

Structure Separation Experiments: Shed Burns without Wind

NIST WUI Fire Days 2022

Shonali Nazare

engineering laboratory

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implemer tation

Structure Separation Experiments

Goal: Provide guidance for the placement of auxiliary structures with floor area < 120 ft²

Primary objective: to <u>quantify</u> the effects of shedsizes,

- construction types,
- fuel loading, and
- separation distance

on the ignition of primary structures.

Heat Release Rate Mass Loss Rate Heat Flux

Standards and Technology

U.S. Department of Commerce

Measurement Verification Experiments

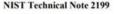
Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implemer tation

Structure Separation Experiments

- Test Plan
- Evaluation of Hazard and Safety
- Modeling
- Experiments


NIST Technical Note 2161

Structure Separation Experiments Phase 1 Preliminary Test Plan

https://doi.org/10.6028/NIST.TN.2161

NIST Outdoor Structure Separation Experiments (NOSSE): Preliminary Test Plan

https://doi.org/10.6028/NIST.TN.2199

Experiments

Methodology

Experiments

Measurement Results

Summary

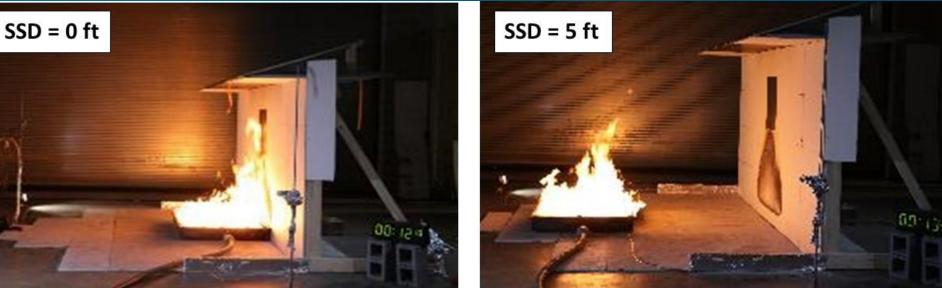
Implications/ Implementatior

Structure Separation Experiments

- Preliminary Structure Separation Experiments
- Measurement Verification Experiments
- Indoor Shed Burn Experiments
- Indoor Shed + Target Experiments
- Outdoor Shed Burn Experiments at IBHS

4

NIST Technical Note XXXX Structure Separation Experiments: Shed Burns without Wind Alexander Maranghides, Shonali Nazare Eric Link, Matthew Hoehler, Matthew Bundy Steven Hateks, Frank Bigelov am (Ruddy) Mell, Anthony Bora erek McNamara, Tom Milar Faraz Hedayati, Daniel Gocham, Monroy, Murray Morrison Bob Raymer Frank Frievalt William Walton This publication is available free of charge from https://doi.org/10.6028/NIST TN.XXXX In Review

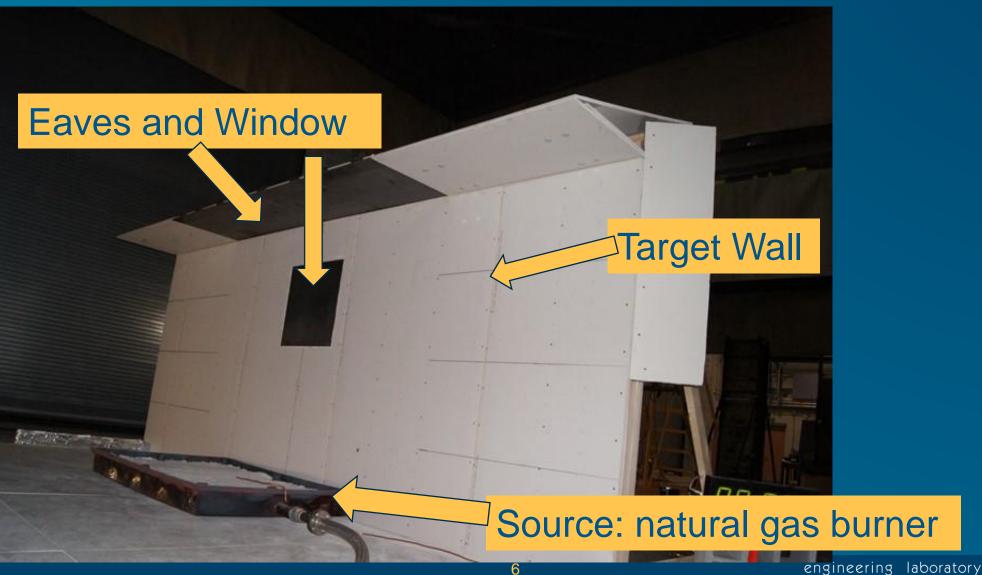

engineering laboratory

Objective: To optimize instrumentation and experimental design for shed burn experiments

