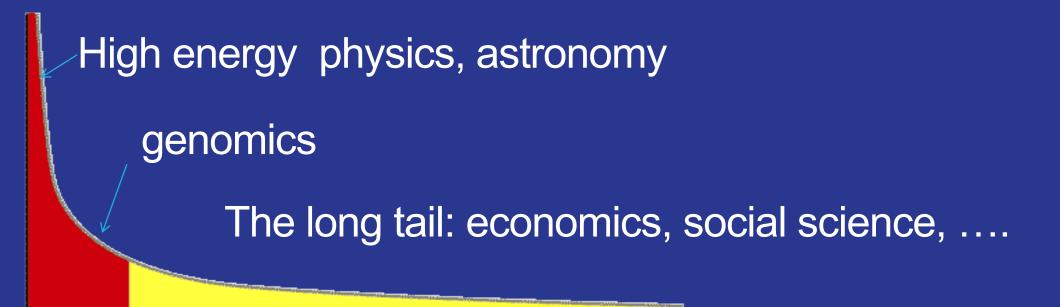
Sustaining Big Data


Dennis Gannon Microsoft

The data explosion is transforming science

- Every area of science is now engaged in data-intensive research
- Researchers need
 - Technology to publish and share data in the cloud
 - Data analytics tools to explore massive data collections
 - A sustainable economic model for scientific analysis, collaboration and data curation

- Can we create a sustainable model for the long tail of Science?
 - an ecosystem that supports a marketplace of research tools and domain expertise
 - Allowing researchers to outsource special tasks to expert service providers

Data Preservation and Sharing

- Collectively "long tail" science is generating a lot of data
 - Estimated at over 1PB per year and it is growing fast.
- US National Science Foundation requires all data be made public
 - US Universities are struggling with this new load
 - Data must be preserved
 - Data must be sharable, searchable, and analyzable

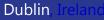
Is there a role for the commercial cloud provider?

The Microsoft Cloud is Built on Data Centers

~100 Globally Distributed Data Centers

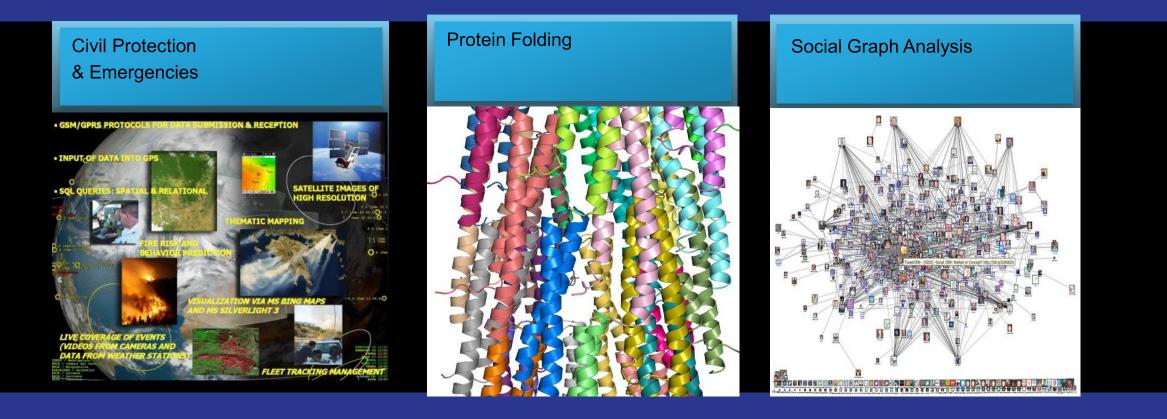
Range in size from "edge" facilities to megascale (100K to 1M servers)

