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1  IN TR O D UC TIO N  

 

Artificial Intelligence (AI) is on the cusp of becoming the most significant technology of the information 
age. The exponential pace of technological advancement has made it more challenging than ever before 
to address its unintended consequences. Now is the time to anticipate the broad implications of the 
next frontier of innovations in artificial intelligence.1 Many government agencies have explored 
implementing AI policies, but an overarching set of standards is needed. A fundamental and common AI 
standard would further reduce domain related risks in organizations as programs move from the 
development phase to the operational phase and provide a common basis for evaluating performance. 
Addressing these issues will ultimately lead to driving further adoption of AI. 

 

AI STANDARDS SCOPE  

Although AI and Machine Learning (ML) loom large in the public mind as fundamentally new 
technologies, the design, training, implementation and security considerations around AI continue to fit 
within current software development methodologies. An emerging concept in this area is that of 
DevSecOps2 (Development/Security/Operations). DevSecOps represents the integration of recognized 
development, security, and operations practices into a single iterative software development pipeline. 
This pipeline provides a broad framework that can incorporate the new concepts and standards 
required for the safe deployment of AI in production systems. These practices should be considered 
across two primary dimensions: their place within this software development pipeline, and their 
relationship to specific users and use cases.  

 

 

 

2  D E VE L O P ME N T 
 

The standard for the development for ML models should move to a tangible engineering approach 
rather than a research-based approach. Traditionally, ML model development incorporates a broad 
range of coupled processes including initial data exploration and labeling; data extraction, 
transformation and loading (ETL) processes; model design; model training and tuning; and testing and 
integration into a broader software base. As a result of data dependencies between each step, this cycle 
has often been approached as an exploratory process closer to scientific research rather than as a 
software engineering process. The scientific research approach stimulates fast iteration but provides 

                                                           

1 Knowledge@Wharton. (2019). The AI Boom: Why Trust Will Play a Critical Role. Retrieved from 

    https://knowledge.wharton.upenn.edu/article/coming-ai-breakout-need-rules-road-now/ 
2 Carter, K (2017). Francois Raynaud on DevSecOps. [online] ieeexplore.ieee.org. Available at: 

    https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8048652 
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limited guarantees on the safety and reliability of the final system. This same approach, and the 
interconnectivity of the individual steps, has also limited the emergence of a consensus concerning the 
software development process for AI-based systems. New formats and standards are necessary to 
constrain the representations that developers use in these systems and to provide a framework for 
organizations and regulators to assess the trustworthiness, reliability and risk associated with AI 
systems.  

CONSIDERATIONS FOR COMMUNITY WIDE STANDARDS 

As a broader ecosystem around ML capabilities evolves, system level standards for both data and model 
representation must be defined. Due to the complexity of the space, these standards should focus on 
versioning, model testing, and system interfaces while limiting constraints on the overall ML pipeline 
and internal model structure to the greatest extend possible. Models should have well defined 
requirements for testing, metadata, and system interfaces that do not require information from the 
original developer. These standards should be comprised of APIs for testing of model components, 
introspection capabilities, and the necessary metadata for model use. All deployed models should have 
this information directly incorporated into their binary representations with standardized methods for 
reading the data. 

Additional considerations that may impact standards development revolve around the architecture and 
training of ML systems. Both introspection capabilities and modularity of systems can vary dramatically 
depending on the type of model being used. Changes in the level of introspection and system 
modularity will impact the approach to testing and verification. Privacy and security considerations may 
also influence the model structure and impact the available output. A model using Private Aggregation 
of Teacher Ensembles3 (PATE) or other privacy inducing methods may require alternate approaches for 
data versioning due to privacy concerns. The same is true in the case of federated learning. In this 
context, information concerning the distributed data may be spread amongst multiple owners with 
different barriers to communication4. Any standards specification should consider the impact of these 
approaches and provide alternative standards where necessary. 