Measurements

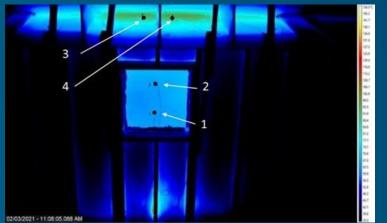
- ✓ Heat release rate
- ✓ Temperature
- ✓ Heat Flux
- ✓ Airflow

5




Preliminary Structure Separation Experiments

Preliminary Structure Separation Experiments


Measurement Verification Experiments

Indoor Shed Burr Experiments

Indoor Shed + Target Experiments

Summary/Impleme tation

Preliminary Structure Separation Experiments Standard U.S. Dep

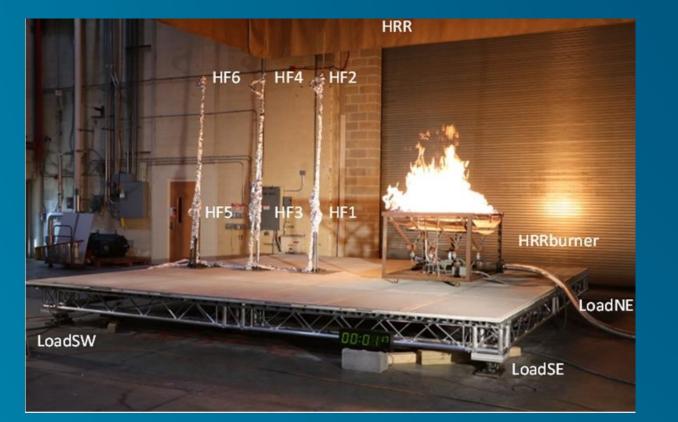
Extensive database for modeling verification

Technical Outcomes:

 Aided in troubleshooting and optimizing instrumentation and data acquisition

 Thermal propagation in both horizontal (along the eaves) and vertical (on the window) configurations

Provided insights into effects of airflow bias within NFRL


Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implementation

Objective: To confirm the system operations including the calorimetry, mass loss, and heat flux measurements

Measurement Verification Experiments

Measurements
✓ HRR
✓ Mass Loss
✓ Heat Flux
✓ Temperature

Standards and Technology U.S. Department of Commerce

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implemer tation

Measurement Verification Experiments

Technical Findings:

- Heat release measurements using fuel consumption and oxygen consumption calorimetry showed good agreement
- Data analysis confirmed proper delay times applied for heat release computation by oxygen consumption calorimetry
- Comparison of heat release and heat flux data showed similar time dependencies
- Verification experiments confirmed the need for thermal insulation of the load cells

Uninsulated Load Cell

Insulated Load Cell

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implementation

Indoor Shed Burn Experiments at NIST Objectives:

2. To assess the feasibility of the mass loss method for estimating HRR from a burning shed.

Measurements
✓ HRR
✓ Mass Loss Rate
✓ Heat Flux
✓ Above the shed
✓ Across the shed

Technical Coupling of Laboratory and Outdoor Experiments

engineering laboratory

Standards and Technology U.S. Department of Commerce

Indoor Shed Burn **Experiments**

Combustible

Closets

Noncombustible

< 75 ft³ (15 ft²)

