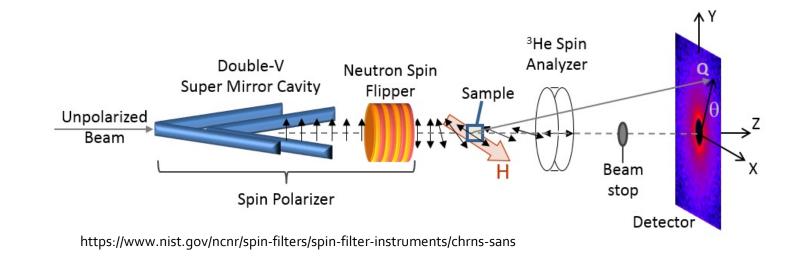


Neutron Spin Flipper Automation Using a Red Pitaya STEMlab

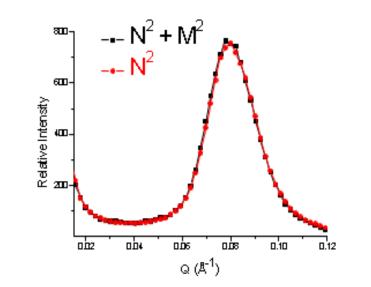
Kristina Znam, Walter Johnson High School

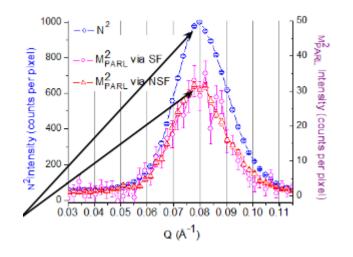
Mentor: Markus Bleuel


Small Angle Neutron Scattering (SANS)

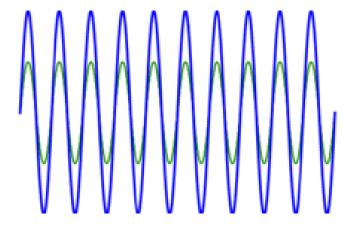
ANGER 👑 LASER Scattered beam Source Sample 20 ₩ \mathbf{k} Incident beam Attenuated transmitted beam Wave vector: 0 100 I. Grillo - Small-Angle Neutron Scattering and Applications in Soft Condensed Matter

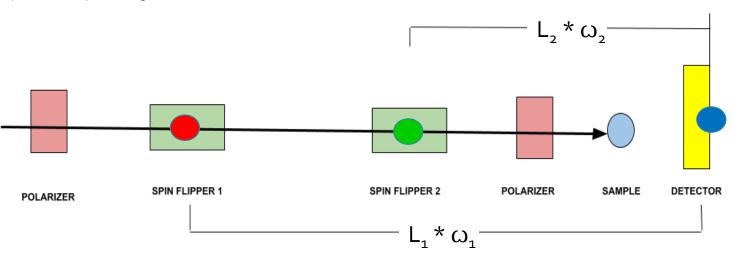
http://www.animations.physics.unsw.edu.au/labs/diffraction/diffraction-labs.html




Neutron Spin Flippers (Polarized SANS)

Without Spin Flip

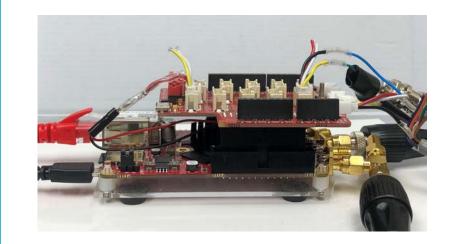

With Spin Flip



From the NCNR summer school Kathryn Krycka – Polarization Analysis for SANS

Modulated Intensity SANS (MISANS)

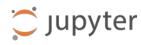
https://en.wikipedia.org/wiki/Beat_(acoustics)


• $L_1 * \omega_1 = L_2 * \omega_2$

• $\Delta \omega = \omega_2 - \omega_1$

Hardware

- Prototype of RF neutron spin flipper
 - Longitudinal DC fields
 - Orthogonal AC field
- Red Pitaya STEMlab
 - Measurement device
 - Centerpiece of project



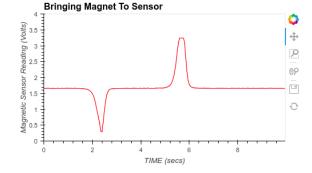
https://www.redpitaya.com/

Software/ Languages Active control of flipper
SCPI // HPIB
Interactive window for application
Python Anaconda in Jupyter
Fast Live Data Acquisition
Holoviews & Bokeh

Appropriate documentation

• GitHub

Software Example



Magnetic Sensor Demonstration

The program tracks data over 10 seconds then displays it using Holoviews with Bokeh.

Out[4

GitHub: https://github.com/kznam/redpitaya-python-data-aquisition

Future Projects

- use machine learning for optimization of flipping conditions for various frequencies (up to six orders of magnitude)
- I2C connection (slow serial bus)
 - Switching capacitors in RF coil to change frequency
 - More Sensors
- Unit Standardization
- 3 triggers
 - 2 frequency generation
 - 1 detector
- Water Cooling for coils

Project Overview

- Interactive near real-time overview of the flipper status using Red Pitaya STEMlab to:
 - Control and display of static magnetic field
 - live feedback loop to correct for field changes
 - Display the RF waveform and extract relevant parameters
 - frequency, amplitude, and phase through fitting algorithm
- Software approach was effective and successful

Acknowledgements

- Special thanks to
 - Markus Bleuel, mentor
 - SHIP coordinators (Julie Borchers, Joe Dura, Yamali Hernandez)
 - Przemek Klosowski, Juscelino Leao, Thuan Thai, Jacob Tosado
 - Fellow SHIP students
 - NIST, NCNR
 - CHRNS

