

Neutron Scattering studies of the Crystal and Magnetic Structures of Molecular Magnets

Danielle Villa Mentors: Craig Brown and Qingzhen Huang

Molecular Magnets

Molecular Quantum Magnets

- Molecules that exhibit magnetic behavior at low temperatures
 - Antiferromagnetism
- $\hat{H} = \sum D(\hat{S}_i^{z^2}) + \sum J_{ij}\hat{S}_i \cdot \hat{S}_j$
 - D-> Single Ion Anisotropy
 - J-> Magnetic Exchange Interaction
- Quantum Theory
- Information Storage
- Quantum Computing

Neutrons

D

"Dynamics and Neutron Scattering" by John R.D. Copley

Neutron Scattering

Diffraction

BT-1 High Resolution Powder Diffractometer

Inelastic

Disk Chopper Time of Flight Spectrometer

Structure from Ki Min Nam, et al. J. Am. Chem. Soc., 2012, 134 (20), pp 8392-8395

•

Unpublished Data

Fit by Qingzhen Huang

Inelastic Scattering

NiCl₂(pyz)₂

► S=I

Tetragonal

NiBr₂(pyz)₂

- ► S=I
- Tetragonal

$NiX_2(pyz)_2$

NiCl₂(pyz)₂

► S=I

Tetragonal

NiBr₂(pyz)₂

- ► S=I
- Tetragonal

$NiBr_2pyz_2$

S=I
≻ Tetragonal
≻ T_N=1.9 K

A Need

Thank You

- Qingzhen Huang
- Craig Brown
- Jamie Manson
- Joe Dura
- Julie Borchers
- Dan Neumann
- Steve Disseler
- William Ratcliff

- Juscelino Leao
- Yegor Vekhov
- Alan Ye
- Terry Udovic
- Jeff Lynn
- Yamali Hernandez
- Jamie Brambleby
- Paul Goddard

Non-NIST Experimental Partners

- The University of Warwick
- Advanced Photon Source, Argonne National Laboratory
- National High Magnetic Field Laboratory, Los Alamos National Laboratory
- Swiss Muon Source, Paul Scherrer Institut
- ISIS Pulsed Neutron and Muon Source

Software Used for Data Analysis

Neutron Diffraction

- CMPR
- ► GSAS
- Inelastic Neutron Scattering
 - DAVE
 - SpinW
- Visualization
 - VESTA

Fig. 1 Heat capacity (plotted as C_p/T) vs. temperature for $Co_2Cl_2(pyz-d_4)_2$ (JLM4-088). A Peak at 0.85(1) K indicates a transition to long range order. The solid line is a fit to a model of one Debye plus two Einstein modes in the range $10 \le T \le 300$ K. Inset: Subtracting the lattice contribution from the data, the entropy change to 20 K is determined to be consistent with $R \ln 2 = 5.8$ J K⁻¹mol⁻¹, indicating the sample behaves as an effective spin 1/2 system at low temperatures.

Fig. 3 Field dependence of C_p/T vs. *T*. The λ -peak moves to lower temperatures as the field is increased, indicative of a transition to an AFM ordered ground state. T_N is too low to be experimentally accessible for applied fields $\mu_0 H \ge 1.5$ T. At higher fields a broad feature emerges which moves monotonically to higher temperatures with applied field.

Fig. 4 Magnetic heat capacity (C_{mag}) vs. *T*, following subtraction of the lattice fit. The broad feature (for $\mu_0 H \ge 3$ T) has a constant amplitude, and a peak position which increases linearly with field. This is highly indicative of a Schottky anomaly due to the field-induced splitting of the doublet ground state in Co²⁺. Inset: phase boundary separating the paramagnetic state (with easy-plane anisotropy) with the AFM ordered state. Faded points are most easily seen in C_p/T vs. *T* (Fig. 3).

Fig. 2 Heat capacity vs. temperature, showing the lattice fit to the data. The fit only has a small dependence on the lower bound used for the fit, giving rise to the small error in the calculated entropy change (Fig. 1 Inset).

Fig. 5 Simulated molar heat capacity (C_{mag}) vs. *T*, for a two level system in an applied field. The result is a Schottky anomaly, with the equation given in the figure. The *g*-factor was taken to be the powder average *g*-factor, assuming the published^[1] values for the fully hydrogenated phase of g_{xy} = 5.98 and g_z = 1.97. This model is a good representation of the measured data (Fig. 4), having the approximately the correct amplitude and field dependence for the maxima.

[1] R. L. Carlin et al., PRB 32, 7476 (1985).

CoCl₂(pyz-d₄)₂ (Bacth #: JLM4-088) 22nd May 2015

Fig. 3

(b)

a = b = 7.09 Å c = 11.3 Å I4/mmm (tetragonal) T = 298 K

