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Abstract

This summer school module will use contrast variation SANS
measurements to determine the contrast match point, con-
trast dependent radius of gyration, and the basic functions
for Lysozyme.

1 INTRODUCTION

Proteins are a fundamental component of life. Understand-
ing their function in living systems is critical to developing
strategies to treat human disease and reveal the fundamental
nature of biophysical processes. The function of a protein is
directly tied to its structure. Decades of effort have therefore
been dedicated to measuring the structure of proteins in their
native environments. There are many methods to determine
a protein’s structure including X-ray diffraction, NMR, and
electron microscopy.1

While the preferred structural determination technique is
often electron microscopy, it has several limitations for pro-
teins. First, the small length scales involved, the lack of phase
contrast, and the projection of a three-dimensional object
onto a two-dimensional image complicate the analysis of the
distribution of components within a protein volume. Second,
to obtain a representative average over the many billions of
particles in a typical formulation, this complex analysis must
be carried out over thousands of particles which is often im-
practical especially for looking at protein complexes. Finally,
while electron microscopy is constantly improving the ability
to resolve structures in environmental cells, these capabilities
do not yet rival bulk characterization techniques.

Neutron Scattering is well suited to the challenge of deter-
mining the pertinent structural features of proteins.2 Neutron
Scattering methods probe intrinsically orientationally aver-
aged structure over many particles (Npart ∼ 1018) for typical
sample volumes). Further, the phase contrast can be changed
readily through isotopic substitution without influencing the
chemical identity of the species involved, and multiple length
scales can be probed simultaneously. Neutron scattering is
also inherently an in-situ technique, so the structure can be
probed without being disturbed. The challenge with neutron
scattering techniques compared with imaging is the interpre-
tation of the scattering profile resulting from the measure-
ment.
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Whereas this challenge has been elucidated for relatively
simple scattering objects that have homogeneous distributions
of scattering length density (SLD), the structural interroga-
tion of inhomogeneous particles is significantly more challeng-
ing.3,4 Proteins fall into this category due to their chemical
nature. They are composed of sequences of amino acids each
of which has a distinct contrast for both neutrons and X-rays.
Therefore, the total scattering pattern from a protein contains
information not just about its shape envelop (i.e., the region
of the protein inaccessible to solvent molecules) but also corre-
lations between regions of varying contrast within its internal
volume.5,6

As a result of these characteristics, more advanced analysis
techniques must be employed which expand beyond analytical
model descriptions to gain insight into relevant structural fea-
tures of proteins. These advanced techniques are particularly
powerful when combined with computation methods such as
molecular simulations.7 NIST has been involved in this work
through the CCP-SAS Project.8

2 Theory

2.1 Small Angle Scattering

When radiation is incident on a sample, the momentum of the
incident wave vector can be expressed as |ki| = 2π/λ, where
λ is the wavelength. The incident wave induces in a finite
volume element, dV , a resonant dipole that emits waves in
all directions.9 For elastic scattering processes, there is lit-
tle energy transfer from the incident radiation to the sample
(Ei = Es) and the fraction of scattered radiation is small rela-
tive to the portion that transmits. Under these conditions, the
momentum of the wave-vector emanating from the sample is
|kf | = 2π/λ.9 Therefore, the scattering process is defined by
the change in angle, θ, of the scattering to incident radiation.
This change is commonly expressed as scattering vector, Q,
with magnitude Q = 4π

λ sin(θ/2). Elastic scattering provides
the basis for a number of experimental techniques including
small angle X-ray and neutron scattering (SAXS/SANS), X-
ray Diffraction (XRD), and grazing incidence small angle neu-
tron and X-ray scattering (GISANS/GISAXS)