DEVELOPMENT STANDARDS, GOVERNANCE & RISK CONTROL 

The primary goal of any standards development must be to improve the ability to safely operate, 
evaluate, and test the system of interest. To circumvent the ‘black box problem’, AI systems must be 
built to be auditable, reviewable as to how the system was built, including areas such as model type, 
training data and any bias that exists within the training data and performance accuracy. Systems should 
also be explainable to any end user, regardless of technical acumen, and should be able to convey how 
the ML system arrived at a certain decision. The explainability challenge can be supplemented with 
documentation tailored to the end user's needs.  

When it comes to ML, guaranteeing system safety requires the ability to identify when an error occurs, 
diagnose its cause, and subsequently determine appropriate measures to return the system to a trusted 
state. These evaluation and testing steps require knowledge of how the system was built, introspective 
capabilities for evaluation of different system components, and the means for altering individual 
components that limit the rebuilding or retraining necessary to address functional gaps. Any process 

                                                           

3 Papernot, N., et al. (2018). Scalable Private Learning with PATE. [online] arxiv.org. Available at: https://arxiv.org/abs/1802.08908 
4 Geyer, R., Klein, T., and Nabi, M. (2017). Differentially Private Federated Learning: A Client Level Perspective. [online] arxiv.org. Available at:  

      https://arxiv.org/abs/1712.07557 
 

https://arxiv.org/abs/1802.08908
https://arxiv.org/abs/1712.07557
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that meets these requirements must include version control across all components of the system and a 
standard representation for each component.  

Software development processes have been well established for tracking changes to source code over 
time. However, unlike traditional software, ML systems have extensive dependences5 on: 

• Model parameters 

• Data used for training and testing 

• Data labels, descriptions and assumptions 

• Intermediate model states during the training procedures 

• Metrics and cost functions used to evaluate the model 

• Random seeds used to define the model’s initial conditions 

These components are often non-deterministic. Their output can vary dramatically with relatively small 
changes in both the data that was used to generate them, and the hyperparameters that were used 
when training the system. 

MODEL VERSIONING 

As ML and data science have become more prevalent, several groups have started to develop versioning 
approaches that capture the breadth of concerns related to their development and application. In this 
context there are two main areas for expansion of scope for version control. The first area focuses on 
more traditional approaches to the versioning of ML models and their associated data. There are several 
different organizations providing offerings in this space such as Pachyderm,6 Comet.ml,7 ModelHub,8 
and DVC.9 These approaches combine code, models, and data into a single versioned instance. The 
second area focuses on versioning and reproducibility of exploratory data analysis. In addition to 
considering the intersection between code and data, these packages focus more on the exploratory, 
data-driven and iterative nature of the machine learning process. Some tools in this space are 
Yellowbrick10 and Gigantum.11  For example, Yellowbrick is a package which attempts to standardize 
approaches to ML visualization while Gigantum is a platform for versioning hypothesis-driven 
experimental work.  While these tools are less focused on software development, they allow consistency 
and reproducibility in the analysis of complex datasets. 

In addition to versioning, the ML field is starting to converge on general paradigms for model 
representation such as the estimator-transformer approach that is used by both Scikit-Learn12 and Spark 

                                                           

5 Sculley, D., et al. (2015). Hidden Technical Debt in Machine Learning Systems. [online] nips.cc. Available at: http://papers.nips.cc/paper/5656- 

hidden-technical-debt-in-machine-learning-systems.pdf  
6 Pachyderm home page, Available at: https://www.pachyderm.io/ 
7 Comet.ml home page, Available at: https://www.comet.ml/ 
8 Miao, H., Li, A., Davis, L., and Deshpande, A. (2017). ModelHub: Deep Learning Lifecycle Management. [online] ieee.org. Available at:  

https://par.nsf.gov/servlets/purl/10041785 
9 DVC home page, Available at: https://dvc.org/ 

