Contrast Variation Small Angle Neutron Scattering-Identifying the
Unique Fingerprints for the Structure of Proteins
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Abstract— This summer school module will use contrast
variation SANS measurements to determine the contrast match
point, contrast dependent radius of gyration, and the basic
functions for two model protein in solution.

I. INTRODUCTION

Proteins are a fundamental component of life. Understand-
ing their function in living systems is critical to developing
strategies to treat human disease and reveal the fundamental
nature of biophysical processes. The function of a protein is
directly tied to its structure. Decades of effort have therefore
been dedicated to measuring the structure of proteins in their
native environments. There are many methods to determine
a protien’s structure including X-ray diffraction, NMR, and
electron microscopy.

While the preferred structural determination technique
is often electron microscopy, it has several limitations for
proteins. First, the small length scales involved, the lack
of phase contrast, and the projection of a three-dimensional
object onto a two-dimensional image complicate the analysis
of the distribution of components within a protein volume.
Second, to obtain a representative average over the many
billions of particles in a typical formulation, this complex
analysis must be carried out over thousands of particles
which is often impractical and the protein is subject to
damage by the beam. Finally, while electron microscopy
is constantly improving the ability to resolve structures in
environmental cells, these capabilities do not yet rival bulk
characterization techniques.

Neutron Scattering is well suited to the challenge of
determining the pertinent structural features of proteins.’
Neutron Scattering methods probe intrinsically orientation-
ally averaged structure over many particles (Npqrs ~ 10'8)
for typical sample volumes). Further, the phase contrast can
be changed readily through isotopic substitution without
influencing the chemical identity of the species involved,
and multiple length scales can be probed simultaneously.
Neutron scattering is also inherently an in-situ technique,
so the structure can be probed without being disturbed. The
challenge with neutron scattering techniques compared with
imaging is the interpretation of the scattering profile resulting
from the measurement.
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Whereas this challenge has been elucidated for relatively
simple scattering objects that have homogeneous distribu-
tions of scattering length density (SLD), the structural in-
terrogation of inhomogeneous particles is significantly more
challenging. Much of the work to date using SANS has
focused on particles with an axisymmetric distribution of
SLD.? There are a great number of examples of particles
that fall into this category including surfactant micelles,
nanoparticles decorated with polymer brushes, and vesicles.*
The scattering profiles for these particles are frequently
treated using infinitely thin shells with unique contrast terms
constructed such that they reproduce the radial variation of
scattering length density.’ The overall structure can then be
described by the form factor of each shell multiplied by
the phase factor that accounts for their relative separation.
Key to the unique refinement of structure in this case is the
measurement at multiple solvent contrasts. This is achieved
frequently using mixtures of deuterated and hydrogenated
solvent.

While this simple analytical approach is often successful
when applied to axisymmetric particles, it is more challeng-
ing when the heterogeneities in SLD are eccentric or those
with domains whose center of mass does not correspond to
the particles center of mass (e.g. egg-yolk particles or Janus
particles).”"® For such particles, limited analytical treat-
ments exist to adaquately describe their scattering profiles,
and thus model independent approaches have been primarily
used. However, computation methods such as Monte Carlo
simulation are quite successful.'”

II. THEORY
A. Small Angle Scattering

When radiation is incident on a sample, the momentum of
the incident wave vector can be expressed as |k;| = 2w/,
where A is the wavelength. The incident wave induces in
a finite volume element, 0V, within a material a resonant
dipole that emits waves in all directions.[ref] For elastic
scattering processes, there is little energy transfer from the
incident radiation to the sample (E; = E,) and the fraction
of scattered radiation is small relative to the portion that
transmits. Under these conditions, the momentum of the
wave-vector emanating from the sample is |ks| = 2 /.1
For scattering measurements, it is typical to measure the
scattering intensity as a function of the scattering angle, 6,
which is commonly expressed as scattering vector, Q, where
Q = 4= sin(6/2). Elastic scattering provides the basis for a
number of experimental techniques including small angle X-
ray and neutron scattering (SAXS/SANS), X-ray Diffraction
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Fig. 1. Schematic representation of a small angle scattering experiment

