

Development of NFIQ 2.0

elham.tabassi@nist.gov
http://www.nist.gov/itl/iad/ig/development_nfiq_2.cfm

September 17, 2013
Biometric Consortium

NGT

Outline

» History + Background
» Sponsors + Team Members
» Architecture
» Features
» Machine Learning
》 NFIQ 2.0 prototype
» NFIQ 2.0 Lite (Mobile)
» Actionable quality
» Relation to ISO/IEC 29794-4
» Discussion

2004 - present

- Release of NFIQ 1.0
- Novel definition of biometric quality
- performance related
- accepted by the community
- Interoperability
- uniform interpretation
-tuned to a class of matcher
- Open source
- Extensively examined
-by NIST and others
-tools for quality
summarization, slap, ...

-Workshop on March 6, 2010 (IBPC 2010)
- NFIQ 2.0 wish-list as of March 2010
- Several options for NFIQ 2.0 were discussed
-http://biometrics.nist.gov/ cs_links/ibpc2010/ options_for_NFIQ2.0.pdf
-The community overwhelmingly recommended a new, open source, generalized version of NFIQ to be developed in consultation and collaboration with users and industry.
- Same technical approach, but better, bigger, faster, etc.
-Workshop on March 5, 2012 (IBPC 2012)

NFIQ 2.0 wistrista

Components as of March 2012
-Community asked for:

- Actionable flags
- providerID
- Versioning
\bullet-Latent?

NFIQ 2．0 Community

Team Members

》 NIST（US）
》 BSI（Germany）
》 BKA（Germany）
》 Fraunhofer IGD
》 MITRE（US）
》 Hochschule Darmstadt／CASED
» Secunet Security Networks AG
» NFIQ 2．0 Participants
» ．．．and the whole biometrics community

Sponsors

Homeland
 Security

Science and Technology

Federal Office

Team Members

US

» Elham Tabassi (NIST)
» Patricia Flanagan (NIST)
» Greg Fiumara (NIST)
» Carol Nowacki, Carol (MITRE)
» Adam Day (MITRE)
» Marc Colosimo (MITRE)
» Martin Olsen (HDA, NIST)

DE

» Christoph Busch (HAD)
» Oliver Bausinger (BSI)
» Johannes Merkle (SEC)
» Michael Schwaiger (SEC)
» Christopher Schiel (BKA)
» Timo Ruhland (BKA)
» Alexander Nouak (IGD)
» Olaf Henniger (IGD)

NFIQ 2.0 Framework

NFIQ 2.0 light
-! ■

Image Format Converter
Framework

- Fingerprint images
- Quality features
- Comparison scores
- Utility values

NFIQ 2.0 comparison score provider

1F_07_poebva_p2p 1F_02_poebva_p2p 10_07_poebva_p2p 10_02_poebva_p2p 1T_07_poebva_p2p
—— ——
-

1T_02_poebva_p2p 1Y_07_poebva_p2p 1Y_02_poebva_p2p 2B_07_poebva_p2p 2B_02_poebva_p2p
\square
-
——
id3_07_poebva_p2p id3_02_poebva_p2p dermalog_07_poebva_p2p dermalog_02_poebva_p2p pb_07_poebva_p2p
——
— -
——

NFIQ 2.0 FEATURES

NFIQ 1.0 features
Recommended Features in ISO/IEC 29794-4:2009 + our modifications Surveyed literature + out modifications

Open source FingerjetFx minutia extractor

NFIQ 2.0 features

Image/signal processing

» Local clarity score
» Ridge valley uniformity
» Orientation certainty level
» Orientation flow
» Frequency domain analysis
» Radial power spectrum
» Gabor filters (several variants)

Minutiae based

» FingerjetFx

- Open source implementation from digitalPersona
- Digitalpersona.com/fingerjetfx
» Total count of minutia
» Count of minutia in region of interest
- Various selection of ROI

Standardized features allow for plug and play of feature computation implementations that are semantically conformant to the standard (i.e., ISO/IEC 29794-4 and ISO/IEC 19794-4).
Different implementations are distinguished via providerID.