Fluctuations in scattering intensity arise due to construc-
tive and destructive interference of emerging waves from the
sample. This is easily understood by considering two volume
elements within a sample emitting waves in all directions as
in Figure 1. One is centered at the origin, O, and another
at a distance, |r|. The scattered intensity, Is, is measured as
a function of angle on a detector at a distance R from the
sample, where Is(Q, t) = |E(Q, t)|2, the squared amplitude of
scattered radiation. The scattered waves produced from each
scattering element propagate with magnitude, ks, and due to



Figure 1: Schematic representation of a small angle scattering
experiment

the finite distance separating the two volume elements, the
outgoing waves are phase shifted by −Q · r radians. This pro-
duces interference that results in characteristic fluctuations in
scattered intensity measured at the detector as a function of
Q. For structural interrogation, the time-averaged intensity
that results from a measurement is the Fourier transform of
the combined contributions from all of the isolated scatter-
ing elements with scattering length, b, within the sample as
shown in 1.5

〈Is(Q)〉 =
E2

0

R2
〈
N∑
m=1

N∑
n=1

bm(Q)bn(Q)e−jQ·(rm−rn)〉 (1)

While Equation 1 is completely general, it is not often prac-
tical to use for disordered scatterers. A more convenient de-
scription can be used which assumes the scattering originates
from N identical particles. In this way, the collective en-
semble behavior is what is measured so now Equation 1 can
be reformulated to Equation 2, which is known as the Debye
Equation. In this equation, the scattering lengths are replaced
with scattering length densities, ρ and the atomic positions
are now represented by vectors.

Is(Q) =

∫ ∫
ρ(rm)ρ(rn)

sin(Q · rmn)

Q · rmn
drmdrn (2)

In equation 2, ρ is the scattering length density measured in
a vacuum. To account for solvent, the contrast is introduced
via equation 3.

∆ρ = V −1

∫
V

(ρ(r)− ρs)dV = ρ̄− ρs, (3)

where ρ̄ is the volume weighted average scattering length den-
sity of the object and ρs is the scattering length density of the
solvent.

2.2 Scattering from Heterogeneous Particles

Within the context of a small angle scattering experiment,
the scattered intensity collected on a detector will represent
the ensemble average over its entire illuminated volume. In
fact, regardless of shape or distribution of density fluctuations
within the sample, I(Q) will be proportional to φp, the volume
fraction of scatters in the sample, Vpart, the average volume of
the scatterer, and the square contrast, ∆ρ2 = (ρ̄− ρs)2. The
Q-dependence of the intensity originates from the particular

details of the scattering entitys shape and the distribution of
those domains within the sample. This Q-dependent compo-
nent is commonly expressed as the product of the form fac-
tor, P(Q), and the structure factor S(Q), I(Q) ∼ P (Q)S(Q).
Therefore, in general form, Equation 8 approximates the scat-
tering from a collection of identical objects,

I(Q) = φVp∆ρ
2P (Q)S(Q). (4)

The form factor, P (Q) is a function that is normalized such
that P (Q = 0) = 1, and it contains all the details about
the shape and internal density distribution of the particles.
The structure factor encodes both dynamic and static inter-
actions arising between particles. Decoupling the structure
factor from the form factor is a critical component of the
measurement of any sample of unknown structure. The easi-
est method to determine the relative contribution of S(Q) to
the scattering measurement is a dilution experiment where a
concentration series is prepared and I(Q) measured using a

fixed contrast at each concentration. By dividing I(Q)
φp

, the

role of structure factor can be identified by the condition
limφp→0 S(Q)→ 1.

With the form factor isolated from the structure factor, it is
possible to analyze the scattering pattern to identify relevant
pertinent structural features such as the size and shape of
the particles. For a homogeneous particle (i.e. one composed
of only one scattering length density) and in the absence of a
structure factor, the Guinier approximation is often the start-
ing point for structural analysis. In the small angle limit,

Q → 0, sin(Q·rmn)
Q·rmn

= 1 − Q2r2/6 + Q4r4/120 + . . . via the
Mclaurin series expansion. Truncating to the quadratic term,
it can be shown that equation 2 reduces to:

lim
Q→0

P (Q) = e−
(QRg)2

3 . (5)

This is the Guinier approximation and Rg is known as the
radius of gyration, which for a homogeneous particle is the
root mean square distance of the mass of an object from its
center of mass and is generally valid under the condition of
QRg < 1.

