

Update on Diffusion Mobilities in Oxide Systems

Samuel Hallström, Lars Höglund, John Ågren

Dept. of Matls. Sci. & Engg. Royal Institute of Technology Stockholm, 100 44 Sweden

Diffusion workshop 25-26 March 2009 NIST, USA Acknowledgement (the CROX team): H-O Andren, M. Halvarsson, T. Jonsson, J.Hald, H. Danielsson, R. Sandström, H. Magnusson

Aim of work

Predict oxidation:

- Sharp-interface methods DICTRA
- Diffuse-interface methods phase-field

For example:

- Oxidation of steels
- Degradation of superalloy coatings

We need:

- Mathematical expressions for flux as function of gradients in composition or chemical potentials.
- Parameters that characterize a given material

Diffusion workshop 25-26 March 2009 NIST, USA

Background

Ferritic 9-12 % Cr steels

The life-time of is limited by:

- Creep
- Oxidation.

Design requirement: at least 100 000 h at 100 MPa

Avedøre (Copenhagen)

Diffusion workshop 25-26 March 2009 NIST, USA

Industrial Engineering and Management

Fig. 3 Steam conditions and high temperature materials

Content

- Background
- Modelling of oxidation
- Bulk diffusion in oxides
- Grain boundary diffusion
- Kirkendall porosity
- Effect of water vapour

Diffusion workshop 25-26 March 2009 NIST, USA

Modelling of oxidation - issues

Predict:

- Rate of oxidation
- What oxides form
- Porosity

Diffusion workshop 25-26 March 2009 NIST, USA

Growth of oxide layers – how fast do the layers grow?

Flux balances in sharp-interface modelling!

Diffusion workshop 25-26 March 2009 NIST, USA

General approach

Flux:

Kinetic parameters from model.

Darken's thermodynamic factor, e.g. from Calphad analysis.

Diffusion workshop 25-26 March 2009 NIST, USA Base models on a vacancy mechanism!

At present:

- Models included in DICTRA
 Our data base now contains diffusional mobilities of
- Wustite
 - Fe
 - O missing but probably very small
- Magnetite (spinel)
 - Fe, Cr ongoing
 - O
- Hematite (Corundum)
 - Fe, Cr

Diffusion workshop 25-26 March 2009 NIST, USA – O missing but similar to Fe

The Fe-O system

 Calculated from Sundman 1991.

Diffusion workshop 25-26 March 2009 NIST, USA

Ionic systems – two extremes

- Electronic conduction compared to diffusion:
 - Much faster (charge does not need to be included)
 - Much slower (ions diffuse as species)

If electronic conduction and diffusion are about the same rate (electronic conduction needs to be accounted for)

Diffusion workshop 25-26 March 2009 NIST, USA

Experimental data on Fe tracer diffusion in spinel - Optimization of Fe mobilities

(Hallström et al. 2008)

KTH KTH VETENSKAP COCH KONST

Alloy elements in spinel (lattice fixed frame of reference)

Töpfer et.al. 1995

Diffusion workshop 25-26 March 2009 NIST, USA

25-26 March 2009 NIST, USA

Effect of grain boundaries

Simplified approach: $D_{eff} = (1 - \delta / d) D_{bulk} + \delta / d D_{gb}$ $Q_{gb} \cong \alpha Q_{bulk}$ $0.3 < \alpha < 0.5$

7 (°C) 1200 1000 800 700 600 500 1600 Ni in high-angle NiO boundaries (3) -16 -10 1A. 12 log₁₀ D (cm²sec⁻¹) -20 Ni in low-angle boundaries [6] D¹5(cm³sec⁻¹) -16 Ní in lattice 0 in lattice [30] 0⁰60 -18h 12 13 $\mathbf{5}$ 10 11 6 10⁴/7 (K⁻¹)

Diffusion workshop 25-26 March 2009 NIST, USA

Fe tracer in Fe₂O₃

Diffusion workshop 25-26 March 2009 NIST, USA

Cr tracer in Cr₂O₃

- Q estimated from diffusion of Fe in hematite (isostructural).
- Lowest values should correspond to the most pure material.
- Values from Sabioni and Tsai (recalculated to tracer) used in optimization.