Steel

engineering laboratory

na

heds

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implemer tation

High Fuel Loading

Combustible

Indoor Shed Burn Experiments at NIST

National Institute of Standards and Technology U.S. Department of Commerce

Low Fuel Loading

Noncombustible

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implemer tation

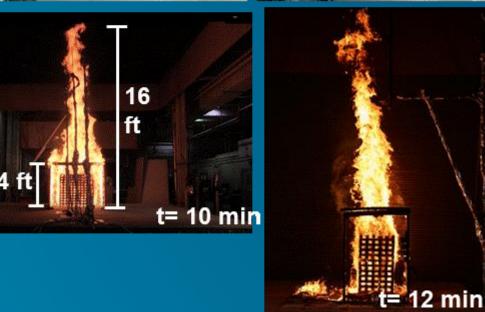
Test	# Test ID	Material	Shed	Fuel Load*		Mass, kg		Fuel Density,	
			Туре		Shed	Cribs	Total combustible	MJ/ft ²	
1	1B-WCh0	Wood	Closet	High (4)	49	78	127	152	
2	1B-WCh0-R1	Wood	Closet	High (4)	48	78	126	152	
3	1B-WCh0-R2	Wood	Closet	High (4)	48	78	126	152	
4	1B-PVSh0	Plastic	Very Small	High (6)	61	115	176	161	
5	1B-WVSh0	Wood	Very Small	High (6)	75	117	192	142	
6	1B-SVSh0	Steel	Very Small	High (6)	42	116	116	111	
7	1B-WCI0	Wood	Closet	Low (2)	49	38	87	79	
8	1B-PCI0	Plastic	Closet	Low (2)	38	39	67	104	
9	1B-SCI0	Steel	Closet	Low (2)	24	38	38	49	
(num	per of 1-A cribs)								

Indoor Shed Burn Experiments at NIST

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments


Indoor Shed + Target Experiments

Summary/Implementation

1B-WCh0

Combustible Wood Closet

Test Procedure:

- \checkmark Record mass of shed and mass of cribs
- ✓ Measure moisture content of wood cribs
- ✓ Safety briefing
- ✓ Start data acquisition
- ✓ Ignition using heptane pool fire

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implementation

National Institute of Standards and Technology U.S. Department of Commerce

1B-PVSh0

✓ No structural protection
✓ Pool fire
✓ Higher burning intensity

t= 5 min

Combustible Plastic Very Small Shee

t= 8 min

t= 9 min

Indoor Shed Burn Experiments at NIST

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implementation

 ✓ Good structural integrity
 ✓ Longer duration burn
 ✓ Flame jetting

1B-SVSh0

Summary/Implemen

Noncombustible Steel Very Small Shed

t= 15 min

t= 40 min

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments


Indoor Shed + Target Experiments

Summary/Implemei tation

Indoor Shed Burn Experiments at NIST

Technical Findings

- Good Repeatability
 - Comparisons of the HRR curves for repeated tests had similar shapes, magnitudes, and burning periods
 - Data show reproducibility of the measured quantities with PHRR variation of 5 % and THR variation of 2 %
- Good Agreement between Oxygen Calorimetry and Mass Loss Method
 - HRR estimated from the mass loss rate was very similar to the HRR measured by oxygen consumption calorimetry

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Impleme tation

Indoor Shed Burn Experiments at NIST Technical Findings Contd.

 Fire Hazard varied with Construction Material, Shed Size and Fuel Loading

- Construction material for wood and plastic sheds contributed approximately 60 % increase in fuel load compared to the steel shed
- THR from source structure corresponded with their respective total combustible mass
- Lower fuel loading density allows for higher oxygen availability and hence faster flame spread over the combustible fuel

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implement tation

Indoor Shed Burn Experiments at NIST Technical Findings Contd.

Thermal Exposures varied Spatially and Temporarily

- Measured peak heat flux show an inverse square relationship with radial distance.
- Generally, lower HFGs recorded higher heat fluxes compared to the upper HFGs due to their relative proximity to the source fire compared to the upper flux gauges.
- Flame "jetting" resulted in very high local exposures.
- Flame jetting depends on size of door opening.

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burr Experiments

Indoor Shed + Target Experiments

Summary/Implementation

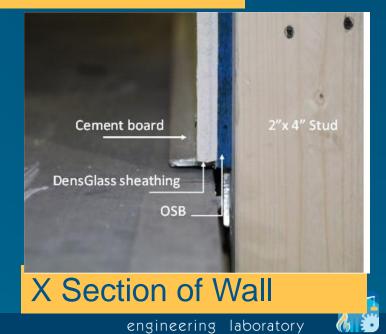
Indoor Shed + Target Experiments at NIST Nationa U.S. Department

To assess target structure performance for exposures from different sheds (construction, size, fuel loading) placed at different SSDs with no added wind field.

