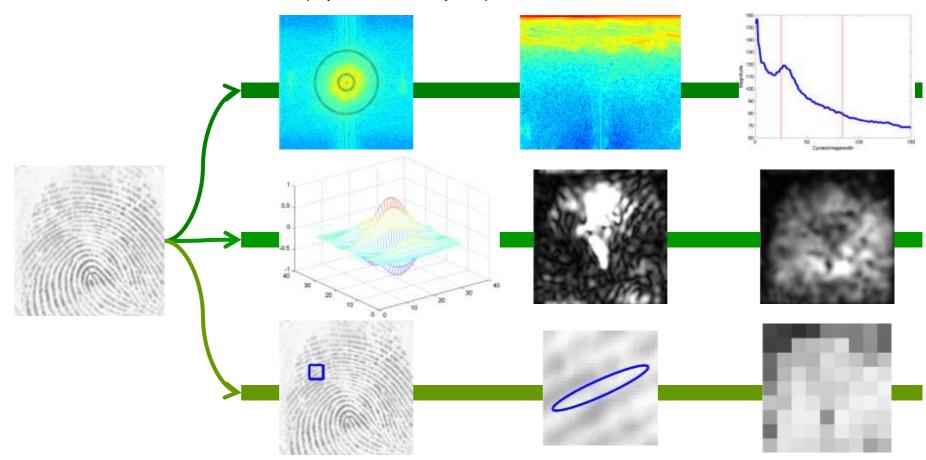


Candidate Features for Quality Assessment

Martin Olsen
Hochschule Darmstadt – CASED



Federal Office for Information Security

- Requirements
 - Based on publically available algorithms
 - Standardized interface (inputs and outputs)

Implemented Quality Features

- More than 30 features identified and tested on multiple datasets
 - NFIQ
 - Implemented from ISO/IEC TR 29794-4
 - Frequency Domain Analysis
 - Local Clarity Score
 - Orientation Certainty Level
 - Orientation Flow
 - Radial Power Spectrum
 - Ridge Valley Uniformity
 - Gabor filter
 - Ridge line count
 - Gabor (Shen et al., Quality Measures of Fingerprint Images, 2001)
 - Minutiae count in region of interest
 - FingerJetFX

Feature ExampleOrientation Certainty Level

See NFIQ 2.0 project page at

http://www.nist.gov/itl/iad/ig/development_nfiq_2.cfm

- ISO/IEC 29794-4:2010
- Block wise approach

Winchester U.K., April 26, 2013

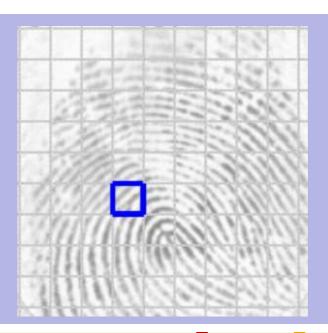
OCL input parameters		
lame	Default	Description
I	_	Input image
B_h	32	Block height in pixels
B_{w}	32	Block width in pixels
maskifiq 2	2.0 Workshop	Segmentation mask

```
function [orientationCertaintyLevel] = compOcl(im, mas
    allfun = inline('all(x(:))');
    [rows cols] = size(im);
    eblksz = ceil(sqrt(sum(v1sz.^2)));
    blkoffset = ceil((eblksz - blksz)/2);
    mapsize = fix(([rows cols] - (eblksz - blksz))./bl
    maskBseg = false(mapsize);
    ocls = zeros(mapsize);
```

end

Orientation Certainty Level

Federal Office for Information Security


 $Algorithm \rightarrow Covariance$

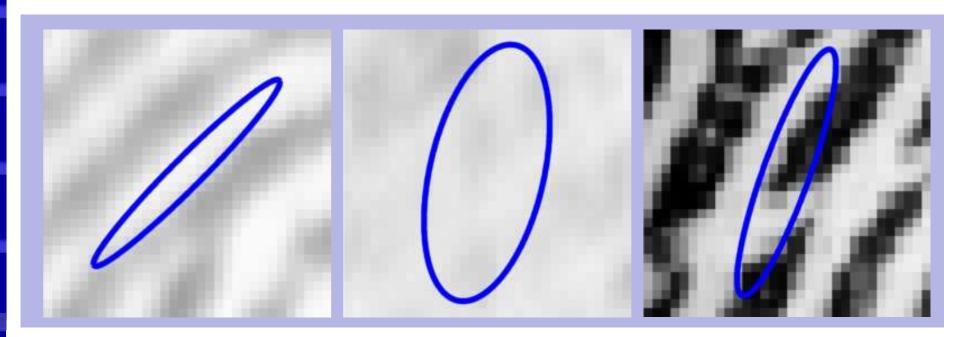
1. Compute the intensity gradient of each block

$$[dx \quad dy] = gradient(B)$$

2. Compute the covariance matrix from the gradients

$$C = \frac{1}{N} \quad \frac{dx}{dy} [dx \quad dy] = \begin{cases} a & c \\ c & d \end{cases}$$