2.3 The Stuhrmann Plot

For homogeneous particles, the Guinier approximation is a
convenient place to start the analysis of scattering profiles.
However, when a particle is composed of more than one com-
ponent, it has less utility. In these cases, the shape function
of the particle is convoluted with the scattering from hetero-
geneities within its internal volume.10 Stuhrmann was able to
decouple these approximations by assuming that the solvent
penetration did not influence the structure via Equation 6,

φp(r) =

{
1, r is inside particle

0, r is outside particle
(6)

Though it appears a trivial assumption, it can be shown
that so defined, by measuring a suspension at a fixed con-
centration in solvents of varying scattering length density, ρs
(eg., through isotopic substitution), the total scattering inten-
sity for any inhomogeneous particle can be decomposed into
separate terms as shown in reference,10

I(Q) = I0 + 2ρsI01(Q) + ρ2
sI1(Q) (7)
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This equation implies a quadratic dependence of the to-
tal scattering intensity on solvent contrast at each Q-value.
Further, it implies that any contrast variation experiment re-
quires the measurement of at least three solvent contrasts
in order to uniquely determine the scattering basic func-
tions, I0(Q), I01(Q), and I1(Q). However, once these are
determined any contrast can be predicted simply by apply-
ing Equation 7. Additionally, these basic functions can be fit
independently to reconstruct the contributions to the mea-
sured curve, where I0(Q) is the shape function of the inho-
mogeneities, I1(Q) is the envelope scattering and I01(Q) is
the cross-term.

Despite the power of this description, it often proves dif-
ficult to identify adequate analytical models for the basic
functions. Though some progress can be made via spheri-
cal harmonic expansion. This is the case for many proteins.
The complex interplay of the protein envelope with the distri-
bution of amino acid residues complicates unique structural
identification. Contrast variation in these cases can serve to
separate those contributions.
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Figure 2: Stuhrmann Plots for various α and β values. The
blue traces are for α < 0 and the red traces are for α >
0. As β increases, the position of the peak maximum of the
parabola shifts toward the ordinate. A homogeneous particle
is described by the solid black line with a slope of 0.

In the absence of an adequate analytical description or sim-
ulation with which to compare the basic functions, Stuhrmann
extended the Guinier approximation to account for the con-
trast dependence of the radius of gyration extracted from a
fit to a scattering curve. Stuhrmann’s equation, Equation
8, describes this dependence as a quadric dependence on the
inverse contrast, 1/∆ρ.

R2
g = R2

c + α/∆ρ− β/∆ρ2 (8)

In Equation 8, Rc is the radius of gyration of the particle at
infinite contrast (i.e. if it were homogeneous), α describes the
relative scattering length density distributed radially from the
particles center of mass, and β is a measure of the distance of
the center of mass of the particle to the center of scattering
length density of its heterogeneous components. In effect, the
overall shape of the particle is described by Rc and the dis-
tribution of inhomogeneities by α and β. The result of this

analysis showed that a plot of R2
g as a function of 1/∆ρ is

a unique fingerprint that can be used to identify proteins by
their average distribution of internal inhomegeneities. Repre-
sentative Stuhrmann plots are shown in Figure 2. Note that
because of the negative sign in front of β, Stuhrmann plots
should always be concave down.

The general features of a Stuhrmann plot are shown for
a variety of different scenarios in Figure 2. It is particularly
valuable to normalize both the x-axis and y-axis to the average
values for comparison of different particles and proteins. The
sign of α determines the quadrant of the vertex of parabolic
profile and the magnitude of β determines the latus rectum
calculated as 1/2β. In the normalized representation the ver-

tex of the parabola can be located by ( α2β , R
2
c + α2

2β ).