10 Yellowbrick package description, Available at: https://www.scikit-yb.org/en/latest/ 
11 Gigantum home page, Available at: https://gigantum.com/ 
12 Scikit-Learn pipeline description, available at: https://scikit-learn.org/stable/data_transforms.html 
 

http://papers.nips.cc/paper/5656-%20hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-%20hidden-technical-debt-in-machine-learning-systems.pdf
https://www.pachyderm.io/
https://www.comet.ml/
https://par.nsf.gov/servlets/purl/10041785
https://dvc.org/
https://www.scikit-yb.org/en/latest/
https://gigantum.com/
https://scikit-learn.org/stable/data_transforms.html
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MLlib.13 In the neural network setting, the Open Neural Network Exchange Format14 (ONNX) standard 
has been developed for model representation. These packages represent frameworks for measuring and 
communication consistency in the ML field, but their focus is predominantly on the individual developer 
as opposed to communication between developers across a development team. 

 

SYSTEM TESTING 

ML systems only work when there is some target or loss function explicitly designated for the learning 
algorithm. Common choices include cross entropy for classification problems and the mean squared 
error for regression problems. Throughout the training process, this objective function is explicitly 
optimized. Most practitioners are accustomed to tracking their models’ performance using these and a 
handful of other common metrics of interest, such as accuracy. However, a model’s performance can be 
assessed on many other measures besides these explicit objective functions. Merely tracking scalar 
values, such as accuracy, gives an incomplete picture of a models’ characteristics when compared to 
other, high-dimensional measures such as a confusion matrix or ROC curve. In many circumstances, 
other derived measurements such as false positive rate or specificity may be more relevant to 
deployment than accuracy. It is important that the information necessary for calculating these other 
measures be preserved and easily accessible and that their results can be conveyed using standard 
representations. 

All of ML is predicated on the “inductive hypothesis” — the belief that data seen in the future will be 
sufficiently similar to data seen in the past.15 For this reason, it is important to track both the 
distribution of data seen by models in deployment and the difference between the real-world data 
distribution and that used during model training, validation and testing. Models can be assessed not 
only using the validation data for optimum performance on the loss function, but also for robustness 
and sensitivity to changes in the input distribution. Confidence levels of outputs must be tracked in 
order to detect changes in the data regime at runtime. It is also possible to learn other, secondary 
models, in parallel with the main model of interest. The job of these secondary models is to conduct 
anomaly detection on the input data of the main model. This can protect against both incremental and 
catastrophic data drift. More catastrophic varieties of anomalous data include both “innocent” 
corruption of data, as well as malicious adversarial attacks against AI systems. Tracking the relationships 
between primary models and “sentinel” models that ensure consistent input is key to understanding 
how real-world data changes over time will affect the trust and reliability of deployed models. 

MODEL TRANSPARENCY 

Combining the capability to track input data distributions with more comprehensive information on 
model output, enables a significantly greater degree of model introspection. This includes identifying 
sources of model errors such as bias-vs-variance and model-failure-vs-distributional-drift. These 
measures permit models to be more explainable. In many contexts, users either desire or demand – 
perhaps by the force of law — to know why an AI system made a particular decision. A standardized 
suite of model interpretation techniques and feature importance evaluations can help model 
implementers and users find a lingua franca for explaining model decisions. As models become more 

                                                           

13 Spark MLlib pipeline description, Available at: https://spark.apache.org/docs/latest/ml-pipeline.html 
14 ONNX home page, Availabe at: https://onnx.ai/ 
15 Mitchell, T. 1997. "Machine Learning." McGraw Hill. 

https://spark.apache.org/docs/latest/ml-pipeline.html
https://onnx.ai/
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complex, model behaviors should be tied to model components. Moreover, a model should have a scale 
which quantitatively describes its ability to be introspective. 

