initialization is a sensor operation, and requires that the requesting client holds the service lock. 868

5.10.4.8 Lock Held by Another 869

Status Value lockHeldByAnother
Condition Initialization could not be performed because the lock is held by another client.

Required Elements status

must be populated with the WsbdStatus literal "lockHeldByAnother"
Optional Elements None

5.10.4.9 Sensor Busy 870

Status Value sensorBusy
Condition Initialization could not be performed because the service is already performing a

different sensor operation for the requesting client.
Required Elements status

must be populated with the WsbdStatus literal "sensorBusy"
Optional Elements None

5.10.4.10 Sensor Timeout 871

Status Value sensorTimeout
Condition Initialization could not be performed because the target biometric sensor took too

long to complete the initialization request.
Required Elements status

must be populated with the WsbdStatus literal "sensorTimeout"
Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 872

distinct from the client’s originating HTTP request, which may have its own, independent timeout. A forward 873

reference to timeout metadata may be needed. 874

 Specification for WS-Biometric Devices (Draft 0)

46

5.11 Get Configuration 875

Description Get the target biometric sensor’s current configuration
HTTP Method GET

URL Template /configure/{sessionId}

URL Parameters {sessionId} (UUID, §4.1.1)
Identity of the session requesting the configuration

Payload Not applicable
Idempotent Yes

Sensor Operation Yes

5.11.1 WsbdResult Summary 876

success status="success"

configuration=current configuration of the sensor (WsbdResult, §4.2)
failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="canceled"

sensorNeedsInitialization status="sensorNeedsInitialization"

sensorNeedsConfiguration status="sensorNeedsConfiguration"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue", badFields={"sessionId"}

5.11.2 Usage Notes 877

The get configuration operation retrieves the service’s current configuration. 878

5.11.3 Unique Knowledge 879

The get configuration operation affords ample opportunity for a service to provide unique component 880

knowledge to a client. A series of well-accepted name-value pairs that could provide a baseline of 881

functionality across all services is defined in detail in Appendix C. 882

5.11.4 Return Values Detail 883

The get configuration operation must return a WsbdResult according to the following constraints. 884

5.11.4.1 Success 885

Status Value success
Condition The service provides the current configuration

Required Elements status

must be populated with the WsbdStatus literal "success"

configuration

must be populated with a WsbdResult that contains the service’s current
configuration

Optional Elements None

 Specification for WS-Biometric Devices (Draft 0)

47

See Appendix C for detailed information regarding configuration. 886

5.11.4.2 Failure 887

Status Value failure
Condition The service cannot provide the current configuration due to service (not target

biometric sensor) error.
Required Elements status

must be populated with the WsbdStatus literal "failure"
Optional Elements message

An informative description of the nature of the failure.

Services must only use this status to report failures that occur within the web service, not the target biometric 888

sensor (see §5.11.4.5, §5.11.4.6). 889

5.11.4.3 Invalid Id 890

Status Value invalidId
Condition The provided session id is not registered with the service.

Required Elements status

must be populated with the WsbdStatus literal "invalidId"
Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become 891

unregistered from a service through explicit unregistration or, triggered automatically by the service due to 892

inactivity (§5.4.4.1). 893

5.11.4.4 Canceled 894

Status Value canceled
Condition The get configuration operation was interrupted by a cancelation request.

Required Elements status

must be populated with the WsbdStatus literal "canceled"
Optional Elements None

Like all sensor operations, the get configuration operation can be explicitly canceled by the originating a 895

client, a client that stole the service lock, or, automatically by the service if the service determines that the 896

operation has been running for too long (§A.1.1). 897

5.11.4.5 Canceled with Sensor Failure 898

Status Value canceledWithSensorFailure
Condition The get configuration operation was interrupted by a cancelation request during

which the target biometric sensor experienced a failure
Required Elements status

must be populated with the WsbdStatus literal "canceledWithSensorFailure"
Optional Elements message

An informative description of the nature of the failure.

Services must return a canceledWithSensorFailure result if a cancelation request caused a failure within the 899

target biometric sensor. Clients receiving this result may need to perform initialization to restore full 900

functionality. 901

5.11.4.6 Sensor Failure 902

Status Value sensorFailure
Condition The configuration could not be queried due to a failure within the target biometric

sensor.