NGT

~100 features

Feature ID in Framework	
	NFIQ1_Feature_1
NFIQ1_Feature_2	
NFIQ1--eature-3NFIQ1Feature	
NFIQ1_Feature_5	
NFIQ1-- e ature_6NFIQ1 Feature7	
NFIQ1_Feature_8	
NFIQ1_Feature_9 ${ }^{\text {a }}$ -NFIQ1- Feature 10	
NFIQ1_-Teatue_All	
FingerJetFX_MinutiaeCount	
	FingerJetFX_MinutiaeQuality_0
FingerJetFX_MinutiaeQuality_1	
FingerJetFX-MinutiaeQuality_6	
FingerJetFX_MinutiaeQuality	
Fingersetrx_-AverageMMinutiaeQualityFingersetF_-Rolickickarea	
FingerJJtFX_ROIBlockAbs	
FingerJetFXX MinCount_COMMinRecti200x	
	inerjetFX_MinCount_Co
FingerJetFX-Mincount-COMM ${ }^{\text {a }}$ Circle 250	
FingersetF-_MinCount_COMGrayCircle250	
FingersetfX_M-Mincount_ComGrayCircle250	
FingerJetFX_- ${ }^{\text {ame }}$	
	Mu
ммв	
Sigma	
Mu_ Tim	
Sigma__Time	
ImgProcROIBlockArea ImgProcROIBlockAbs	
ImgProcROIPixelArea	
ImgProcROIArea_Stodev	
ImgProcROIArea_OCL	
ImgProcroiArea_Time	
ImgProcRoIArea_OCL_TimeFJJXPos_Mu_AverageMinutiaeQuality	
FJJXPos_Mu_AverageMinutiaeQualityFJFXPos_Mu_MinutiaeQuality_0	
FJFXPos_Mu_MinutiaeQuality_1	
FJJXPos_Mu_MinutiaeQuality-1FJFXPos_Mu_MinutiaeQuality-2FJIEPo_Mu	
FJFXPos_COMMin_MMB_224 FJFXPos_OCL_AverageMinutiaeQuality	

Percentage of minutiae quality values (based on OCL value around each minutiae location) between 0 and 20
Percentage of minutiae quality values (based on OCL value around each minutiae location) between 20 and 4 Percentage of minutiae quality yalues (based on OCL value around each minutiae location) between 20 and 40
Percentage o minutiae quality values baseed on OCL Lalue around each minutiae location) between 40 and 60
Percentage of minutiae Percentage of mintutiae quality valueses (based on oCL value around aech minutiaee olocation between ben 6 and 80
Percentage of minutiae quality values based on OCL value around each minutiae location) between 80 and 100 Average of minutiae quality that was computed based on the mean of all OCL values around each minutiae location (4 blocks around
Average of minutiae quality that was computed based on the coherence value of the orientation map field of the block in which the m mi Average of minutiae quality that was computed based on the inhomogenety quality yalue of the enhancecc contrast map
 Average of minutiae quality that was computed on the reliability value rettieved from the advanced quality map Averge of minutiae qualitit that was somputed based on the quality zones determined by the enhanced quality map
Average of minutiee quality that was computed based on block-wise LCS Average of minutiae quality that was computed based on block-wise LCS
Average of minutiae quality that was computed based on block-wise RVU
Average of minutiae quality that was computed based on block-wise RVU
Average of minutiae quality that was computed based on block-wise values returned by the low flow map
Speed computatation of minutiae quality computation values
Speed computation of minutiae quality computation val
Orientation Certainty Level (OCL) of whole image
Speed computation of ocl computation
Speed computation of
Number of block that have high coutaion
Speeed computatation of quality map conputation (low to contrast low contrast map (re-implemented using OpencV)
Speed computation of quaitry map computation (low contrast map, ent
speed computation of orientation map (without ROO fitterig)
Speed computation of orientation map determination with ROI filtering
 Speed computation of low flow map
Sum of all blockwise coherence values based on orientation map computation (block size 16) with applied ROI 1 ilter of 1 ImPProcROI
m
 Relative number of all lockwise coherence values based on orientation map computation (block sizz 16) of the whole image
Number of foreground blocks based on the quality map computation (simiar but not identical to NFIQ1 quality map with block size 8) Relative number of quality map blocks that have an assigned value of 1 (similar but not identical to NFIQ1 quality map with block size
Relative number of quality map blocks that have an assigned value of 2 (simiar but not identical to NFIQ1 quality map with block size