 

3  SE C UR ITY 

 

Machine Learning can be viewed as an alternative to algorithmic programming. At its most fundamental 
difference, algorithmic programming is based on designing software to explicitly instruct what a system 
should do to meet an objective. Alternatively, ML models do not need to be explicitly instructed to meet 
an objective. Rather they learn insights, by applying analytical processes to historical and labeled data, 
to improve performance of the system to meet an objective. It is especially useful when the rules that 
govern an algorithm’s behavior are too complex for a programmer to enumerate or even fully 
understand. More specifically, when using ML instead of specifying an algorithm that takes an input and 
produces a desired output, we provide input data and output data to a ML algorithm that will produce a 
model that transforms the input into something that closely approximates the desired output. In many 
cases, this property of ML allows us to leverage algorithms much more complex than what would have 
been possible with direct specification. Relying on data and an ML algorithm to specify a model, while 
very powerful, introduces a large amount of uncertainty into programs and systems that use the learned 
models. With this uncertainty comes much risk and exposure to danger. 

Modern deep neural networks consist of many millions of parameters learned during training. It is not 
trivial, nor practical, to inspect complex learned models to understand how they behave. As a result, a 
complex machine learned model can never be fully trusted. However, trust in a machine learned model 
can be increased with model interpretability. Doshi-Velez and Kim prove an excellent overview and 
roadmap for the science of interpretable ML.16 Examples of tools for the interpretation of black box 
algorithms include Shapley Additive Explanations17 and Locally Interpretable Model Explanations 
(LIME).18 Finally, ML procedures can be designed with interpretability in mind such as with the work of 
Lloyd et al. in developing automatically generated reports19 and the work of Grosse et al.20 

The use of ML to develop an algorithm implies that the data was too complex for a human to fully 
understand. This unfamiliarity around the data exposes systems to data poisoning attacks. In these 
cases, an adversary will manipulate the training data to degrade the performance of the learned model 
and introduce backdoors into learned models. For example, a poisoning attack might seek to cause an 
object detection algorithm to mis-identify a specific object at deployment time. Training data 

                                                           

16 Doshi-Velez, F. and Been, K. (2017). Towards A Rigorous Science of Interpretable Machine Learning. [online] arxiv.org. Available at:  

   https://arxiv.org/pdf/1702.08608.pdf 
17 Lundberg, S. and Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. [online] arxiv.org. Available at:  

   https://arxiv.org/pdf/1705.07874.pdf  
18 Ribeiro, M. and Singh, S. (2016). “Why Should I Trust You?” Explaining the Predictions of Any Classifier. [online] arxiv.org. 

   Available at: https://arxiv.org/pdf/1602.04938.pdf   
19 Lloyd, J., Duvenaud, D., Grosse, R., Tenenbaum, J., Ghahramani, Z. (2014). Automatic Construction and Natural-Language Description of 

   Nonparametric Regression Models. [online] arxiv.org. Available at: https://arxiv.org/pdfr/1402.4304.pdf   
20 Grosse, R., Salakhutdinov, R., Freeman, W., Tenenbaum, J., (2012). Exploiting compositionality to explore a large space of model structures. 

   [online] cs.toronto.edu. Available at: https://www.cs.toronto.edu/-rgrosse/uai2012-matrix.pdf 
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uncertainty also introduces questions about the appropriateness of the data. Practitioners must ask 
themselves: is the data provided to the machine learning procedure representative of the intended 
task? If there is an appropriateness mismatch, model performance will suffer at deployment time.  
Uncertainty in the training data can be reduced by investigating and tracking data provenance, as well as 
by verifying that assumptions about the data hold prior to training. Models should not be learned from 
untrusted data. 

We rarely have any control over future inputs to our models. In addition to preventing a guarantee of 
generalization of learned models, the uncertainty surrounding future data provides camouflage for 
adversarial attacks on learned models. These attacks usually consist of human-imperceptible changes to 
an input that drastically change a model’s output, often with the goal of causing the model to produce 
the wrong output with high confidence. Examples of these types of adversarial attacks include Evasion,21 
Perturbed Input,22 Obfuscated Gradient,23 and Sensor Directed.24 Attacks rely often on knowledge of the 
learned model or at least access to the model outputs. As a result, models and their outputs should be 
shared with only trusted parties. It is important is to be suspicious of consecutive API calls where the 
distribution of the input does not change very much, as the purpose of these API calls could be to 
estimate the behavior of the model for attack design.  