(XRD), and grazing incidence small angle neutron and X-ray
scattering (GISANS/GISAXS)

In order to understand this process in more detail, consider
two differential volume elements within a sample, §V. Under
the influence of an incident wave, scattered waves will
emanate from each element in all directions. One is centered
at the origin, O, and another at a distance, |r|, as shown
in Figure 1. The scattered intensity, [, is measured as a
function of angle on a detector at a distance R from the
sample, where I,(Q,t) = |E(Q,t)|?, the squared amplitude
of scattered radiation. The scattered waves produced from
each scattering element propagate with magnitude, k,, and
due to the finite distance between elements, are phase shifted
by —@Q - r radians. This leads to interference that results in
characteristic fluctuations in scattered intensity measured at
the detector as a function of @). For structural interrogation,
the time-averaged intensity that results from a measurement
is the Fourier transform of the combined contributions from
all of the isolated scattering elements with scattering length,
b, within the sample as shown in 1.#

(Q)e” JQ(Tm*Tn)> (1)
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While Equation 1 is completely general, it is not often
practical to use. A more convenient descriptions can be used
which assumes the scattering originates from N identical
particles. In this way, the collective ensemble behavior is
what is measured so now Equation 1 can be reformulated
to Equation 2, which is known as the Debye Equation.
In this equation, the scattering lengths are replaced with
scattering length densities, p and the spatial positions now
are represented by vectors.
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In equation 2, p is the scattering length density measured
in a vacuum. To account for solvent solvent, the contrast is
introduced via equation 3.
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where p is the volume weighted average scattering length

density of the object and p; is the scattering length density

of the solvent.

B. Scattering from Heterogeneous Particles

Within the context of a small angle scattering experiment,
the scattered intensity collected on a detector will represent
the ensemble average over its entire illuminated volume. In
fact, regardless of shape or distribution of density fluctuations
within the sample, I(Q) will be proportional to ¢,, the
volume fraction of scatters in the sample, V},,+, the average
volume of the scatterer, and Ap? = (p — ps). The Q-
dependence of the intensity originates from the particular
details of the scattering entitys shape and the distribution of
those domains within the sample. This Q-dependent compo-
nent is commonly expressed as the product of the form factor,
P(Q), and the structure factor S(Q), I(Q) = P(Q)S(Q).
Therefore, in general form, 4 approximates the scattering
from a collection of identical objects.

I(Q) = ¢V, Ap*P(Q)S(Q), 4

The form factor, P(Q) is a function that is normalized
such that P(Q = 0) = 1, and it contains all the details
about the shape and internal density distribution of the
particles. The structure factor encodes both dynamic and
static interactions arising between particles. Decoupling the
structure factor from the form factor is a critical component
of the measurement of any sample of unknown structure. The
easiest method to determine the relative contribution of S(Q)
to the scattering measurement is a dilution experiment where
a concentration series is prepared and () measured using
a fixed contrast at each concentration. By dividing 1Q) the
role of structure factor can be identified by the condition
qugpﬁo S(Q) — 1.

For a homogeneous particle (i.e. one composed of only one
scattering length density) and in the absence of a structure

factor, in the small angle limit, Q — 0, % =1-

Q?r?/6+Q*r* /120 +. .. via the Mclaurin series expansion.
Truncating to the quadratic term, it can be shown that
(QRg)?
lim P(Q)=e "~ & . (5)

Q—0

This is Guinier approximation and R, is known as the radius
of gyration, which for a homogeneous particle is the root
mean square distance of the mass of an object from its center
of mass.

