Terra to Activity Potential Ref. 514 10361E-0114754E-03-64162E-0456E 124655E-03 124665E-03 124655E-03 12465E-03 1246

Simulating interdiffusion in NiAl / Ni-base superalloy systems

Anders Engström^a, Henrik Larsson^b, Lars Höglund^{a,c} and Paul Mason^d

- ^a Thermo-Calc Software AB, Stockholm Technology Park, SE-113 47 Stockholm, Sweden
- ^b Sandvik Tooling AB, Stockholm, Sweden
- ^c Division of Physical Metallurgy, Department of Materials Science and Engineering, The Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
- ^d Thermo-Calc Software Inc., 4160 Washington Road, McMurray PA 15317, USA

NIST Diffusion Workshop March 25-26, 2009

http://www.thermocalc.com E-mail: info@thermocalc.se

Introduction

Assessed difusional mobilities In the γ' and B2 phases

Homogenization approach available in DICTRA for diffusion simulations in multi-phase systems

$$J_{k} = \frac{-1}{V_{m}} \sqrt{\left[M_{k} x_{k}\right]_{n-1}^{eff} \left[M_{k} x_{k}\right]_{n}^{eff}} \frac{\Delta \mu_{k}}{\Delta z}$$

Larsson and Engström, Acta Mat **54**(2006), p. 2431

Interdiffusion in NiAl / Ni-base superalloy diffusion couples

Perez et al., J. Phase Eq. **27**(2006), p. 659

Campbell, May 2007

Larsson, Feb 2006

Sohn, April 2005

Thermodynamic Data

□ TCNi1 – A thermodynamic database for Ni-base superalloys

Dupin and Sundman, Scand J Metal **30**(2001), p. 184

Two-sublattice orderdisorder description used to model both B2 and $L1_{2}$,

e.g. for Al-Cr-Ni

FCC_A1:AL CR NI: VA:FCC_L12:AL CR NI: AL CR NI: VA:

BCC_A2 :AL CR NI VA: VA: BCC_B2 :AL CR NI VA: AL CR NI VA: VA:

Kinetic Data

Thermo-Calc Software

Extended version of MobNi1 – A mobility DB for Ni-base superalloys

Mobilities in the γ -phase (disordered FCC), are well described on the basis of several published assessments, e.g.

Ni-Cr-Fe

Ni-Al-Ti

- Jönsson, Z. Metallkde. **85**(1994) 502.
- Engström and Ågren, Z. Metallkde. 86(1995) 92. Ni-Al-Cr
- Matan et al., Acta mater., **46**(1998) 4587.
- Campbell et al., Acta Mat. 50(2002) 775.
- Campbell et al., J. Phase Eq. and Diff. 25(2004) 6. Fe-Al, Fe-Co

-11.5 △1573 □1523 Ni-Al 1473 -12.0 <mark>×1423</mark> 1373 LOGDC(FCC,AL,AL,NI) 1323 -12.5 1273 -13.0 -13.5 -14.0 -14.5 15.0 0.15 0.20 0.05 0.10

Mole-Fraction Al

Ni-Co, Ni-Hf, Ni-Mo, Ni-Ta, Ni-W, Ni-Re

Kinetic Data

Extension consist of adding a description for the mobilities in the B2 and L12 (γ') phases.

Chemical ordering handled using a phenomenological model suggested by Helander and Ågren, Acta Mater. **47**(1999), pp. 1141-52.

$$Q_B = Q_B^{dis} + \Delta Q_B^{ord} \quad \bullet$$

 Contribution to the activation energy from chemical ordering

$$\Delta Q_B^{ord} = \sum_{i} \sum_{i \neq j} \Delta Q_{Bij}^{order} \left[y_i^{\alpha} y_j^{\beta} - x_i x_j \right]$$

Contribution to the activation energy from chemical ordering of i-j atoms

Ni-Al-Cr taken from a recent paper by Campbell, Acta Mat. 56(2008), p. 4277.

Preliminary description for remaining elements, e.g. Co, Ti and W.

Homogenization model

New approach allow us to account for diffusion in more than one phase

Combining rules are frequently used for determining an "effective" transport property in a multi-phase mixture, from:

- 1) the transport properties in the individual phases,
- 2) the fraction of phases,
- 3) and sometimes also from their geometrical distribution.

Exact knowledge of the geometrical distribution is rarely known for a real case and it may be useful to study limiting cases or bounds.

Larsson and Engström, Acta Mat 54(2006), p. 2431

Absolute bounds

Wiener bounds are derived only on basis of the fraction of the various phases under consideration.

Hashin-Shtrikman bounds

A Thermo-Calc Software

More narrow bounds can be obtained by assuming the compound is in a statistical sense, isotropic and homogeneous.

Percolation

In reality one can not expect the same phase is continuous throughout the whole interval.

For practical calculations one could use e.g. the upper bound below a certain volume fraction of the low mobility phase and the lower bound above the same volume fraction.

NiAl-coating / Ni-base superalloy system

A Thermo-Calc Software

E. Perez, T. Patterson and Y. Sohn, J. Phase Equilibria and Diffusion **27**(2006), pp. 659-64.

NiAl-coating / Ni-base superalloy system

Thermo-Calc Software

E. Perez, T. Patterson and Y. Sohn, J. Phase Equilibria and Diffusion **27**(2006), pp. 659-64.

Temp. 1050°C Time 96h

Rule of mixtures

Symbols are experimental data from E. Perez, T. Patterson and Y. Sohn, J. Phase Equilibria and Diffusion **27**(2006), pp. 659-64.

NiAl-coating / Ni-base superalloy system

A Thermo-Calc Software

E. Perez, T. Patterson and Y. Sohn, J. Phase Equilibria and Diffusion **27**(2006), pp. 659-64.

	Ni	AI	С	Со	Cr	Nb	Та	Ti	W
NiAl-Coating	Bal	51.2	-	-	-	-	-	-	-
IN939	Bal	4.45	0.71	18.6	25.3	0.43	0.37	4.07	0.51

Temp. 1050°C Time 96h

Rule of mixtures

=1273.15. X(C)=5E-3. X(CR)=1.1E-1. P=100000. N=1

Temperature 1273.15, Pressure 1.000000E+05 Number of moles of components 1.00000E+00, Mass 5.52042E+01 Total Gbbs energy -6.41714E+04. Enthalsy 3.84273E+04. Volume 7.33528E-

((C)=5E-3, X(CR)=1.1E-1, P=100000, N=1

2E-03-1.0879E-03-2.3315E-03-6.4162E+04 SER 00E-01-1.0361E-01-1.4754E-03-6.9006E+04 SER

CALCULATING THERMODYNAMIC PROPERTIE

Thermo-Calc Software

CALCULATING THERMODYNAMIC PROPERTIES

Thank you!

http://www.thermocalc.com E-mail: info@thermocalc.se Phone: +46 8 545 959 30 Fax: +46 8 673 3718