Uncertainty around model behavior on future data can be reduced by training models in a robust 
manner and by testing existing models for robustness. Specifically, this means making sure that models 
are making decisions holistically, based on many extracted features instead of just a few. Another best 
practice is to not only rely on accuracy as a metric for model performance but also examine the model’s 
behavior on synthetically generated adversarial datasets. 

Research around ML security is still in its infancy, and many important problems remain open. ML 
security has been a focus area for the Booz Allen ML research team, and several research publications 
around adversarial machine learning have been authored by Booz Allen staff.25, 26, 27, 28  

                                                           

21 Biggio, B., Roli, F. (2018). Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning. [online] arxiv.org. Available at:  

      https://arxiv.org/pdf/1712.03141.pdf 
22 Doodfellow, I., Shlens, J., Szegedy, C., (2015). Explaining and Harnessing Adversarial Examples. [online] arxiv.org. Available at:  

      https://arxiv.org/pdf/1412.6572.pdf 
23 Athalye, A., Carlini, N., Wagner, D., (2018). Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial  

      Examples. [online] arxiv.org. Available at: https://arxiv.org/pdf/1802.00420.pdf 
24 Kurakin, A., Goodfellow, I, Bengio, S., (2017). Adversarial Examples in the Physical World. [online] arxiv.org. Available at:  

      https://arxiv.org/pdf/1607.02533.pdf 
25 Nguyen, Andre T, Raff, Edward, (2019). Adversarial Attacks, Regression, and Numerical Stability Regularization. In The AAAI-19 Workshop on                  

Engineering Dependable and Secure Machine Learning Systems. 

26 Raff, E., Sylvester, J., Forsyth, S., McLean, M., (2019). Barrage of Random Transforms for Adversarially Robust Defense. To appear in CVPR 

2019. 

27 Fleshman, W., Raff, E., Sylvester, J., Forsyth, S., McLean, M., (2019). Non-Negative Networks Against Adversarial Attacks. In AAAI-2019 

Workshop on Artificial Intelligence for Cyber Security. 

28 Another two papers are currently under blind review at other conferences and workshops. 
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4 O P E R A TIO N S 

 

Once Artificial Intelligence emerges from the lab, it is deployed to an incredibly diverse set of systems. 
These may include: 

• Hyperscale cloud platforms 

• Autonomous vehicles 

• Portable personal devices such as phones or watches 

• Surveillance devices, such as intelligent cameras  

• Sensors such as environmental monitoring devices 

This broad collection of operational environments provides a challenge when attempting to develop 
standards for measuring and evaluating AI system performance. Concerns around AI system 
performance may be as complex as:  

• Degrees of model or system failure and robustness in the face of failure 

• Level of trust in the model to accurately complete its assigned task 

• Mitigate and respond to environmental variability 

The variety of algorithms used to embody AI also represents a challenge. For example, learning styles 
create a variety of concerns around model maintenance, evaluation, reproducibility and version control. 

DEPLOYMENT 

The AI industry has recognized the need for standards around AI and ML and has sought to establish 
standards for model representation so that a system trained using one framework can be deployed and 
used to make decisions about data (commonly described as performing ‘inference’) using a different 
platform or framework. As previously described, the Open Neural Network Exchange (ONNX) format is 
used to represent deep learning models. ONNX has largely been championed by Microsoft, Facebook, 
and Amazon to provide interoperability and a standard foundation for implementing hardware 
optimization. Vendors with specialized hardware can implement supporting software components that 
read the ONNX model format for model execution on a variety of systems, platforms and devices.29 

The Data Mining Group has developed Predictive Model Markup Language (PMML) and Portable Format 
for Analytics (PFS), referred to as “two complementary standards that simplify the deployment of 
analytics models.” 30 

Each of these standards highlight the need for a standard representation of AI artifacts to allow 
portability of analytic techniques between development and deployment platforms. As they are 

                                                           

29 https://onnx.ai/ 
30 PMML General Structure, Available at: http://dmg.org/pmml/v4-3/GeneralStructure.html   
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emerging works, they may not be appropriately complete to represent all dimensions for measurement 
and evaluation included in a robust standards doctrine.  