C. The Stuhrmann Plot
12

For homogeneous particles, the Guinier approximation is
a convenient place to start for the analysis of scattering
profiles. However, when a particle is composed of more
than one component, it has less utility. In these cases,
the shape function of the particle is convoluted with the
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Fig. 2. Stuhrmann Plots for various o and /3 values. The blue traces are for
«a < 0 and the red traces are for o > 0. As [ increases, the position of the
peak maximum of the parabola shifts toward the ordinate. A homogeneous
particle is described by the solid black line with a slope of 0.

scattering from heterogeneities within it. Stuhrmann was
able to decouple these approximations by assuming that the
solvent penetration did not influence the structure via 6,

1, ris inside particle
Gp(r) = P (©)

0, r is outside particle

Though it appears a trivial assumption, it can be shown
that so defined, by measuring a suspension at a fixed con-
centration in solvents of varying scattering length density,
ps (eg., through isotopic substitution), the total scattering
intensity for any inhomogeneous particle can be decomposed
into separate terms as shown in Equation 7.

I(Q) = Iy + 2psI01(Q) + p*11(Q) @)

This equation implies a quadratic dependence of the total
scattering intensity on solvent contrast at each Q-value. Fur-
ther, it implies that any contrast variation experiment requires
the measurement of at least three solvent contrasts in order
to uniquely determine the scattering basic functions, Iy(Q),
1p1(Q), and I;(Q). However, once these are determined any
contrast can be predicted simply by applying Equation 7.
Additionally, these basic functions can be fit independently
to reconstruct the contributions to the measured curve, where
Ip(Q) is the shape function of the inhomogeneities, I;(Q)
is the envelope scattering and Ip; (Q) is the cross-term.

Despite the power of this description, it often proves
difficult to identify adequate analytical models for the basic
functions. This is the case for many proteins. The complex
interplay of the protein envelope with the peptide distribution
complicates unique structural identification. Contrast varia-
tion in these cases can serve to separate those contributions.

Fig. 3. PDB rendering of Lysozyme (image reproduced from
http://pdb101.rcsb.org/motm/9)

In the absence of an adequate analytical description or
simulation with which to compare the basic functions,
Stuhrmann extended the Guinier approximation to account
for the contrast dependence of the radius of gyration ex-
tracted from a fit to a scattering curve. Stuhrmann’s equation,
Equation 8, describes this dependence as a quadric depen-
dence on the inverse contrast, 1/Ap.

R = R +a/Ap — B/Ap? ®)

In Equation 8, R, is the radius of gyration of the particle
at infinite contrast (i.e. if it were homogeneous), o describes
the relative scattering length density distributed radially from
the particles center of mass, and [ is a measure of the
distance of the center of mass of the particle to the center of
scattering length density of its heterogeneous components.
In effect, the overall shape of the particle is described by
R, and the distribution of inhomogeneities by « and f.
The result of this analysis showed that a plot of R§ as a
function of 1/Ap is a unique fingerprint that can be used
to identify materials by their average distribution of internal
inhomegeneities. Representative Stuhrmann plots are shown
in Figure 2. Note that because of the negative sign in front
of 3, Stuhrmann plots should always be concave down.

III. EXPERIMENTAL PLANNING

There are a number of things necessary to perform a good
contrast variation experiment on proteins and other hetero-
geneous scatterers. We will be performing these calculations
before we go in the lab to prepare the samples. We will per-
form these calculations for the protein lysozyme. Lysozyme
is a antimicrobrial enzyme produced by animals. It catalyzes
the hydrolysis of glycosidic bonds in peptidoglycans. This
hydrolysis reaction is mediated by Lysozyme’s unique shape
as shown in Figure 3. The C-shape of Lysozyme not only
makes it an interesting protein for its biological function, but
also the scattering patterns derived from it are feature rich
due to the hydrophobic amino acid residues that reside in its
core.



A. Concentration of Protein

First, a concentration must be identified where the struc-
ture factor, S(Q), is absent. This concentration ideally is
in the dilute limit, but must be balanced against the need
for coherent scattering intensity. This concentration can be
found using the procedure outlined in the theory section
by identifying the concentration when S(Q) — 1. We
performed this experiment for Lysozyme for concentrations
spanning 5-50 mg/mL. By extrapolating the scattering curves
to infinite dilution, P(Q) was recovered. Each concentration
was then normalized using the curve at infinite dilution and
from that S(Q) was determined and is shown in Figure
4. The inset shows the intercept of the structure factor at
@ = 0 versus concentration and from this plot it is clear
that S(Q)) = 1 for concentrations smaller than 5 mg/mL
at this ionic strength. In order to obtain adequate statistics,
therefore, we need to measure the samples at the largest
concentration where the structure factor is minimized or
absent.
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Fig. 4.  Static Structure Factor, S(Q) from HEW Lysozyme measured

at several concentrations. S(Q) is calculated through normalization to
limg_,01s(Q)/¢. The inset shows S(Q — 0) vs concentration of protein
in mg/mL. The structure factor approaches 1 at 5 mg/mL.