Target Structure Performance
✓ Window
✓ Vent
✓ Eaves
✓ Exterior layer of wall
✓ Exterior layer of wall
✓ HRR
✓ Mass Loss Rate
✓ Heat Flux
✓ Temperature

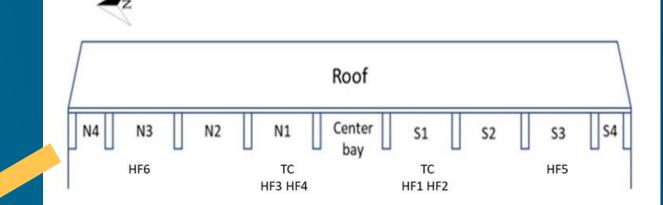
engineering laboratory

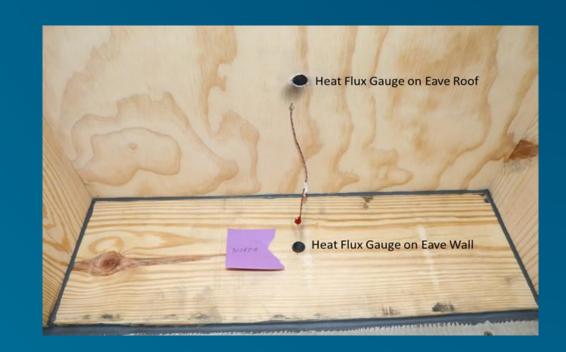
Indoor Shed + Target Experiments at NIST Standards and Technology U.S. Department of Commerce


Indoor Shed + **Target Experiments**

Annealed Glass Window

Indoor Shed + Target Experiments at NIST National Institute of U.S. Department of Commerce


Preliminary Structure Separation Experiments


Measurement Verification Experiments

Indoor Shed Burr Experiments

Indoor Shed + Target Experiments

Summary/Implemen tation

INCOI Indoor Shed + Target Experiments at NIST National Institute of U.S. Department of Commerce

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implementation

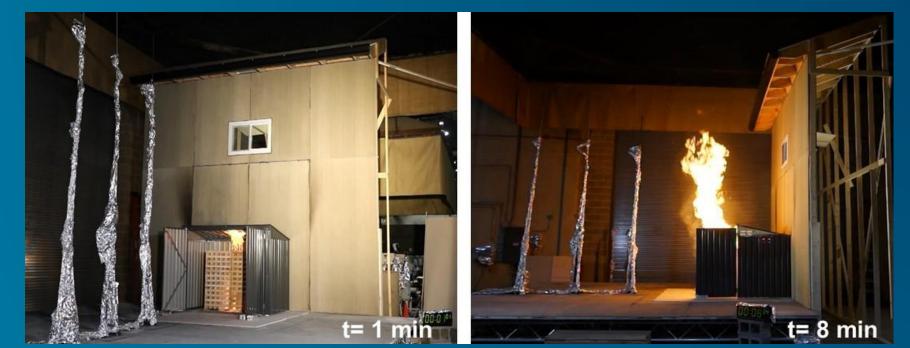
1B-WCh0-0

engineering laboratory

Wood Closet Low fuel loading SSD = 0 No wind

23

Indoor Shed + Target Experiments at NIST National Institute of U.S. Department of Commerce


Preliminary Structure Separation

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implemer tation

Steel Closet
High fuel loading
SSD = 0
No wind

1B-SCh0-0

Indoor Shed + Target Experiments at NIST National Institute of U.S. Department of Commerce U.S. Department of Commerce

Preliminary Structure Separation

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implemer tation

Shed Orientation Opening

25

Steel Very Small Shed
High fuel loading
SSD = 5 ft
No wind

1B-SVSh0-5

engineering laboratory

NGT Indoor Shed + Target Experiments at NIST National Institute of U.S. Department of Commerce


Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Bur Experiments

Indoor Shed + Target Experiments

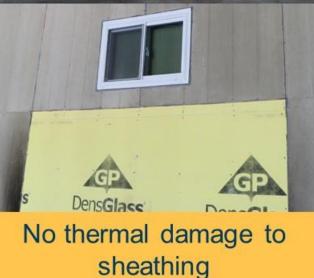
Summary/Implemer tation

Wood Closet
No fuel loading
SSD = 0
No wind

1B-WC00-0

Preliminary Structure Separation Experiments

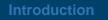
Measurement Verification Experiments


Indoor Shed Burr Experiments

Indoor Shed + Target Experiments

Summary/Implemer tation

Exterior Wall Performance



Code Compliant

Significant thermal damage to OSB

Window Performance

Flame Contact

No Flame Contact

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Impleme tation

1B-WC00-0

engineering laboratory

1B-SVSh0-5-R1

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implementation

1B-SCI0-0 and 1B-SCh0-0

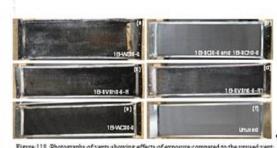
 Flame contact
 Intumescent coating activated

National Institute of Standards and Technology U.S. Department of Commerce

Unused X No flame contact X Intumescent coating not activated

Measurement Verification Experiments

Indoor Shed Burn Experiments


Indoor Shed + Target Experiments

Summary/Impleme tation

Vent Performance

ASTM E 2886 exposure: 300 kW
 ± 10 kW for 10 min
 Eailure Criterion: T > 360 °C

Failure Criterion: T_{vent} > 360 °C on the unexposed side of the vent

Standards and Technology U.S. Department of Commerce

Figure-118. Photographs of vents showing effects of exposure compared to the unused vent in (f).¶

The radiant and convective heat exposure were significantly-lower with noncombustible Closes (test 1B-SC10-0 and test 1B-SC20-0), with the door-opening facing away from the target wall, keeping the temperatures in the vent area well below the activation temperature of the intumescent coating. However, for the Very Small steel shed with door-opening facing towards the target wall and with an SSD = 5 ft (test 1B-SVSh0-5 and test 1B-SVSh0-5 kR), the vent were exposed to significant radiant and convective beas. While the intumescence mechanism activated during such high beat exposures, the protective barrier thus formed was not effective for a longer duration of exposure. The performance of these vents cannot be interpreted as failures with respect to the standard test method (ASTM E 2386) as the thermal exposures to the vents were significantly different than those specified in the standard. The standard test method (ASTM E 2386) specifies exposure of vents to flanning fire with HRR: of 300 kW+10 kW for 10 min.

Table 15. Maximum measured temperatures at the vent during thermal exposures from

Test-ID=	Materiala	PHRR, MWa	Maximum measured temperature at the vent, "Co						
			ICouptFronts		ICanatRacko		ICshBack=		
			Peak-lo	Peak-2=	Peak-lo	Peak-20	Peak-l=	Peak-20	
1B-WC10-0s	Wood=	3.38=	952	-	224	425	265	310	
1B-SC10-0c	Steel-¤	0.89=	58	-	559	-	46	-	
1B-SCh0-0=	Steela	1.40=	116	-	101	-	72		
1B-SVSb0-5a	Steela	2.71=	400	434	153	41)	275	278	
IB-SVSb0-5-R1c	Steel-¤	3.11=	403	855	100	24	3714	709	
1B-WC00-0g	Weeds	2.770	386	-	16	-	372	-	

Peak exposures tested > 10-20x ASTM exposure

Caulking Performance

Flame Penetration

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implementation

Use of FR caulking prevented flame penetration in subsequent tests

engineering laboratory

National Institute of Standards and Technology U.S. Department of Commerce

Introduction

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

ndoor Shed + Farget Experiments

Summary/Implemen tation

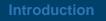
Summary

Target Hardening, Shed Usage, and Further Research

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burr Experiments


ndoor Shed + Target Experiments

Summary/Implemen tation

Summary (1 of 5)

Target Hardening

- Replace annealed glass windows with tempered glass where fire exposures are expected on the structure. This should be done in conjunction with window screens and other necessary structure hardening for embers and fire (HMM).
 Use flame-retardant caulking around windows and eave vents.
- Additional gypsum panel sheathing may be used to prevent ignition of combustible layers of the exterior wall assembly.