Simulations of oxidation of pure Fe at 600°C in dry atmosphere

- 600°C, P₀₂=0.05, 24h.
- $d^{mag} \approx 3\mu m$, $d^{cor} \approx 0.1\mu m$, $\delta = 5 nm$
- Gb diffusion accounted for in magnetite and hematite.

$$D_{eff} = (1 - \delta / d) D_{bulk} + \delta / d D_{gb}$$

$$Q_{gb} \cong \alpha \; Q_{bulk} \quad 0.3 < \alpha < 0.5$$

• Oxygen diffusion neglected

Diffusion workshop 25-26 March 2009 NIST, USA

25-26 March 2009 NIST, USA

Kirkendall effect - porosity

Oxygen is substitutional, divergence of oxygen flux gives Kirkendall effect:

 $\frac{v}{V_m} = -J = -J'_{O^{-2}} / x_{O^{-2}} \qquad V_m = \text{molar volume/mole of atoms}$ Rate of density ($\rho = 1/V_m$) change:

$$\frac{1}{V_m^2} \dot{V}_m = \mathbf{div}(J)$$

 $\frac{f_p}{\left(1-f_n\right)^2} = -V_m \mathbf{div}(J)$

No porosity \Rightarrow Strain rate:

$$\dot{\varepsilon}_{11} + \dot{\varepsilon}_{22} + \dot{\varepsilon}_{33} = \frac{1}{V_m} \dot{V}_m = V_m \mathbf{div}(J)$$

Only porosity (volume fraction f_p):

Diffusion workshop 25-26 March 2009 NIST, USA

Maruyama et al. 2004

Voids form as a consequence of a divergence in the oxygen flux.

Diffusion workshop 25-26 March 2009 NIST, USA

Schematics of Kirkendall effect in magnetite

 μ_{Fe}

Distance

Distance

Diffusion workshop 25-26 March 2009 NIST, USA

Diffusion workshop 25-26 March 2009 NIST, USA

 $\partial y_{Va} / \partial t = \partial J_O / \partial z$

Distance

Diffusion workshop 25-26 March 2009 NIST, USA

Diffusion workshop 25-26 March 2009 NIST, USA

T. Jonsson et al. 2008

Simulations of oxidation of pure Fe at 500°C in dry atmosphere

- 500°C, P₀₂=1 atm
- $d^{mag} \approx 3\mu m$, $d^{cor} \approx 0.1\mu m$, $\delta = 5 nm$
- Gb diffusion accounted for in magnetite and hematite.

$$D_{eff} = (1 - \delta / d) D_{bulk} + \delta / d D_{gb}$$

$$Q_{gb} \cong \alpha \ Q_{bulk} \quad 0.3 < \alpha < 0.5$$

• Oxygen diffusion included

Diffusion workshop 25-26 March 2009 NIST, USA

Fe-profile after 24 h

Diffusion workshop 25-26 March 2009 NIST, USA

Diffusion workshop 25-26 March 2009 NIST, USA

Diffusion workshop 25-26 March 2009 NIST, USA

T. Jonsson et al. 2008

- Dry atmosphere:
 - Inward growth of magnetite about 20-30 % of magnetite thickness.
 - Some porosity adjacent to the original steel surface
- Wet atmosphere:
 - Hematite layer much thicker due to much stronger outward growth (ca 50% of magnetite layer).
 - No porosity in hematite layer
 - High porosity in the inward growing magnetite layer.
 - Porosity at wustite/metal interface

The observations indicate that outward iron diffusion in hematite is accelerated by the steam.

Summary

- DICTRA can now handle diffusion in oxides allowing prediction of oxidation.
- Oxide moblities in Fe-Cr oxides being assessed.
- Grain boundary diffusion is taken into account in a simplified manner.
- Oxygen diffusion may cause Kirkendall effect and porosity.

Diffusion workshop 25-26 March 2009 NIST, USA