 Specification for WS-Biometric Devices (Draft 0)

48

Required Elements status

must be populated with the WsbdStatus literal "sensorFailure"
Optional Elements message

An informative description of the nature of the failure.

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor, 903

not a failure within the web service (§5.10.4.2). 904

5.11.4.7 Lock Not Held 905

Status Value lockNotHeld
Condition The configuration could not be queried because the requesting client does not

hold the lock.
Required Elements status

must be populated with the WsbdStatus literal "lockNotHeld"
Optional Elements None

Initialization is a sensor operation, and requires that the requesting client holds the service lock. 906

5.11.4.8 Lock Held by Another 907

Status Value lockHeldByAnother
Condition The configuration could not be queried because the lock is held by another client.

Required Elements status

must be populated with the WsbdStatus literal "lockHeldByAnother"
Optional Elements None

5.11.4.9 Sensor Needs Initialization 908

Status Value sensorNeedsInitialization
Condition The configuration could not be queried because the target biometric sensor has

not been initialized.
Required Elements status

must be populated with the WsbdStatus literal "sensorNeedsInitialization"
Optional Elements None

Services should be able to provide the sensors configuration without initialization; however, this is not strictly 909

necessary. Similarly, clients should assume that configuration will require initialization. 910

5.11.4.10 Sensor Needs Configuration 911

Status Value sensorNeedsConfiguration
Condition The configuration could not be queried because the target biometric sensor has

not been initialized.
Required Elements status

must be populated with the WsbdStatus literal "sensorNeedsConfiguration"
Optional Elements None

Services may require configuration to be set before a configuration can be retrieved if a service does not 912

provide a valid default configuration. 913

5.11.4.11 Sensor Busy 914

Status Value sensorBusy
Condition The configuration could not be queried because the service is already performing

a different sensor operation for the requesting client.
Required Elements status

must be populated with the WsbdStatus literal "sensorBusy"
Optional Elements None

 Specification for WS-Biometric Devices (Draft 0)

49

5.11.4.12 Sensor Timeout 915

Status Value sensorTimeout
Condition The configuration could not be queried because the target biometric sensor took

too long to complete the request.
Required Elements status

must be populated with the WsbdStatus literal "sensorTimeout"
Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is 916

distinct from the client’s originating HTTP request, which may have its own, independent timeout. A forward 917

reference to timeout metadata may be needed. 918

5.11.4.13 Bad Value 919

Status Value badValue

Condition The provided session id is not a well-formed UUID.
Required Elements status

must be populated with the literal "badValue"

badFields

must be populated with a WsbdStringArray that contains a single element,
“sessionId”. I.e. “<element>sessionId</element>”. Notice that sessionId is
the literal “sessionId”, not the ill-formed value.

Optional Elements None

 Specification for WS-Biometric Devices (Draft 0)

50

5.12 Set Configuration 920

Description Set the target biometric sensor’s configuration
HTTP Method POST

URL Template /configure/{sessionId}

URL Parameters {sessionId} (UUID, §4.1.1)
Identity of the session requesting the configuration

Payload Desired sensor configuration (WsbdDictionary, §4.1.2)
Idempotent Yes

Sensor Operation Yes

5.12.1 WsbdResult Summary 921

success status="success"
failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="canceled"

sensorNeedsInitialization status="sensorNeedsInitialization"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

unsupported status="unsupported", badFields={ set of field names }
badValue status="badValue", badFields={"sessionId"}

or
status="badValue", badFields={ set of field names }

noSuchParameter status="unsupported", badFields={ set of field names }

5.12.2 Usage Notes 922

The set configuration operation sets the configuration of a service’s target biometric sensor. 923

5.12.3 Unique Knowledge 924

The set configuration operation affords ample opportunity for a service to provide unique component 925

knowledge to a client. A series of well-accepted name-value pairs that could provide a baseline of 926

functionality across all services is defined in detail in Appendix C. 927

5.12.4 Usage Notes 928

 929

5.12.4.1 Payload 930

The set configuration operation is the only operation that takes input within the body of the HTTP request. 931

The desired configuration must be sent as a single, unnamed WsbdDictionary. 932

 Specification for WS-Biometric Devices (Draft 0)