Measurement Verification Experiments

Indoor Shed Burn Experiments

ndoor Shed + Target Experiments

Summary/Implemen tation

Summary (2 of 5)

Shed Usage

Consider Remove, Relocate, Reduce (RRR) as specified in HMM to reduce fire exposures.

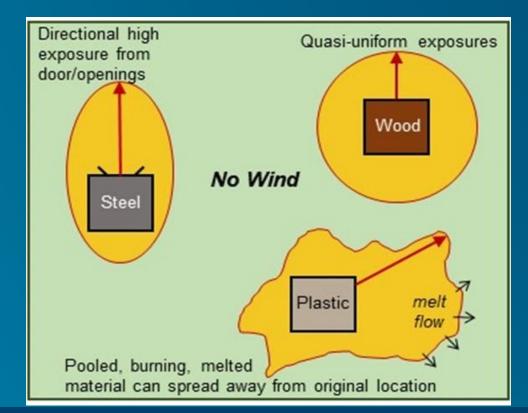
Minimum SSD = 10 ft for Closet and Very Small sheds (< 26 ft²).

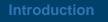
engineering laboratory

34

Preliminary Structure Separation Experiments

Measurement Verification Experiments


Indoor Shed Burr Experiments


ndoor Shed + Farget Experiments

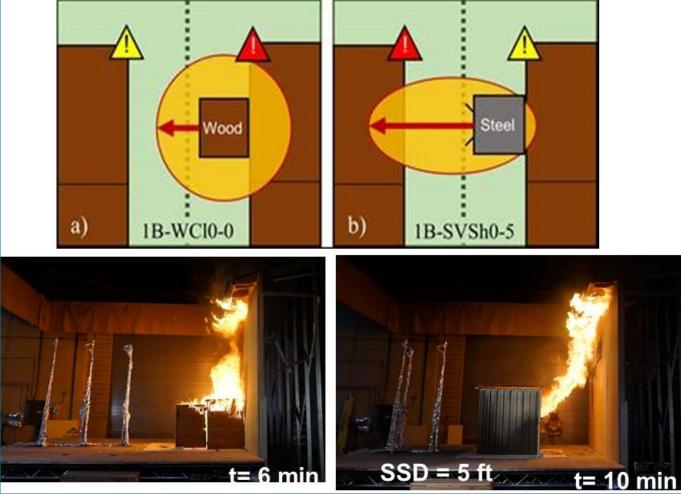
Summary/Implemen tation

Summary (3 of 5) Shed Usage

Choose construction materials to reduce exposures; however, this alone cannot substitute for RRR and SSD

Measurement Verification Experiments

Indoor Shed Burn Experiments


ndoor Shed + Target Experiments

Summary/Implemen

Summary (4 of 5)

Consider relative position of neighboring residence for door orientation of noncombustible steel shed.

engineering laboratory

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

ndoor Shed + Target Experiments

Summary/Implemen tation

Summary (5 of 5)

Further Research

- The standard test method for assessing performance of eave vents needs to be further assessed for realistic thermal exposures. NIST Eave Vent Experiments (NEVE) have been planned to assess vent performance exposed to flaming fires.
- Assess the performance of fire caulking for extended exterior use. Work is planned at NIST to assess the fire performance of flame retarded caulking that has been exposed to accelerated weathering.

Preliminary Structure Separation Experiments

Measurement Verification Experiments

Indoor Shed Burn Experiments

Indoor Shed + Target Experiments

Summary/Implementation

- ✓ 13 experiments
- ✓ High Fuel Loadings

Standards and Technology U.S. Department of Commerce

- ✓ Wood Sheds
- ✓ Steel Sheds
- ✓ Shed Sizes
 - ✓ Closet (< 15 ft²)</p>
 - ✓ Very Small (< 30 ft²)
 - ✓ Small(< 64 ft²)

Acknowledgements

NFRL Team: Lauren DeLauter Philip Deardorff Marco Fernandez Michael Selepak, and Edward Hnetkovsky

U.S. Department of Commerce

NIST Fire Department

Maryland Department of Environment

39

Thank You !

National Institute of Standards and Technology U.S. Department of Commerce

Contact Information:

Shonali Nazare Shonali.Nazare@nist.gov

Alexander Maranghides alexm@nist.gov 202-567-1634

engineering laboratory

