NIST WUI Fire Days 2022

NIST Emberometer Research

N. Bouvet, E. Link, M.H. Kim , S. Fink & K. Prasad* *nicolas.bouvet@nist.gov

TO NACIONAL DE TECNICA AERONAUTIC. *ESTEBAN TERRADAS ADRID. SPAL

> PRINCIPAL INVESTIGATOR CARLOS SANCHEZ TARIFA

OPEN FIRES AND RANSPORT OF FIREBRANDS

GRANT FG Sp-114

FIRST ANNUAL REPORT

engineering laboratory

Introduction

WUI & the Firebrand Problem

Post-fire investigations

"In 50% of cases, the bushfire attack mechanisms were via embers only, and 35% were via ember and some radiant heat from surrounding isolated vegetation or other structures" (Canberra Bushfire 2003 / Blanchi & Leonard, Bushfire CRC Report, 2005)

"Direct ember ignitions accounted for one out of every three destroyed homes" (Witch and Guejito fires 2007 / Maranghides & Mell, NIST TN 1635, 2009)

"Embers cause up to 90% of home and business ignitions during wildfire events" (Institute for Business and Home Safety, 2019)

Engineering literature

- Firebrand is an old research topic...
- Low stream of scientific papers until the early 2000s
- Ramp-up of scientific studies in the past 15 years including a broad range of topics: **Firebrand surface** Ignition by firebrands

Firebrand & firebrand piles thermal characteristics

Firebrand generation (structures/vegetation)

temperature

Firebrand combustion characteristics

MAY 3, 1961-MAY 31, 1962

Firebrand transport

MAY a rofer MAY

Firebrand showers A measurement challenge !

NIST Emberomete System

The data challenge

In progress

Summary

What's next '

The Firebrand Problem

- Despite recent progress, still significant hurdles to characterize firebrand shower phenomena in wildland and WUI fires:
- \rightarrow Very scarce number of studies in situ (prescribed/real fire event)
- → When available, measurement describing firebrand exposures focus on time- and space averaged post-fire data (very little is known during actual firebrand assault!)

Develop the measurement science to quantify the threat of firebrand exposure from WUI fires on structures and structural materials = Design and fabricate a device to measure firebrand exposure, aka "Emberometer".

Measuring realistic firebrand exposures... impacts:

- \rightarrow Enable the developments of metrics that facilitate firebrand shower exposure comparisons
- → Build a firebrand exposure scale (Maranghides & Mell, NIST TN 1748, 2013)
- \rightarrow Inform test methods about experimental conditions to be replicated
- \rightarrow Provide anchoring points to the modeling community in term of firebrand generation
- ⇒ Form the technical/scientific basis for further improvements to WUI codes and standards

Firebrand showers: A measurement challenge !

NIST Emberomete System

The data challeng

In progress

Summary

What's next?

Firebrand Shower Characteristics... Challenges !

Exposure = set of characteristics that defines a firebrand shower

A very complex set of variables:

- Particles with various sizes, shapes, masses, nature (WUI → vegetative/structural fuels)
- Particles with complex transport: wide range of velocities, convoluted trajectories (strong 3D motion)
- Particles with various thermal states (smoldering, flaming, ≠ energy contents)

AIRBORNE FIREBRANDS

- Flux (Speed / Trajectory)
- Shape/Size
- ✓ Surface temperature

✓ Shape/Size, Mass

"LANDED"

FIREBRANDS

Standards and Technology U.S. Department of Commerce

 ✓ Surface temperature /Thermal footprint

National Institute of Standards and Technology U.S. Department of Commerce

Introduction

Firebrand showers A measurement challenge !

NIST Emberometer System

The data challeng

In progress

Summary

Emberometer Snapshot

3D Firebrand Tracking

Time-resolved firebrand trajectories in 3D

Firebrand Morphology

Size/shape characterization

Data 3D Visualization & Analysis Tools/ Metrics Development

3D Particle Tracking Velocimetry (3D-PTV)

3D Particle Shape Reconstruction (3D-PSR)

5

Firebrand showers A measurement challenge !

NIST Emberometer System

The data challenge

In progress

Summary

What's next ? More... Bouvet, Link, Fink, NIST TN 2093, 2020.

Image

Plane

3D-PTV & Object Positioning in 3D: Close-range Photogrammetry Principle

Standards and Technology U.S. Department of Commerce

Firebrand showers A measurement challenge !

NIST Emberometer System

The data challenge

In progress

Summary

3D-PSR & firebrand sizing: the Visual Hull method

Illustration of the Visual Hull method

More... Bouvet, Link, Fink, NIST TN 2093, 2020.

Illustration of the Visual Hull method

Standards and Technology U.S. Department of Commerce

7

Firebrand showers A measurement challenge !

NIST Emberometer System

The data challenge

In progress

Summary

What's next?

Emberometer System

National Institute of Standards and Technology U.S. Department of Commerce

Firebrand showers A measurement challenge!

NIST Emberometer System

The data challenge

In progress

Summary

What's next?

Firebrand showers and 3D diagnostic development... An engineering challenge!

Affordability – based on consumer-grade electronics (camera, micro-controllers, video handling devices, etc.): "we burn it, so be it..." \rightarrow low-cost replacement [Camera module \approx \$2.6K, all components w/o stand \approx \$13K]

Accuracy – need to achieve reasonable accuracy given chosen techniques
 (constrains regarding spatial resolution, high rep. rate capabilities, camera synchronization, calibration integrity preservation)

- Deployability compact form factor, hardening, autonomy (power, memory)
 [Autonomy power on ~ full day / rule of thumb 20 GB ~ 30 min rec. @ 120 fps/110 M]
- Controllability remote triggering & monitoring
- Adapted to large scale settings large control volumes, manage non-controlled backgrounds [Control volume ~ 3.2 m³]

Standards and Technology U.S. Department of Commerce

Set-up view

5

د Velocity (m/s)

2

 $\begin{array}{c} Quad \ view \\ (Raw \rightarrow Conditioned \rightarrow Superimposed \ tracks \ \& \ identifiers) \end{array}$

Firebrand showers A measurement challenge !