Average of bock-wise inhomogenety values returned by enhanced contrast map
Average of block-wise smoothness values returned by enhanced contrast map
Average of block-wise uniformity values returned by enhanced contrast map
Average of block-wise quality values based on the returned inhomogenety, uniform
Speed computation of enhanced contrast map computation
Number of high flow blocks determined by the enhanced quality map (low flow map)
Number of low flow blocks determined by the enhanced quality map (low flow map)
Number of low flow blocks determined by the enhanced quality map (low flow map)
Umber of foreground blocks based on the quality map computation (simiar but not identical to NFIQ1 quality map with block size 8)
Relative number of enhanced quality map blocks that have an assigned value of 1 (similar
 Relative number of enhanced quality map blocks that have an assigned value of 3 (similar but not identical to NFIQ1 quality map with
Relative number of ennanced quality map blocks that have an assigned value of 4 (similiar ubt ton identical to NFIQ1 quality map with
 Rembative number of advanced quality map blocks that have an assigned value of 1 (similiar but not identical to NFIQ1 quality map with
Relative number of avanced quality map blocks that have an assigned value of 2 (similar ut not identical to NFOQ1 qualtity map with
Relative number of advanced quality map blocks that have an assigned value of 3 (siminiar but not identical to NIIQQ quality map with Kelative number of advanced quality map blocks that have an assigned value of 4 similiar ub not identicil to NFQQ quality map with
Relative number of advanced quality map blocks that have an assigned value of (simiar but not identical to $\mathrm{NFIQ1}$ quality map with Number of high flow blocks determined by the low flow map (block size 24×24)
Speed computation of low liow map with block size 24×24
Number of figh flow blocks determined by the low flow map (b)
Speed computation of low flow map with block size 32×32
Gabor feature
Gabor Shent feaa
Local Clarity
Local Clarity Score (LCS) feature
Orientation Certainty evel (OC) feature based on Sobel filters
Orientition Certainty Leve (OC))

Ridge Valley Uniformity (RVU) feature with padding (block size 32)
Ridge valley Unifority
OVV) feature without padding (block size 32)
Orientation Flow (OF) feature
Radial Power Spectrum (RPS) feature
Radial Power Spectrum (RPS) feature
Frequency Domain Analysis (FDA) feature

$\begin{array}{lllllllllllll}10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 10 & 1 \\ \text { Comparison score quantile. }\end{array}$

NFIQ 2.0 :: performance per features

Machine Learning

We examined:
Random forest
Support vector machine
K-nearest neighbor

NGT

Machine Learning

Random Forest

» Ensemble classifier using stochastic process

- Use vote to determine class memberships
- Provides class probability in predictions
- Analysis of features importance and their ranking
- We used this to do our final feature selection

Two class prediction

» High vs. Low performers

- 1: High performers are images that result in high genuine scores
- CDF $^{-1}(0.95)$
- 0: Low performers are images that result in false reject
- Threshold at FMR=0.0001
- Quality score is the probability that a given image belongs to class 1 .
» Map quality score to recognition rate.

Training

Features: image processing + \#minutiae + minutiae quality
~5000 samples in each of the low and high performers classes
1000 trees in forest

Test

30000 comparison scores

So, Does It Work?