DEPLOYMENT CONCERNS RELATED TO LEARNING STYLES 

A series of learning styles are broadly used within the AI community. Each of these bring potential 
concerns over measurement and validation of models trained using those styles in operational 
environments. 

 

ONLINE LEARNING31, 32  

Some models do not involve a discreate training process, but rather learn over time in the field as they 
are exposed to real world conditions. This process is known as Online Learning (OL). In this context it is 
either impractical or impossible to retain the entire collection of data used to produce the current state 
of a model trained via OL or the model itself is constantly evolving. It is difficult to reproduce a 
deterministically congruent model using a static training approach for a model trained via OL. This also 
precludes certain exploration of model robustness through data perturbation. Operational 
considerations highlight the need for mechanisms for identifying functional issues and reliable model 
versioning to detect and respond to model failure in order to return the deployed system to a known, 
good state. 

ACTIVE LEARNING33 

Supervised learning approaches suffer from a lack of annotated training data. Certain algorithms will 
identify cases where additional data is needed to better understand the phenomena they are trying to 
learn. This class of algorithms, known as Active Learning algorithms, provide feedback to a data source, 
such as a human annotator, as to which data instances need to be labeled in order to learn appropriate 
class distinctions in the data. This process can introduce systematic bias into models trained with this 
approach thus robust mechanisms for baselining and tracking model drift are required. In the long run 
these will lead to active learning models that generalize well to real-world conditions. 

TRANSFER LEARNING34 

Models can be adapted to tasks beyond that for which they were originally trained. The process of re-
using a model as a basis for a new model is known as fine-tuning. This learning technique is typically 
referred to as transfer learning. In effect this process transfers knowledge from one model to another. 

 

                                                           

31 Bottou, L. (2018). Online Learning and Stochastic Approximations. [online] bottou.org Available at:    

      https://leon.bottou.org/publications/pdf/online-1998.pdf  
32 Amari, S. (1967). A Theory of Adaptive Pattern Classifiers. [online] cbs-ni.riken.jp Available at:    

      https://cbs-ni.riken.jp/modules/xoonips/download.php/027.pdf?file_id=43 
33 Atlas, L., Cohn, D., Ladner, R. (1989). Training Connectionist Networks with Queries and Selective Sampling. [online] nips.cc Available at: 

      https://papers/nips/cc/paper/261-training-connectionist-networks-with -queries-and-selective-sampling.pdf   
34 Pratt, L., Mostow, J., Kamm, C. (1991). Direct Transfer of Learned Information Among Neural Networks. [online] aaai.cc Available at: 

       https://www.aaai.org/Papers/AAAI/1991/AAAI91-091.pdf  
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INCORPORATION AND USE OF EMBEDDED SENSORS35 

In many industries existing standards provide benchmarks against which sensors can be measured. As AI 
learning styles change, operational systems must address concerns that arise when models evolve under 
the influence of new data, especially of those data sources sourced from the addition of new sensors. 
Variability in manufacturing processes can lead to inconsistent sensors that provide a deployed model 
data that is considerably different from that on which it was trained. It is essential to develop a system 
of standards and measures to quantify model change, sensor variability and the uncertainty that arises 
when new conditions develop in the world. 