Orientation Certainty Level

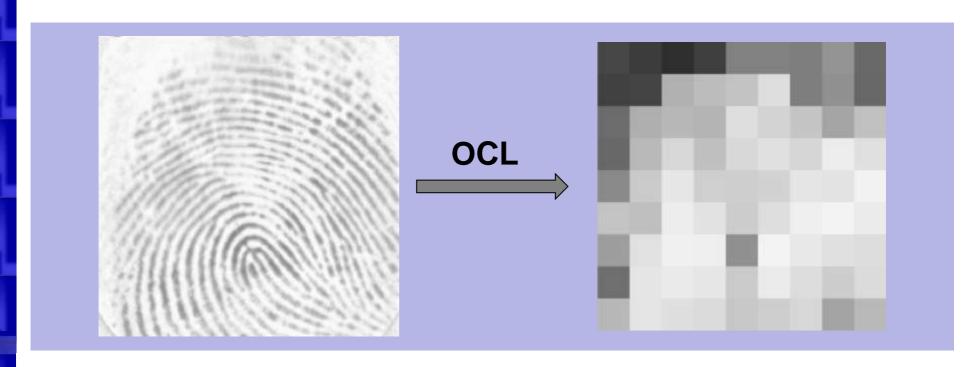

Federal Office for Information Security

Algorithm → Eigenvalue computation

3. Compute the eigenvalues to obtain *OCL* for each block

$$\lambda_{min} = \frac{a + b - \sqrt{(a - b)^2 + 4c^2}}{2}$$

$$\lambda_{max} = \frac{a + b + \sqrt{(a - b)^2 + 4c^2}}{2}$$


Orientation Certainty Level

Federal Office for Information Security

Algorithm → Computing the quality score

- Local orientation certainty level
 - A ratio in the interval [0, 1] where 1 is highest certainty level and 0 is lowest.

$$OCL = 1 - \frac{\lambda_{min}}{\lambda_{max}}$$

Shaping of Gabor filter according to detected ridge-line frequency

- Feedback from previous workshop at IBPC '12 to use:
 - Dynamic filter bank based on detected ridgeline frequency
 - In progress using ridgeline counting and detected frequency peak

Actionable Quality Providing more than a quality value

Detectors

- Centeredness (based on singularity position)
- Wetness/pressure
- Completeness
- **Ghostprints**

Motivation:

- "It would be useful to have a detector for too dry/wet fingers, too low/high pressure, and out-of-center fingerprints." - Greg Cannon during IBPC '12 NFIQ 2.0 workshop
- Reply back then was: "Whether this can be detected or not depends on the training data. Contributions of finger images that are known to have low/high pressure etc. are welcome".

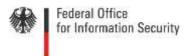
Data collection for wet/dry detection **Overview**

- 5 fingerprint sensors (optical)
- 33 subjects
- 4 impressions/finger/sensor
- 6600 images total
- 4 types of treatment
 - No treatment
 - alcohol-dried
 - crème-moisturized
 - water

Data collection for wet/dry detection Examples

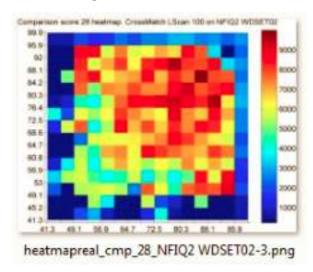
Objective measurement of skin moisture level

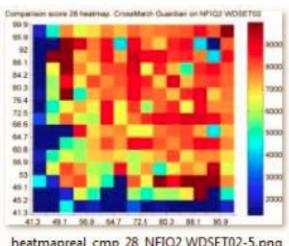
62.5%



84.6%

99.9%




Observations on wet/dry impressions

- Wet fingerprints are generally handled well by recent sensors
- Dry fingerprints cause degradation in comparison score