NGT

NFIQ 2.0 test -all features

NGT

NFIQ 2.0 prototype

 (current selecetion of features)

NGT

NFIQ 2.0 prototype performance

Enrolment Random Forest

Features:
Gabor
Gabor Shen
Local Clarity Score (LCS)
Orientation Certainty Level (OCL)
Ridge Valley Uniformity (RVU)
w/o padding
Ridge Valley Uniformity with padding
Orientation Flow (OF)
Radial Power Spectrum (RPS)
Minutia count
Minutiae quality based on Mu Minutia quality based on OCL ROI (foreground size)

ACTIONABLE QUALITY

NGT

Actionable quality

Feed back to user/operator

» Wet / dry

- High/low pressure
- MS Thesis (M. Dusio, C. Busch)
» Centeredness
- Singularity detection
» Incompleteness
- Entropy of orientation flow

Questions?

> Sensor sensitivity?
» Algorithm sensitivity?
» Already covered by features?
» Any addition or deletion?

- Fingerness?
- Alteredness?
- correctness of phalanx?
» Ghost images

NFIQ 2.0 LITE (MOBILE)

NGT

NFIQ 2.0 Lite/Mobile

Requirements

» Low computation complexity

- processing power
- Processing time
» Therefore, feature computation not feasible!
» Look up table?

SOM

» Unsupervised clustering (unlabelled training data)
» Training phase

- Iteratively present training vectors to build clusters (codebook vectors)
» Prediction phase
- Input vector is assigned a class based on distance to learned clusters
» Topology preserving - similar classes will have similar spatial locations in the map

Self organizing maps

M. Olsen, E. Tabassi, A. Makarov, C. Busch: „Self-Organizing Maps for Fingerprint Image Quality Assessment", in Proceedings of the 26th Conference on Computer Vision and Pattern Recognition (CVPR 2013), June 23-28, Portland, Oregon, (2013)

NSEESMNSESE NN: EESESENNNNN II II II || E IIIINNSS

NレT

SOM unsupervised training

NTT

Self organizing maps for NFIQ2.0 Lite-1

Divide fingerprint image into blocks and look up nearest cluster to get a label

A A A A A

A B C D A
A E C D A
A E C C A

Finger image is transformed into cluster histogram

Quality Score
 Random Forest \square

NFIQ 2.0 Lite prototype

Features

performance

NGT

NFIQ 2.0 computation time

Lite

» ~ $65 \mathrm{~ms} / \mathrm{image}$

- PC-2.3 GHz Intel Core i7
- 16 GB of memory.
- network size of dim = 24
- block size of $\mathrm{n}=24$
- With gray scale normalization
» ~ $82 \mathrm{~ms} /$ image.
- PC - 2.3 GHz Intel Core i7
- 16 GB of memory.
- network size of $\operatorname{dim}=24$
- block size of $n=64$
» This is prior to any code optimization

NFIQ 2.0

» Feature computation time
» ~ $19.45 \mathrm{msec} /$ /image for OCL - Expect about the same for other features

- MacBook Air, Mid 2011
- Processor: 1.7 GHz Intel Core i5 (dual core)
- Memory : 4 GB 1333 MHz DDR3 (256 KB L2 cache, 3MB L3 cache)
- Software: OS X 10.8.3 (12D78)
» ~85 msec/image for Minutia based features
» This is prior to any code optimization

Current Status

Completed

» Framework design

- Modular, plug and play
» Framework implementation
> Feature selection and prototype implementation complete
- http://biometrics.nist.gov/cs links/quality/ NFIQ 2/NFIQ-2 Quality Feature DefinVer05.pdf
» Feature evaluation complete.
> Feature Implementation - MATLAB to to C/C++
- Thanks to FBI + MITRE
> Exploring machine learning
- Random forest, SVM.
» Feature selection (almost - contingent on their computation time).
» Implementation of actionable flags for detection and mitigation of bad presentations
- Incomplete finger (tip, etc.) + Wet / dry + Pressure