 

ARTIFICIAL INTELLIGENCE SYSTEM TRUST LEVELS AND CERTIFICATIONS  

It is critical to establish standard measures of trust and reliability for Artificial Intelligence systems. For 
example, certain AI systems may be certified to be used in a human-assistive capacity, while others 
certified to operate without direct human oversight. This continuum of validated autonomy may span 
the breadth of what roles AI systems can adopt, from a simple home assistant to a system controlling 
components of the nation’s critical infrastructure. In some cases, it becomes more appropriate to 
evaluate an AI system as we would evaluate a Human performing the same task. For example, in our 
paper, “Dr. AI, Where Did you Get Your Degree?”36 we suggest that government agencies apply 
standards traditionally used to certify practitioners in the medical domain as opposed to certifying AI as 
it were a medical device.  

TAXONOMY OF ARTIFICIAL INTELLIGENCE 

This discussion of learning styles and trust levels leads us to the need for standardization around a 
taxonomy of Artificial Intelligence. Formal definitions of different types of AI will allow groups across 
fields to communicate around issues related to AI and ML applications, concerns, the nature of risk and 
the suitability of systems for specific use cases. Such a taxonomy may consider the following 
dimensions. 

• Definitions of different uses of AI 

o Supportive - AI used in a capacity where it eliminates human toil such as rote repetitive 
tasks. 

o Augmenting - AI used in a capacity to expand human capability, where it performs tasks 
humans are incapable of; however, the AI still requires human oversight. 

o Autonomous - used independently from human operation. 

• Definitions of levels of AI risk 

o Certification of the implications of failure – from harmless to the loss of human life 

o Detectability of failure – degrees from easy to observe failure to hard to detect failure. 

                                                           

35 McGrath, M., Scanaill, C. (2014). Regulations and Standards: Considerations for Sensor Technology. [online] springer.com Available at:    

      https://link.springer.com/chapter/10.1007/978-1-4302-6014-1_6  
36 Raff, E., Lantzy, S, Maier, E. (2018). Dr. AI, Where did you get your degree? Proceedings of the International Workshop on Artificial 

       Intelligence in Health, pp. 76-83. Available at: ceur-ws.org/Vol-2142/short11.pdf 
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o Susceptibility to influence – ease of gaming the system or performing adversarial attack 
and robustness in the face of these attacks. 

• Ethical Standards 

o Such as prioritizing human well-being37 over correctness or failure. 

It is clear that these dimensions are incomplete, but serve as an example as to how AI system can be 
graded and certified. Certain applications may require specific levels of certification in order to have an 
AI system approved to perform for a given use-case. 

5  C O N C L USIO N S AN D  R E C O MME N D A TIO N S 
The impact of Artificial Intelligence and Machine Learning (AI/ML) systems on society and commerce will 
only become more pervasive and will impact the future in ways that cannot be fully imagined today.  To 
influence the positive societal and commercial influence of AI/ML systems, standards must be adopted 
today to formulate a common understanding of these systems and their capabilities and reduce the risks 
of unintended consequences or direct manipulation via nefarious actors.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To that end, Booz Allen Hamilton has delivered many AI/ML-based services and products to the U.S. 
Government. This experience has provided many opportunities to assess and align common approaches 
and process improvements. It is our position that setting artificial intelligence standards, based on 
collective ideals of other organizations, would improve AI technologies overall and we welcome this 
effort. 
 
 

                                                           

37 https://ethicsinaction.ieee.org  

Key Recommendations 
As AI/ML systems become more complex, government agencies should adopt standards similar to 
those traditionally used to certify human practitioners for certification. 

 

A Taxonomy of AI/ML systems should be established that captures characteristics along a number of 
dimensions such as the learning style, nature of its use, the risk of failure, and ethical implications of 
the decisions made by the AI/ML system. 

 

Information necessary for calculating the historical accuracy and health state of AI/ML systems 
should be preserved to reconstruct historical model performance including APIs for testing of model 
components, introspection capabilities, and metadata descriptions of the model. 

AI/ML systems can be made more secure by protecting the provenance of training data, as well as by 
verifying that data assumptions remain the same as the model is trained. 

As AI/ML models become more complex, model behaviors should be traceable to each of the model’s 
components. 

 AI/ML model should have a scale which quantitatively describes its ability to be introspected. 
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