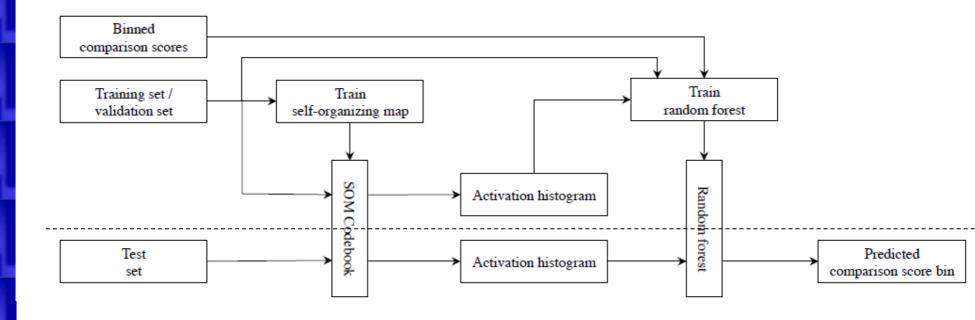
Older generation sensor

New generation sensor

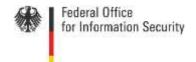
heatmapreal_cmp_28_NFIQ2 WDSET02-5.png

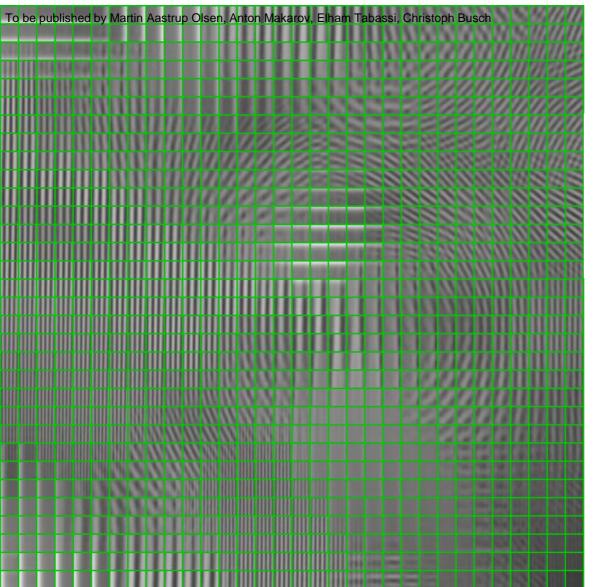
See master thesis by Marek Dusio (DTU) - to be published in June 2013

NFIQ 2.0 Lite


- Motivation:
 - Execution speed of feature extraction is important in some applications (even though processors are getting faster and faster). Aim at 125–150 ms for inclusion of quality assessment into auto-capture loop of sensors. – IBPC '12
- Potential solution:
 - Pre-compute a lookup table which can speed up the quality assessment

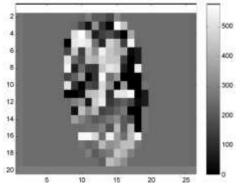
NFIQ 2.0 Lite Machine Learning approach

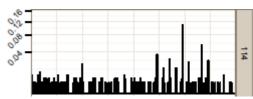



- Two stage process
 - Clustering using Self-Organizing Map
 - Prediction using Random Forest

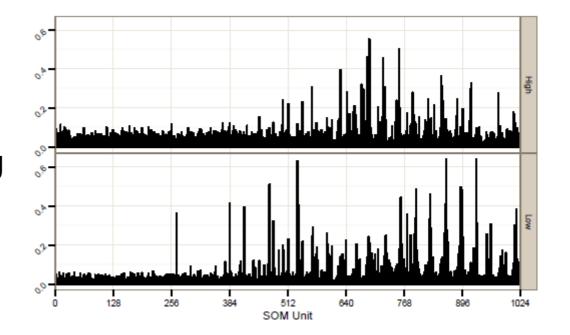
To be published by Martin Aastrup Olsen, Anton Makarov, Elham Tabassi, Christoph Busch

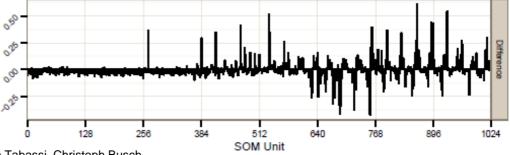
SOM example



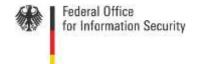


Blocksize: 24 x 24 px SOM units: 32 x 32

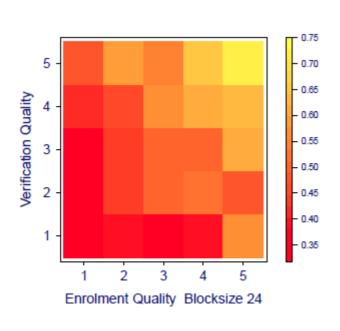


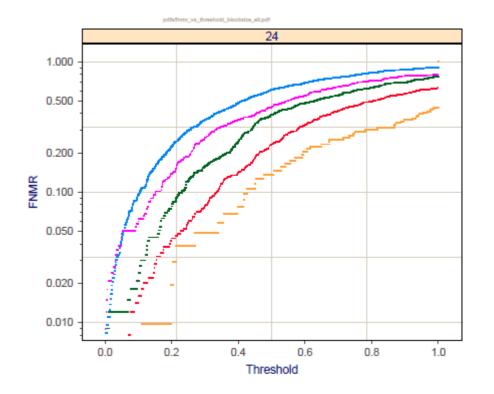

SOM activation histogram

- 64 images with highest comparison score
- 64 images producing false non-match at FNMR = 10^-4



 Difference between histograms.




To be published by Martin Aastrup Olsen, Anton Makarov, Elham Tabassi, Christoph Busch

Performance indication

FNMR vs. score threshold for each level of quality

17

Hochschule Darmstadt - CASED

Martin Aastrup Olsen martin.olsen@cased.de

Gjøvik University College - NISlab

Martin Aastrup Olsen martin.olsen@hig.no