Quincy, WA



Chicago, IL

Antonio,



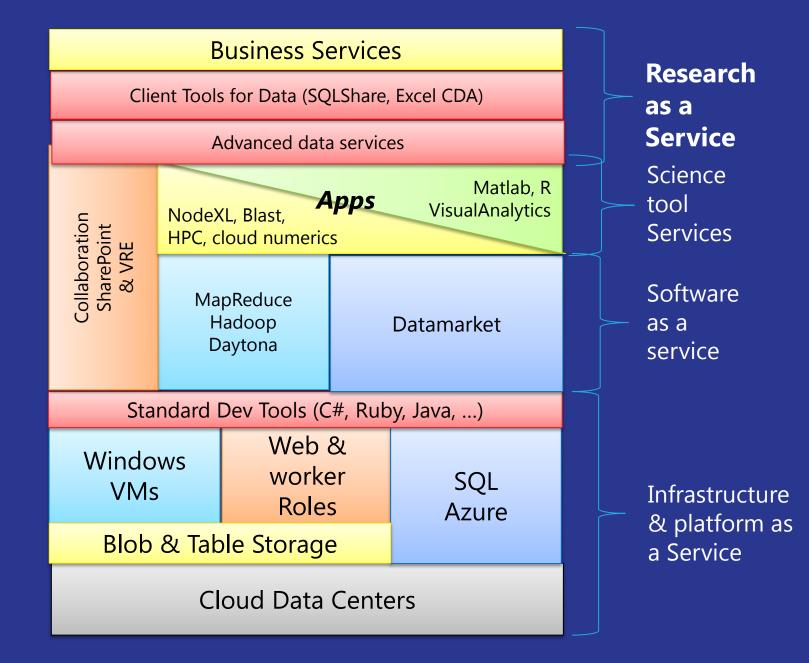
Generation 4 DCs

International Cloud Research Engagement Project Demonstrate that the cloud is a powerful tool that can revolutionize academic research and collaboration.

Internet2 and 13 University CIOs @ MS

- A meeting March 1 in Bellevue
 - Universities need to solve some problems
 - An effective way to use the cloud to address them
- Use standard authentication protocols
- Rational data costs and pricing
- The Research Genomics Challenge
 - A universal problem analysis and storage of sequence data
 - A pilot project IU, OSU, UCD, Mich, Utah
 - Discussions starting.
- The Rest "The Long Tail of Science"
 - Many disciplines, each with unique data and analysis challenges

Sample "Long Tail" Projects


- Transportation Research UCD, Georgia Tech, USC, UW, UVA, ...
 - UCD ULTRANS modeling entire California transportation grid
 - Gtech realtime analysis of Atlanta area traffic
- Social and Psychological Sciences Virginia, Duke
 - Harvard's Dataverse and UVA, UW, Harvard "project Implicit" social cognition
- Medical Sciences UW and Utah
 - Imaging CT, MR, PET / SPECT, and ultrasound and toxicology
- Maps and Geo Data Oregon State
- Musical Composition and Performance Data UCSD
- Plant Sciences Texas and Arizona

Next Steps

- We will convene a series of meetings to plan pilot projects in more detail
 - Genomics
 - One or two of the "long tail" topics where we can identify a critical mass of interested collaborators.
 - Coordinate between them and the product groups to accomplish something meaningful.

The Role of Commercial Clouds?

- Cloud data services from commercial providers can democratize access to big data.
- The cloud can support *research data services* that are
 - Open and extensible
 - Easily accessed by simple desktop/web analysis applications
 - Encourages scientific collaboration
 - Allows scientific analysis of massive data collections without requiring each researcher to acquire a private supercomputer

Excel Cloud Data Analytic

- Bringing the power of the cloud to the laptop
- Data sharing in the cloud, with annotations to facilitate discovery and reuse;
- Sample and manipulate extremely large data collections in the cloud;
- Top 25 data analytics algorithms, through Excel ribbon running on Azure;
- Invoke models, perform analytics and visualization to gain insight from data;
- Machine learning over large data sets to discover correlations;
- Publish data collections and visualizations to the cloud to share insights;
- Researchers use familiar tools, familiar but differentiated.