NIST Emberomete System

Y, mm

The data challenge

In progress

Summary

Cumulative Particle Count (CPC) and Particle Number Flux (PNF)

Firebrand 3D Trajectories

Single direction probing good but <u>need</u> a synoptic representation of the firebrand exposure over the entire test duration, for all directions !

Standards and Technology U.S. Department of Commerce

12

More... Bouvet, Link, Fink, Exp Fluids 62, 181 (2021)

Firebrand shower A measurement challenge !

NIST Emberomete System

The data challenge

In progress

Summary

What's next ?

Firebrand Rose Graphic

engineering laboratory

A

The data challenge

Indoor / no wind*

14

*Bouvet et al., On the use of time-resolved three-dimensional diagnostics to characterize firebrand showers in the WUI, Advances in Forest Fire Research 2018.

X-Direction

120

²article 60

30

Z-Direction

part. m⁻²

The data challenge

Firebrand rose and exposure comparison

*Bouvet et al., On the use of time-resolved three-dimensional diagnostics to characterize firebrand showers in the WUI, Advances in Forest Fire Research 2018.

X-Direction

Z-Direction

Standards and Technology U.S. Department of Commerce

> Nu ²article

Firebrand Sizing

Firebrand shower A measurement challenge !

NIST Emberomet System

The data challenge

In progress

Summary

What's next?

x, mm (b) (a) (c) 30 30 30 -10 0 10 20 20 20 30 ſ: 20 State of the state 10 10 10 あるとないとないまた 10 y*(mm) z*(mm) y*(mm) y,* mm 0 (0 -10 -10 -10 -10 : -20 -20 -20 -20 13 -30 -10 10 0 -30 -30 -30 -10 0 10 -10 0 10 -10 0 10 z, mm z*(mm) x*(mm) x*(mm) Hull \rightarrow 1 timestep Projections \rightarrow all timesteps

What about complex firebrand shapes...Is a bounding box approach best suited to report on firebrand size characteristics?

Bouvet, Link, Fink, Exp Fluids 62, 181 (2021)

Firebrand shower A measurement challenge !

NIST Emberomete System

The data challenge

In progress

Summary

[1] El Houssami et al., Experimental procedures characterising firebrand generation in wildland fires, *Fire Technol.* 52 (2016) 731-751.

Towards Firebrand Shape Classification

* 3D scan data example courtesy of Direct Dimensions, Inc.

1

engineering laboratory

Standards and Technology U.S. Department of Commerce

17

Improving the Emberometer Sizing Methodology: Accounting for Flaming Firebrands

- Segregate <u>smoldering vs flaming</u> firebrand to avoid biasing size/shape characterization
- Opportunity to provide a <u>firebrand smoldering/flaming</u>

- index as new metric for exposure severity
- An opportunity to assess efficiency of <u>deep learning tools</u> at recognizing flaming brands

Firebrand showers A measurement challenge !

NIST Emberomete System

The data challenge

In progress

Summary

What's next ?

NIST Emberometer Light: towards a standard test for firebrand generation

Emberometer Light System

A system easy to duplicate, allowing multiple volumes to be probed simultaneously, using the same analysis tools previously developed.

- Prototype stage
- Camera boxes with small form factor (6"x4"x 3")
- Tethered emberometer modules, plug & play
- Controlled via dedicated notebook app.
- Up to 200 m span between control volumes
- System currently non-hardened

Firebrand shower A measurement challenge !

NIST Emberomete System Wind Machine

The data challenge

In progress

Summary

What's next?

NIST Emberometer Light: towards a standard test for firebrand generation

Firebrand Flux, Size/Shape Characterization = f (F, D, U)

National Institute of Standards and Technology

U.S. Department of Commerce

National Institute of Standards and Technology U.S. Department of Commerce

Emberometer Snapshot

Firebrand shower A measurement challenge !

NIST Emberomete System

The data challenge

Measurement Results

Summary

What's next ?

Emberometer(s)... Looking forward

Emberometer (Large)

- Streamline operations
 (deployment → data processing → results)
- Strengthen external collaborations for field measurements to maximize operational experience
- From operational experience (outdoor settings/realistic wildland/WUI fire conditions):
 - better understand system limitations (e.g., particle size threshold, background influence, thermal stressing, etc.),
 - identify deployment best practices (e.g., system positioning/orientation)
- Document firebrand exposure in complex situations for fully characterized experimental conditions
- Use emberometer-derived metrics to guide test methods for ignition studies (vegetation, structures)

Emberometer Light

- Outdoor validation of single module
- Fabrication of additional "plug & play" modules
- Outdoor validation of multimodule assembly
- Design/optimize test method for firebrand generation characterization
- Document firebrand exposure from common WUI fuels (vegetative/non-vegetative)
- Extend firebrand characterization studies to simple ignition problems

VIDEO CONTENT

NIST Outside Structure Separation Experiment (NOSSE) Wooden Shed (7.4' x 7.6') – 10' SSD – 12 x 1-A wood cribs – WS 11-12 ms⁻¹ (Video 1/4th actual speed)

NIST WUI Fire Days 2022

NIST Emberometer Research

N. Bouvet, E. Link, M.H. Kim , S. Fink & K. Prasad* *nicolas.bouvet@nist.gov