3 Experimental Planning

There are a number of things necessary to perform a good
contrast variation experiment on proteins and other hetero-
geneous scatterers. We seek to generate a Stuhrmann plot
for Lysozyme. Lysozyme is a antimicrobial enzyme produced
by animals. It catalyzes the hydrolysis of glycosidic bonds
in peptidoglycans. This hydrolysis reaction is mediated by
Lysozyme’s unique shape as shown in Figure 3. The C-shape
of Lysozyme not only makes it an interesting protein for its
biological function, but also the scattering patterns derived
from it are feature rich due to the hydrophobic amino acid
residues that reside in its core.

Figure 3: PDB rendering of Lysozyme (image reproduced from
http://pdb101.rcsb.org/motm/9)
.

3.1 Concentration of Protein

First, a concentration must be identified where the structure
factor, S(Q), is absent. This concentration ideally is in the
dilute limit, but must be balanced against the need for co-
herent scattering intensity and the incoherent background.
This concentration can be found using the procedure out-
lined in the theory section by identifying the concentration
when S(Q)→ 1. We performed this experiment for Lysozyme
for concentrations spanning 5-50 mg/mL. By extrapolating
the scattering curves to infinite dilution, P(Q) was recovered.
Each concentration was then normalized using the curve at
infinite dilution and from that S(Q) was determined and is
shown in Figure 4. The inset shows the intercept of the struc-
ture factor at Q = 0 versus concentration and from this plot
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it is clear that S(Q) = 1 for concentrations smaller than 5
mg/mL at this ionic strength. In order to obtain adequate
statistics, therefore, we need to measure the samples at the
largest concentration where the structure factor is minimized
or absent.

1.2

1.0

0.8

0.6

0.4

0.2

0.0

S(
Q

)

0.01
2 3 4 5 6 7 8

0.1
2 3 4

Q (Å
-1

)

1.0
0.9
0.8
0.7
0.6

S(
Q

=0
)

50403020100

Clys (mg/mL)

50 mg/mL
25 mg/mL
10 mg/mL
5 mg/mL

Figure 4: Static structure factor, S(Q) from hen egg white
(HEW) Lysozyme measured at several concentrations. S(Q)
is calculated through normalization to limφ→0Is(Q)/φ. The
inset shows S(Q→ 0) vs concentration of protein in mg/mL.
The structure factor approaches 1 at 5 mg/mL.

3.2 Subtracting the Background

The second aspect of a contrast variation experiment that
makes them so challenging is that one needs to measure scat-
tering curves near the match point in order to see the de-
pendence of Rg on ∆ρ. This implies via Equation 4 that the
scattering intensity will be low and in the case of measuring
at the match point I(Q→ 0) = 0. Because contrast variation
for proteins is frequently performed for water based samples,
this weak intensity is measured against the fact that the inco-
herent background increases with hydrogen content. In D2O,
this background is 0.05 cm−1, whereas in H2O it can reach
1.1 cm−1. Given the volume of many proteins, the scattering
will be dominated by the incoherent background at most con-
trasts. The incoherent scattering, Iinc is Q-independent and
therefore can be simply subtracted directly from the mea-
sured I(Q) curve to recover Is(Q) as shown in Figure 5 for a
5 mg/mL protein sample in 90% D2O.

3.3 Selection of Contrasts and Number of
Points

Third, the choice of contrast is also important in order to con-
struct a Stuhrmann plot. We frequently have little a priori
knowledge of the structure but can often estimate the pro-
tein’s composition and density. Using these two parameters,
it is possible to estimate ρ̄. From this estimate, contrasts
points should be selected for mixtures of D2O/H2O that span
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Figure 5: I(Q) vs Q for a protein dissolved in ρs = 5.7 ×
10−6Å

−2
(10 % H2O) The incoherent background, Ibkd, is

shown as a horizontal dashed line and the background sub-
tracted sample intensity, Is(Q) is shown as well. Within the
inset is a so-called Guinier plot which linearizes the data.
From the slope on a Guinier plot, the Rg can be determined
directly.