Underway

» Finalizing training

- After this workshop
» NFIQ 2.0 Lite
- Self organizing map
» Evaluation of Implementation of actionable flags for detection and mitigation of bad presentations
- Incomplete finger (tip, etc.) + Wet / dry + Pressure
- But, tricky - since we do not have groundtruth for this.
> Mapping of NFIQ $2.0 \rightarrow$ NFIQ 1.0

NFIQ 2.0

Promises, promises

» Improved feature
» More level (0-100)
» Faster, lighter
» Actionable feedback
» NFIQ 2.0 mobile
» Slap
» Better performance
» Modular design
» Calibration
» Conformance testing

So far, we have achieved

» Improved feature
» Standard features
» More level (0-100)
» Faster - we hope
» Actionable feedback
» Towards NFIQ Mobile
» --
» Better performance - we hope
» Plug and play

NGT

Standardization - then

ISO/IEC IS 29794-1:2009

5-byte Quality Block

» Information technology -
Biometrics sample quality Part 1: Framework
» Definitions

- quality: "the degree to which a biometric sample fulfils specified requirements for a targeted application"
- quality score: "a quantitative expression of quality"
- utility: "the observed performance of a biometric sample or set of samples in one or more biometric systems"
» Quality score from 0 to 100

description		size	valid values	notes
Number of Quality Blocks		1 byte	[0,255]	This field is followed by the number of 5-byte Quality Blocks reflected by its value (see Fehler! Verweisquelle konnte nicht gefunden werden.). A value of zero (0) means that no attempt was made to assign a quality score. In this case, no Quality Blocks are present.
	Quality Score	1 byte	$\begin{aligned} & {[0,100]} \\ & 255 \end{aligned}$	0 : lowest 100: highest 255: failed attempt to assign a quality score
	Quality Algorithm Vendor ID	2 bytes	[1,65535]	Quality Algorithm Vendor ID shall be registered with IBIA as a CBEFF biometric organization. Refer to CBEFF vendor ID registry procedures in ISO/IEC 19785-2.
	Quality Algorithm ID	2 bytes	[1,65535]	Quality Algorithm ID may be optionally registered with IBIA as a CBEFF Product Code. Refer to CBEFF product registry

Standardization - now

ISO/IEC 29794-1:201X

» Information technology -
Biometrics sample quality Part 1: Framework
» Definitions

- Same as before, but allow for a vector of quality components
- Goal: Actionable quality
» Each element of quality vector has a score from 0 to 100.

