Neutron Tomography and Simulation of Compton Imaging

GAMITHA WIJEKOON¹

MENTOR: HEATHER CHEN-MAYER²

¹University of Maryland: A. James Clark School of Engineering – SURF 2019 ²National Institute of Standards and Technology: Materials Measurement Laboratory

Any mention of commercial products within this presentation is for information only; it does not imply recommendation or endorsement by NIST.

Projects

- Implement Neutron Tomography system
 - Software controls
 - Automated data collection
- Continue design work on Compton Imaging Detector
 - Geant4 Simulations

F

What is neutron tomography?

Ę

Stanojev Pereira, Marco & Marques, J.G. & Pugliesi, Reynaldo. (2012). A Simple Setup for Neutron Tomography at the Portuguese Nuclear Research Reactor. Brazilian Journal of Physics. 42. 10.1007/s13538-012-0083-0.

Task: Integrate hardware and software into one system

Rotary Stage from Thorlabs

XYZ translational stages from physik instrumente (PI)

CCD Camera from Oxford Instruments

Solution: LabVIEW

Ę

PI LabVIEW Example

ThorLabs

Ę

KCube DC Motor Controller S/N 27002890 📃 🔤 Homed 🤇 Ŧ 0.0000° Forward Limit Move Reverse Limit Travel: 360.0 ° 👸 Disable Vel: 10 °/s 2030 Acc: 10.03 °/s2 Identify Jog Step: 5 ° Settings Home Drive * Jog 👻 Idle Actuator: PRMTZ8 KCubeDCServoControl .net Ţ ₩ KCubeDCServoControl SerialNumber CreateDevice CloseDevice Device Serial Number TF abc 👂 **KCubeDCServoControl** KCubeDCServo H → KCubeDCServoControl " → KCubeDCServoControl " → KCubeDCServoControl " → KCubeDCServoControl " KCubeDCServo KCubeDCServo CreateDevice SetMoveAbsolutePosition MoveAbsolute SerialNumber Device Home position CloseDevice waitTimeout position waitTimeout DBL I SerialNumber TFD abc þ i

What to perform tomography on?

Ę

- \$8 Disposable Vape
- 2nd most popular on market

Beam Tube 2 (BT2)

Closer to reactor → more collimated beam
Has top tier Neutron & Xray Tomography

•Special Thanks to Jacob LaManna

Neutron Guide D (NGD) Tomography Setup

Ę

Tomography Images

Our camera

BT2 Camera

J.M. LaManna et al., Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography, Review of Scientific Instruments 88 (2017) 113702 https://doi.org/10.1063/1.4989642

3D Renders

Reconstruction Video

Projects

- Implement Neutron Tomography system
 - Software controls
 - Automated data collection

Continue design work on Compton Imaging Detector

Geant4 Simulations

Prompt Gamma Activation Analysis (PGAA)

Hope to find sources of some metals: Aluminum, Arsenic, Cadmium, Chromium, Copper, Iron, Manganese, Nickel, Lead, Antimony, Tin, Titanium, Uranium, Tungsten, Zinc

Olmedo, Pablo et al. "Metal Concentrations in e-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils." *Environmental health perspectives* vol. 126,2 027010. 21 Feb. 2018, doi:10.1289/EHP2175

Compton Imaging

Fig. 1 Principle of Compton imaging with a two-stage pixelated detector. The Compton cones are generated based on the energy and location of the scattered gamma rays to determine the origin of the emission

Geant4

Particle Simulation software developed by CERN

•Expanding on work by Ben Riley (SURF 2017) and Nathaniel Kaneshige (SURF 2018)

Status of projects

- •Automated Neutron Tomography Controls: Complete
- Gamma Ray Compton Imaging Geant4: Fixed and ready to simulate
- To do:
 - ➢ 3D Model Reconstruction Process for Neutron Tomography
 - Optimize Geant4 Simulation Model for detector design

Bibliography

- Stanojev Pereira, Marco & Marques, J.G. & Pugliesi, Reynaldo. (2012). A Simple Setup for Neutron Tomography at the Portuguese Nuclear Research Reactor. Brazilian Journal of Physics. 42. 10.1007/s13538-012-0083-0.
- J.M. LaManna et al., Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography, Review of Scientific Instruments 88 (2017) 113702 <u>https://doi.org/10.1063/1.4989642</u>
- H. Chen et al. Spectroscopic Compton imaging of prompt gamma emission at the MeV energy range.
 J. Radioanal. Nucl. Chem. 318 (2018) doi: 10.1007/s10967-018-6070-3
- Belgya T., Révay Z. (2017) Prompt Gamma Activation Analysis (PGAA). In: Kardjilov N., Festa G. (eds) Neutron Methods for Archaeology and Cultural Heritage. Neutron Scattering Applications and Techniques. Springer, Cham
- Olmedo, Pablo et al. "Metal Concentrations in e-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils." *Environmental health perspectives* vol. 126,2 027010. 21 Feb. 2018, doi:10.1289/EHP2175

Acknowledgements

Heather Chen-Mayer (MML)

David Jacobson and Jacob LaManna (PML)

Joe Dura, Julie Borchers, Brandi Toliver (NIST SURF)

Ben Riley (SURF 2017), Nathaniel Kaneshige (SURF 2018)

Center for High Resolution Neutron Scattering