Figure 6: (Figure reproduced from11). Scattering densities of
various solutes and solvents in X-ray and neutron scattering.
The scattering density of solutes in D2O/H2O mixtures is
slightly increasing due to H/D exchange. Note that a broader
range of contrast can be achieved in neutron scattering.
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a broad range of contrasts so that the shape of the Stuhrmann
plot is resolvable. A useful formula for calculating the solvent
scattering length density is Equation 9.

ρs =
∑
i

φiρi (9)

The minimum number of contrasts that should be measured
in order to determine parameters underlying the Stuhrmann
plot is 3. However, it is good practice to perform the mea-
surement using many more with at least 3 contrasts on both
sides of the match point.

3.4 Radius of Gyration

With the experiment appropriately planned, the samples can
be prepared, loaded into the SANS instrument and scattering
measurements can be performed. Once the scattering inten-
sity is obtained at multiple detector configurations, the raw
scattering intensity can be corrected for empty cell, blocked
beam and plotted on absolute scale, a procedure which is
performed by Steve Kline’s Reduction Macros in IGOR Pro.6

Once the scattering curves are in absolute scale, the procedure
outlined in the above sections can then be applied. With the
background subtracted and the data extrapolated to zero con-
centration, it is now possible to calculate the radius gyration
of the samples at each contrast.

While there are many ways to perform this calculation, the
classic method is through a linearization, where the I(Q) vs.
Q plot is converted to a plot of ln(I(Q)) vs. Q2. If data is
collected at sufficiently low-Q values, then this linearization
will produce a straight line as shown in the inset in Figure
5. The origin of this linearization is in Equation 5 where the
slope of this line is now −R2

g/3 and the intercept is ln(I(0)).
The validity of the Guinier approximation is maintained un-
der the condition where QRg < 1. This condition can be
checked iteratively by selecting an initial Q-range, finding the
slope, and reestablishing the Q-range until the results con-
verge. The condition QRg < 1.2 can yield errors in excess of
20%.

4 Constructing the Stuhrmann Plot
for Lysozyme

The construction of the Stuhrmann Plot requires a measure
of the radius of gyration of the particle at infinite dilution
measured in at least three different solvents. It then further
requires that one identify the contrast match point. As dis-
cussed above, the intercept of the Guinier linearization yields
I(0) = (∆ρ)2Vp for each contrast. From this estimate, a fur-
ther linearization,

√
I0 vs. ρs, yields the contrast match point

of the protein, ρ̄.

Perform this linearization for every contrast. The results
of this procedure are shown as R2

g vs. 1/∆ρ as shown in Fig-
ure 8. The experimentally determined contrast match point

was found to be ρ̄ =2.3× 10−6Å
−2

or 45%H2O. Armed with
this value, the Stuhrmann plot can be constructed as shown
in Figure 8. The preliminary measurement shows excellent
agreement with Stuhrmann’s result for the envelope radius of
gyration, Rc = 13.9. However, there are significant deviations
in the apparent shapes of the curves with our preliminary
measurement showing a much greater degree of eccentricity

Figure 7: Contrast Match point determination,
√
I0 vs ρs

measured for Lysozyme five different contrasts. The contrast
match point is identified as the x-intercept.

Figure 8: Normalized Stuhrmann plot,
R2

g

R2
c

vs. ρ̄
∆ρ , measured

for Lysozyme at five different contrasts. The yellow triangles
are the values measured by Stuhrmann in 1976. Best fit to
Equation 8 shown as solid lines.

as indicated by the more narrow parabolic shape of our re-
cent measurement. These differences are also reflected in the
fit parameters extracted from equation 8. The values are tab-
ulated below

SANS Stuhrmann
Rc 13.9 13.9

α× 106 -0.76 4.92
β × 1012 56.0 1.09
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