Vector of quality components

		Description	Size	Valid values	Notes
		Number of Quality Blocks (N)	$\begin{aligned} & 1 \\ & \text { byte } \end{aligned}$	0 to 255	This field is followed by the number of 5-byte Quality Blocks reflected by its value. A value of zero (0) means that no attempt was made to assign a quality score. In this case, no Quality Blocks are present.
	Byte	Quality Indicator	$\begin{aligned} & 1 \\ & \text { byte } \end{aligned}$	0 to 100 250 255	0 to 100: the encode value is the overall quality score of the representation. It should express the predicted recognition performance of a representation with higher values indicating better quality. 250 ($\mathrm{FA}_{\text {Hex }}$): a vector of quality metrics is encoded in bytes 6-N. 255 ($\mathrm{FF}_{\text {Hex }}$), an attempt to calculate a quality score has failed
	$\begin{aligned} & \text { Bytes } \\ & 2-3 \end{aligned}$	Quality Algorithm Vendor ID	$\begin{aligned} & 2 \\ & \text { bytes } \end{aligned}$	1 to 65535	Quality Algorithm Vendor ID shall be registered with IBIA as a CBEFF biometric organization. Refer to CBEFF vendor ID registry procedures in ISO/IEC 19785-2.
	$\begin{aligned} & \text { Bytes } \\ & 4.5 \end{aligned}$	Quality Algorithm ID	$\begin{aligned} & 2 \\ & \text { bytes } \end{aligned}$	1 to 65535	Quality Algorithm ID may be optionally registered with IBIA as a CBEFF Product Code. Refer to CBEFF product registry procedures in ISO/IEC 19785-2.
Bytes 6-5x (Number of quality blocks) exist only if quality indicator (Byte 1) is $\mathbf{2 5 0}$ (FA Hex ${ }^{\text {(}}$).					
	6	Overall quality score	$\begin{aligned} & 1 \\ & \text { byte } \end{aligned}$	0 to 100	A quality score should express the predicted comparison performance of a representation. A quality score shall be encoded in one byte as an unsigned integer. Allowed values are 0 to 100 with higher values indicating better quality
	7	Number of quality vector elements	$\begin{aligned} & 1 \\ & \text { byte } \end{aligned}$	Defined in each Part of this Standard	If the number of quality vector elements $\bmod 5$ is not equal to three then padding bytes should be added such that the length of the block is a multiple of five. This will ensure backward compatibility with the implementations conformant with ISO/IEC 297941:2009 and ISO/IEC 19794-x:2011. For example, if the number of quality vector elements is 14,4 padding bytes shall be added so that the length of the image quality record is $25=4$ (padding) +14 (number of quality vector elements) +7 (as shown in rows 1-7).
	8	Quality metrics			As defined in modality specific parts of this International Standard.

Support standardization of finger image quality

ISO/IEC 29694-4

> Provide quantitative support to development of Information technology - Biometric sample quality - Part 4: Finger image

- Currently at 2nd working draft
» Contribute feature computation method + codes
- Allows for plug-and-play of features for implementations that satisfy semantic conformance to the requirements of the ISO/IEC 29794-4 standard

TECHNICAL

 ISO/IEC REPORTInformation technology - Biometric sample quality -
Part 4:
Finger image data

Partio \& Oomies olvage do doyt

NIST Biometric Quality Program

Push Towards Zero Error Biometrics

Strengthening Science	Advancing metrology	Developing Standards	Developing Tool Box	Best Practice Guidance	Enumerative Bibliography	Coordinationt Collaborations
Failure Analysis	Performance Evaluation	Requirements Specifications	Open source Public domain	Instructional + Guidance	Technical Literature	
Identifying the likely causes of recognition error, quantifying their effect and ways to mitigate them.	Quantitative means of assessing performance of quality assessment algorithms (IREX II IQCE)	On image properties affecting performance, and on capture device	Reference implementatio ns of quality assessment algorithm, iris segmentation	Materials for quality score summarization + Best capture practice + example images of various quality	Reports, white papers, publications relevant to biometric quality and iris image quality in particular	Workshops, Conferences Grants (WVU, NYU Poly)
Research	Evaluation	Standard	Software	Report	Webpage	
NIST IR 7155 ICIP 2005 NIST IR 7820	NIST IR 7820 PAMI 2007 ICPR 2010	ISO/IEC 29794 ISO/IEC 19794	NFIQ 1.0 NFIQ 2.0 NIIQ 1.0	NIST IR 7422 NIST IR 8XXX	www.nist.gov/ itl/iad/ig/ bio_quality.cf m	BQW 2006, 07 IBPC 2010, 12 NFIQ 2010,12

Thank You.

Elham Tabassi

3019755292
tabassi@nist.gov

Panel Discussion

» Greg Cannon (CrossMatch)
» John Dowden (NEC)
» Anne Wang (3M Cogent)
» Timo Ruhland (BKA)
» Jean Christophe FONDEUR (MORPHO)

- the main advantage of NFIQ -by far- is that it is universal and common to all, so I clearly recommend that we keep this universality for NFIQ 2 and hence have no option in the definition. NFIQ score on a given image should remain an absolute and universal value.