51

EXAMPLE: The following represents a ‘raw’ request to configure a service at http://10.0.0.2:7000/Sensor 933

such that string1=value and integer1=1. In this example, each value element contains fully qualified 934

namespace information, although this is not necessary. 935

POST http://10.0.0.2:7000/Sensor/configure/1678e0fa‐b578‐4234‐bb59‐6f2f92d7b80c HTTP/1.1 936
Content‐Type: application/xml 937
Host: 10.0.0.2:7000 938
Content‐Length: 351 939
Expect: 100‐continue 940
 941
<WsbdDictionary xmlns:i="http://www.w3.org/2001/XMLSchema‐instance" xmlns="http://itl.nist.gov/w 942
sbd/L1"><item><key>string1</key><value xmlns:d3p1="http://www.w3.org/2001/XMLSchema" i:type="d3p 943
1:string">value</value></item><item><key>integer1</key><value xmlns:d3p1="http://www.w3.org/2001 944
/XMLSchema" i:type="d3p1:int">1</value></item></WsbdDictionary> 945

 946

This example should be updated to use the correct namespace 947

 Specification for WS-Biometric Devices (Draft 0)

52

5.13 Capture 948

 949

 Specification for WS-Biometric Devices (Draft 0)

53

5.14 Get Content Type 950

 951

 Specification for WS-Biometric Devices (Draft 0)

54

5.15 Download 952

 953

 Specification for WS-Biometric Devices (Draft 0)

55

5.16 Thrifty Download 954

 955

 Specification for WS-Biometric Devices (Draft 0)

56

5.17 Cancel 956

Description Cancel the current sensor operation
HTTP Method POST

URL Template /cancel/{sessionId}

URL Parameters {sessionId} (UUID, §4.1.1)
Identity of the session requesting cancelation

Payload Not applicable
Idempotent Yes

Sensor Operation Yes

5.17.1 WsbdResult Summary 957

success status="success"

failure status="failure"

message*=informative message describing failure
invalidId status="invalidId"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

badValue status="badValue", badFields={"sessionId"}

5.17.2 Usage Notes 958

The cancel operation stops any currently running sensor operation; it has no effect on non-sensor operations. 959

If cancelation of an active sensor operation is successful, cancel operation receives success result, while the 960

canceled operation receives a canceled (or canceledWithSensorFailure) result. As long as the operation is 961

canceled, the cancel operation itself receives a success result, regardless if cancelation caused a sensor 962

failure. In other words, if cancelation caused a fault within the target biometric sensor, as long as the sensor 963

operation has stopped running, the cancel operation is considered to be successful. 964

Clients are responsible for canceling all non-sensor operations via client-side mechanisms only. Cancellation 965

of sensor operations requires a separate service operation, since a service may need to “manually” interrupt a 966

busy sensor. A service that had its client terminate an operation would have no way to easily determine that a 967

cancellation request. 968

 969

 Specification for WS-Biometric Devices (Draft 0)

57

A Common Info 970

This contains detailed information on the set of “well-accepted” metadata potentially available from a get 971

common info operation. 972

A.1 Data Dictionary 973

A.2 Parameter Details 974

A.1.1 Connections 975

The following parameters describe how the service handles session lifetimes and registrations. 976

A.1.1.1 Last Updated 977

Formal Name lastUpdated
Data Type xsd:dateTime
Required Yes

This parameter provides a timestamp of when the service last updated the (other) parameters provided in the 978

common info dictionary. The timestamp must include time zone information. Implementers should expect 979

clients to use this timestamp to detect if any cached values of the (other) common info parameters may have 980

changed. 981

A.1.1.2 Inactivity Timeout 982

Formal Name inactivityTimeout
Data Type xsd:nonNegativeInteger
Required Yes

This parameter describes how long, in seconds, a session may be inactive before it may be automatically 983

closed by the service. A value of ‘0’ indicates that the service never drops sessions due to inactivity. 984

The inactivity of a session is measured as the time elapsed between the time at which last operation made 985

with the session’s id and the current time. Services must only use the session id to determine a session’s 986

inactivity time. For example, a service does not maintain different inactivity timeouts for requests that use the 987

same session id, but originate from two different IP addresses. 988

A.2.1.1 Maximum Concurrent Sessions 989

Formal Name maximumConcurrentSessions
Data Type xsd:positiveInteger
Required Yes

This parameter describes the maximum number of concurrent sessions a service can maintain. Upon startup, 990

a service must have zero concurrent sessions. When a client registers successfully (§5.3), the service increases 991