B. Subtracting the Background

The second aspect of a contrast variation experiments that
makes them so challenging is that one needs to measure
scattering curves near the match point in order to see the
dependence of R, on Ap. This implies via Equation 4
that the scattering intensity will be low and in the case of
measuring at the match point I(Q — 0) = 0. Because con-
trast variation for protiens is frequently performed for water
based samples, this weak intensity is measured against the
fact that the incoherent background increases with hydrogen
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Fig. 5. I(Q) vs Q for the NIST MAB dissolved in ps = 5.7 x 106472
(10 % H20) The incoherent background, Ipq, is shown as a horizontal
dashed line and the background subtracted sample intensity, Is(Q) is shown
as well. Within the inset is a so-called Guinier plot which linearizes the data.
From the slope on a Guinier plot, the R4 can be determined directly

content. In D50O, this background is 0.05 em ™1, whereas

in HyO it can reach 1.5 em™!. Given the volume of many
proteins, the scattering will be dominated by the incoherent
background at most contrasts. The incoherent scattering, I;,,.
is Q-independent and therefore can be simply subtracted
directly from the measured I(Q) curve to recover I;(Q) as
shown in Figure 5 for a 5 mg/mL monoclonal antibody in
90% D-0.

C. Selection of Contrasts and Number of Points

Third, the choice of contrast is also important in order to
construct a Stuhrmann plot. We frequently have little a priori
knowledge of the structure but can often estimate the pro-
tein’s composition and density. Using these two parameters,
it is possible to estimate p. From this estimate, contrasts
points should be selected for mixtures of DoO/HoO that
span a broad range of contrasts so that the shape of the
Stuhrmann plot is resolvable. A useful formula for calculat-
ing the solvent scattering length density is Equation 9.

ps = Z bipi 9)

The minimum number of contrasts that should be mea-
sured in order to determine parameters underlying the
Stuhrmann plot is 3. However, it is good practice to perform
the measurement using many more with at least 3 contrasts
on both sides of the match point.
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Fig. 6. (Figure reproduced from!3). Scattering densities of various solutes
and solvents in X-ray and neutron scattering. The scattering density of
solutes in Do O/H2O mixtures is slightly increasing due to H/D exchange.
Note that a broader range of contrast can be achieved in neutron scattering.

IV. EXAMPLE

With the experiment appropriately planned, the samples
can be prepared and measured. The raw scattering intensity
is then corrected for empty cell, blocked beam and plotted on
absolute scale. The incoherent background is then subtracted
and this allows for the unique determination of Iy. This is
shown in Figure 5 where the corrected scattering curve and
background subtracted scattering curve are shown vs Q.

Linearizing the data by plotting In(75(Q)) vs. Q? allows
for the graphical determination of Rg via the slope =
ng /3. The intercept on this plot yields Iy. Performing this
linearization for every contrast measured yields R, and I
at every Ap. From this estimate, a further linearization, VI
vs. ps, yields the average contrast p, which for the NIST
MAB is 2.3 x 1075477 or (58.5%H,0). Armed with this
value, the Stuhrmann plot can be constructed as shown in
Figure 2.

V. CONCLUSION
APPENDIX

Appendixes should appear before the acknowledgment.
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Fig. 7. Normalized Stuhrmann plot, R—g Vs. Aip’ measured for the NIST
MAB and Lysozyme at five different contrasts. Best fit to Equation 8 shown
as solid lines and 67 % confidence interval as dashed lines. The inset shows
thev/Io vs. ps. The solid line shows x-intercept which signifies the contrast
match point, p
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