1 9 0	i ≈ -				and the second	1965	the same of	9	_	Book1	- Microsof	t Excel		-		
le Hor	ne Insert	Page La	ayout F	Formulas	Data R	eview 1	/iew	KDA Load	Test Tea	m						
age View ounts Status Accounts	Connect Workgrou		Impo	ort Export	Outlier M Detection L		location C	Clustering Bay	esian Mana Algorit	ge Dispat	Result	Hide Progress				
anData Da	taset •	(=	fx Latti	tude												
A	В	c	D	E	F	G	Н	1	J	К	L	M	N	0	P	Q
125.1754 115.4601 110.1455 115.001 115.4186 120.2891 115.3924 120.38 110.2449 125.4771 110.1501	Longitude 1 65.39015 45.4303 55.11229 45.42193 45.42193 45.35599 60.31296 45.48249 60.21606 55.23488 65.15242 55.11464	Depth S 2000 1000 2500 1000 1000 1500 1500 1500	Salinity 15.00068 3.178595 9.596857 2.486194 2.921007 11.72448 3.959335 10.4222 8.786277 14.06389 8.90509	0.00311 0.001692 0.001184 0.003764 0.002753 0.004483 0.004082 0.004936 0.003432 0.003198	3.579928 6.646316 7.147596 7.508713 4.139709 1.051162 2.057954 1.528704 4.388591 7.750255 9.496486	_	: Algorith Selecter Selecter	d Algorithm : d Dataset : sta Region :		pecontainer/C Dataset_14_						
120.3536 110.4424		1500 2500		0.004944			Parame	Name		Type	Valu	10				
125.3406				0.004918				Numiterations *		Int32	1	20				
115.3234	45.29709	1000	2.38547	0.003162	4.891776		1	PivotViz * OutputContainerUit *		bool	true	2				
115.3902	45.08835	1000	2.384441	0.002361	5.748394					string	http:	http://xdademo1.blob.core.windows.net/clustering				
115.2761	45.10534	1000	2.965957	0.001703	0.727118	_	ClusteringColur		mn1*	string	Latti					
125.1762 125.3378	65.35801	2000	14.03774	0.003585 0.003863	9.276802		•	ClusteringColumn2* string Longitude								
110.0359 125.4213 125.2773 120.4166 110.4284	65.27237 60.25268	2000 2000 1500	14.73733 15.12141 10.00677	0.003057 0.002349 0.00371 0.002104 0.004563	2.13705 6.89094 6.308877		Apply Algorithm on : C Local Dataset Full Dataset on Azure Select									
10.4204	55.00020	2000	0.220000	0.004003	0.003430				_			_	Exe	cute	Cancel	

Data Analytics Algorithms for Excel

Charactering: K-means, fuzzy clustering, canopy clustering;

- Recommendation Mining: Log-Likelihood;
- Prediction: SVM; trend prediction
- □ Frequent Item Set Mining: Collocation, Outlier Detection;
- Bayesian/Regression Toolkit (linear, non-linear, logistic);
- Bayesian Net, Neural Nets, other Machine learning

These algorithms are being built on top of the Daytona mapreduce engine

🗶 🖬 🔊 - (*	~ -		_	Book1 - Microsoft Excel					
File Home	e Insert Page La	ayout Formulas	Data Review	View XDA Load Test	Feam				
Manage View Accounts Status Accounts	Data Analy TechFest Connect Workgroup Workgroup	ytics	Outlier Machine Detection Learning	Collocation Clustering Bayesian Ma	nage Dispatch Exe Anthill Monitoring				
A1		fx	(XDA : Dataset Import					
A A 1	B C	D E	F	Blob Tagged results					

Data Sovereignty

- Can I store my research data in a data center in another country?
 - For most research data this is not an issue
- For PII data we need globally harmonized data access and protection rules.
- There are technology solutions to protecting sensitive data
 - Based on Homomorphic Encryption techniques
 - Data owner can grant access to different entities for different uses
 - Cloud provider has no access and holds no keys.

Data Convergence: Opportunities & Risks

The Internet of things

- Streams of data from satellites, economic markets, weather, personal media, genomics and med data and geo sensors will converge in the cloud
- An unprecedented opportunity
 - Data mashup analytics will help track disease, warn of famine, optimize economic conditions on a global scale
- Risks
 - We need to prevent the possible abuses.
- We need basic research programs on privacy preserving data algorithms, collections and storage.