 Specification for WS-Biometric Devices (Draft 0)

58

its count of concurrent sessions by one. Upon successful unregistration (§5.4), the service decreases its count 992

of concurrent sessions by one. 993

A.1.1.3 Least Recently Used (LRU) Sessions Automatically Dropped 994

Formal Name autodropLruSessions
Data Type xsd:boolean
Required Yes

This parameter describes whether or not the service automatically unregisters the least-recently-used session 995

when the service has reached its maximum number of concurrent session. If true, then upon receiving a 996

registration request, the service may drop the least-recently used session if the maximum number of 997

concurrent sessions has already been reached. If false, then any registration request that would cause the 998

service to exceed its maximum number of concurrent sessions results in failure. 999

A.2.2 Timeouts 1000

Clients should be written in such a manner that a sensor operation does not block indefinitely. However, 1001

since different services may offer a variety of sensors and capabilities, clients require a means to determine 1002

appropriate timeouts. The timeouts in this subsection are 1003

Note that these timeouts do not include any round-trip and network delay—clients should add an additional 1004

window to accommodate 1005

A.2.2.1 Initialization Timeout 1006

A.2.2.2 Detailed Info Timeout 1007

Formal Name initializationTimeout
Data Type xsd:nonNegativeInteger
Required Yes

A.2.2.3 Get Configuration Timeout 1008

A.2.2.4 Set Configuration Timeout 1009

A.2.2.5 Capture Timeout 1010

 1011

 Specification for WS-Biometric Devices (Draft 0)

59

B Detailed Info 1012

This section will contain detailed information on the set of “well-accepted” detailed metadata potentially 1013

available from a detailed info operation. 1014

 Specification for WS-Biometric Devices (Draft 0)

60

C Configuration 1015

This section will contain detailed information on the set of “well-accepted” configurations gettable and settable 1016

via configuration operations. 1017

 1018

 Specification for WS-Biometric Devices (Draft 0)

61

D Download Data 1019

D.1 MIME Type 1020

D.2 Thrifty Download 1021

 1022

 Specification for WS-Biometric Devices (Draft 0)

62

E Security Profiles 1023

E.1 None 1024

This section will describe a configuration in which all security is established at a lower network level. 1025

Implementors should only use this security profile for testing and development. 1026

E.2 HTTPS 1027

This section will describe a configuration in which HTTPS is used for encryption purposes. There should be a 1028

note about the optional use of 1029

 Basic or digest authentication 1030

 Client-side certificates 1031

E.3 OpenID & OAuth 1032

This section might describe a configuration using OpenID and/or OAuth to control access to the service at a fine 1033

level of granularity. This may be out of scope for this revision of the document. 1034

 Specification for WS-Biometric Devices (Draft 0)

63

F Conformance 1035

A service can claim Level 0 conformance to this specification if the service conforms to all of this specification 1036

with exception of the metadata appendixes. 1037

 1038

 Conform “as a biometric sensor” vs “web cam” vs “fingerprint scanner” 1039

 1040

 1041

 Specification for WS-Biometric Devices (Draft 0)

64

G Pending Issues 1042

 Currently, it is assumed that messages are returned from the service in a single language. Integrated 1043

multilingual support might be supported by a special sensor service configuration operation, or, by 1044

supporting multiple languages within the messages returned by a service. 1045

 Should we force every service to provide a fully functional, default configuration? If so, then we may 1046

not need a configurationNeeded status. 1047

 1048

 Specification for WS-Biometric Devices (Draft 0)

65

H Acknowledgments 1049

The authors thank the following individuals for their participation in the creation of this specification. 1050

Bert Coursey, Department of Homeland Security, Science & Technology Directorate 1051

Michael Garris, National Institute of Standards and Technology, Information Technology Lab 1052

John Manzo, Federal Bureau of Investigation 1053

Scott Swann, Federal Bureau of Investigation 1054

Cathy Tilton, Daon Inc. 1055

Bradford Wing, National Institute of Standards and Technology, Information Technology Lab 1056

 Specification for WS-Biometric Devices (Draft 0)

66

I Revision History 1057

Draft 0—Initial release. Operations and data types are well defined, but detailed documentation is not yet 1058

complete. Appendixes (metadata, conformance, and security profiles) are not yet written. 1059

