Latent Fingerprint Image Quality (LFIQ)

Anil Jain, Soweon Yoon, Kai Cao, and Eryun Liu
Michigan State University
biometrics.cse.msu.edu

Image Quality

- Image quality indicates "perceived" image degradation with/without relation to a reference image
- Factors affecting image quality
 - Sharpness, contrast, noise, distortion, resolution, dynamic range,..
- Quality assessment
 - Qualitative (Good/bad/ugly)vs.
 - Quantitative (SNR)

Fingerprint Image Quality

- Prediction of AFIS performance for feature extraction and matching
 - "Perceived" fingerprint image quality may not necessarily correlate with AFIS performance

Good quality fingerprint (NFIQ* = 1)

Poor quality fingerprint (NFIQ = 5)

^{*} NIST Fingerprint Image Quality; value is from 1 (highest quality) to 5 (lowest quality)

Latent Quality Assessment by Examiners

- ACE-V methodology
- Examiner determines latent value in **analysis** phase:
 - Value for Individualization (VID)
 - Value for Exclusion Only (VEO)
 - No Value (NV)
- Only VID or VEO latents are searched via AFIS
- Concern: Reliability and consensus of value determination by latent examiners
 - Visual perception, expertise of examiners, workload, etc.

Value vs. Identification Rate

	Value for Identification	Value for Exclusion Only	No Value
NIST SD27* (258 latents)	210	41	7
WVU (449 latents)	370	74	5
Rank-1 ID Rate	491 (85%)	46 (40%)	1 (8%)
Rank-100 ID Rate	525 (91%)	72 (63%)	7 (58%)

A significant number of VEO or NV latents can be successfully identified by AFIS

Identification rate is obtained by combining multiple AFIS; if the mate of a latent is retrieved within rank m by *any* of the AFIS, it is considered as a successful match within rank m

^{*} Hicklin et al., "Latent Fingerprint Quality: A Survey of Examiners", Journal of Forensic Identification, 61(4), 2011

Reliability of Examiners' Value Determination

NV and VEO latents successfully matched at rank 1 by AFIS

'No Value' (NV) Latent

'Value for Exclusion Only' (VEO) Latent

Consensus of Examiners' Value Determination

- Each latent was evaluated by an average of 23 examiners
- Unanimous value determination was made on only 43% of the latents (either VID or not-VID)

Ulery et al., "Repeatability and reproducibility of decisions by latent fingerprint examiners", PLOS One, 7(3), 2012

Goals of Our Study

- Provide an objective measure of latent quality to avoid misleading conclusions in subjective quality evaluation
- Identify latents which can be processed in "Lights-out" mode

Tenprint Quality vs. Latent Quality

- Tenprint quality assessment
 - Clean background; central part of the finger
 - Usually defined in terms of clarity of ridge and valley structures
- Latent quality assessment
 - Severe background noise, off-center finger position, skin distortion, etc.
 - Local ridge clarity measures alone cannot properly determine latent quality

Latent Quality Definition

Features

- Local ridge clarity in presence of severe background noise
- Vicinity of good quality ridge areas
- Position of mark
- Minutiae reliability

Matcher-independent vs. matcher-dependent

Matcher-Independent vs. Matcher-Dependent

- Matcher-Independent Quality Measure
 - A latent is considered VID if any one of the AFIS can successfully retrieve its mate from a reference database within the candidate list
- Matcher-Dependent Quality Measure
 - A latent is considered VID if a specific AFIS can successfully retrieve its mate from a reference database within the candidate list

AFIS Interoperability

Retrieval Rank	AFIS 1	AFIS 2	AFIS 3
Proprietary Minutiae	32	561	222
Markup Minutiae	31,997	156	1

Local Ridge Quality

Ridge Clarity

Ridge Continuity

Local Ridge Quality

Minutiae Reliability: Learning

Minutiae patch dictionary learning

Minutiae Reliability

Minutia Patch

->

Р

Dictionary Elements

 $D = \{d_m | m = 1, 2, ..., M\}$

Reliability of patch P (Q_m) is defined as the <u>Structural SIM</u>ilarity (SSIM) between P and its closest dictionary element d_m :

 $Q_m = max \{SSIM(P, D)\}$

Reference Point Detection

• Reference point is determined as the point where the curvature is maximum

Quality Score

• For each triangle T_i,

$$Q_{T_i} = Q_{r_i} \sum_{j=1}^{3} Q_{m_{ij}} W_{m_{ij}}$$

Q_{ri}: Average ridge quality in T_i
Q_{mij}: Reliability of the j-th minutia of T_i
W_{mij}: Weight based on the finger position

• Quality score of a latent:

$$LFIQ = \sum_{i=1}^{N} Q_{T_i}$$

N: Number of triangles in latent

Experiments

- Latent Databases (707 latents)
 - NIST SD27: 258 latents
 - WVU Latent DB: 449 latents
- Exemplar Databases (31,997 rolled prints)
 - NIST SD27: Mated 258 rolled prints
 - WVU: Mated 449 rolled prints; 4,290 rolled prints
 - NIST SD14: 27,000 rolled prints
- Matcher: Three COTS matchers
- Matcher-independent approach
- Using markup minutiae for preliminary study

LFIQ Distribution

Performance: Rank-1 Identification Rate

Successful Prediction

• Quality Index 74 (LFIQ = 26); Mate retrieved at rank 1; examiner labeled it as VEO latent

Unsuccessful Prediction

High quality, but low matching performance

- Quality Index 92 (LFIQ = 51)
- Value determination by examiner: VID
- Retrieval rank of the mate: 600

Quality of Exemplars in Latent Matching

- NFIQ = 5
- Is this still adequate for latent matching?

Quality of Exemplars in Latent Matching

May need to relax quality measure for rolled prints in latent matching

Latent print

Mated rolled print

AFIS can successfully match the pair

Conclusions

- Latent fingerprint image quality (LFIQ) assessment is crucial for properly determining latent value as forensic evidence
- LFIQ is an objective measure of latent quality
 - Distinguish latents that can be processed in "lights-out" mode
 - Complement latent examiners' value determination
- Investigated various features (ridge quality, minutiae quality, position of mark) in defining LFIQ

Thank you